
PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 69

The Climate Modelling Toolkit

Joy Merwin Monteiro‡∗, Rodrigo Caballero‡

F

Abstract—The Climate Modelling Toolkit (CliMT) is a Python-based software
component toolkit providing a flexible problem-solving environment for climate
science problems. It aims to simplify the development of models of complexity
’appropriate’ to the scientific question at hand. This aim is achieved by providing
Python-level access to components commonly used in climate models (such
as radiative transfer models and dynamical cores) and using the expressive
data structures available in Python to access and combine these components.
This paper describes the motivation behind developing CliMT, and serves as an
introduction to interested users and developers.

Index Terms—Climate Modelling, Hierarchical Models

Introduction

Climate models are numerical representations of the climate
system consisting of ocean, land and atmosphere. They have
become an important aspect of climate science as they provide
a virtual laboratory in which to perform experiments and gain a
deeper understanding of the climate system. Climate models can
be conceived as a combination of two distinct parts: One, called
the "dynamics", is code which numerically integrates the equations
of motions of a fluid. The other, called the "physics" is code
which approximates various processes considered important for
the evolution of the atmospheric/oceanic fluid, including radiation,
moist convection and turbulence. Some of these processes, such
as convection and turbulence should ideally simulated by the
dynamics, but the coarse resolution of typical climate models
and limitations of computational resources lead to their being
approximated as physics components.

In an influential essay, Isaac Held made the case for studying
the climate system using a hierarchy of models, in a manner
similar to the hierarchy of model organisms used by evolution-
ary biologists [Hel05]. The essay argued that such a hierarchy
would not only help in our understanding of the climate system,
but would also help in interpreting results obtained from more
complex models and even aid in improving them. A qualitative
description of the climate model ecosystem is shown in Fig. 1. On
the dynamics axis, they range from models which represent the
atmosphere as a single vertical column to a full turbulent, three
dimensional flow. On the physics axis, they range from models
which represent radiation or turbulence using ten lines of code to
those whose representation of the physics run into thousands of
lines.

* Corresponding author: joy.merwin@gmail.com
‡ MISU, Stockholm University

Copyright © 2016 Joy Merwin Monteiro et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Over the past few decades, efforts have been made to develop
such a hierarchy of models (a significant fraction of which has
been, not surprisingly, by Isaac’s students and collaborators) which
have had a positive impact on our understanding of the climate sys-
tem and the general circulation of the atmosphere [HK81], [HS94],
[NZ00], [Sch04], [FHZG06], [MFCE07], [CPM08], [MPFC09].
Note that we restrict our focus here only on numerical models of
the climate system, excluding many influential theoretical models
such as [HH80] and models of phenomena such as the Madden-
Julian Oscillation (MJO) or tropical cyclones.

However, the scale of these efforts has not kept pace with
the increasing complexity of full scale general circulation mod-
els (GCMs) which are on the threshold of cloud-scale (~1 km
horizontal resolution) simulations of the entire atmosphere. One
of the primary reasons, we believe, is that significant effort is
required to build models which represent even the basic fea-
tures of the atmospheric general circulation. Existing frameworks
to develop such models like the Flexible Modelling System
(FMS, http://www.gfdl.noaa.gov/fms) and the MIT-
gcm (http://mitgcm.org/) are typically written in Fortran
and the effort to set up a model beyond those already provided
as examples can, in our experience, be quite discouraging for new
users who lack a strong background in Fortran and programming.

In this paper we introduce the Climate Modelling Toolkit
(CliMT, pronounced "Klimt"), which attempts to reduce this
barrier to developing simplified models of the atmosphere. It is
similar in spirit to the above mentioned frameworks, with the
following distinctions:

• Configuration and execution of models is much simpler
and done in the same script, making repeated simulations
less error prone

• New components can be added with minimal infrastructure
code requirements, and does not require recompilation of
the entire codebase

• Object-oriented design makes program flow both intuitive
and less prone to error

• Allows for incremental development: proof of concept de-
velopment in pure Python and production code in another
language (Cython, C, Fortran)

CliMT is currently not capable of parallel execution, and
thus is mainly useful for 1 and 2-dimensional climate models.
Despite these limitations, CliMT is used by around 10 research
groups around the world (based on user queries/feedback) for
research [CPM08], [CH13], [RBSB10] and pedagogy [Pie10]. In
the following sections, we describe the basic building blocks of
CliMT, their usage, and how new components can be added. We
end with a roadmap towards version 1.0 of CliMT, which should

mailto:joy.merwin@gmail.com

70 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Physical Process Components
Convection Zhang-McFarlane

Emanuel
Emanuel hard adjustment
Simplified Betts-Miller

Dynamics Axisymmetric dynamics
Two column dynamics

Ocean Slab Ocean
Radiation Community Atmosphere Model (CAM) 3

CCM 3
Chou
Grey Gas
Rapid Radiative Transfer Model (RRTM)

Insolation
Absorption by ozone

Turbulence CCM3
Simple (diffusive)

Thermodynamics routines for calculating thermodynamic quantities

TABLE 1: Components available currently in CliMT.

see CliMT working as a fully parallel, moist GCM capable of
simulating a realistic climate.

Fig. 1: A qualitative depiction of the climate model hierarchy. The
complexity of the dynamics and the physics models increases along the
direction of the arrows. This is merely an indicative representation,
and is not meant to be exhaustive.

CliMT: best of both worlds

CliMT combines the elegance and clarity of the Python language
with the efficiency of Fortran libraries. Users interact with CliMT
in a pythonic way, using high-level data structures like dictionaries
and lists, and the numerical computations are done by optimised
(and tested) Fortran code extracted from state-of-the-art climate
models. Currently, f2py is used to convert Fortran code to a
library that can be imported into Python. Table 1 lists the physical
processes that can be currently simulated using CliMT and the
options available to represent each physical process.

The initialization of the components and the execution of the
resulting model is handled in the same script, which makes the
parameters and assumptions underlying the model explicit. This
makes interpreting the results of the simulation easier. Given that
model initialization, execution and data analysis can be performed

from within a single IPython notebook, this makes model results
and the resulting scientific results reproducible as well. CliMT also
enables users to study the effects of changing physical parameter-
izations and dynamical cores on the simulated climate, something
that is difficult to do in other idealised modelling frameworks.

Architecture

CliMT, in a broad sense, is a library which enables numerical
representations of different processes in the climate system to
be linked together in an intuitive manner. While it provides a
leapfrog integrator (a second order method for numerical integra-
tion common to many climate models) to step the model forward
in time, it does not provide routines to calculate gradients or
spectral coefficients. All components in CliMT are either written
from scratch or extracted from larger climate models (especially
radiative transfer models). There is no facility to update the
underlying Fortran/C code itself if the original code is updated.
It is assumed that each component will implement any numerical
methods that it requires. While this may lead to some code
duplication, it allows for a loose coupling between the various
components. This allows development of new components without
recompilation of the entire codebase.

When a component is instantiated, CliMT queries the com-
ponent to find out which variables the component affects. For
instance, a convection component will affect the specific humidity
and the temperature variables. It creates a Numpy array of the
appropriate dimensions for each such variable. If multiple com-
ponents affect the same variable, only one such array is created.
During execution, it collects the time tendency* terms from each
component (in the form of a Numpy array), sums them together
and uses the resulting cumulative tendency to step the model
forward in time. Currently, it is assumed that all components share
a common grid, i.e, all arrays representing tendency terms have the
same shape, and represent the same location in three dimensional
space. As is commonly the case in climate models, the spatial
coordinates are in latitude-longitude-pressure space, and CliMT
does a sanity check to ensure that all components have the same
spatial representation (i.e, tendency arrays expected from each
component has the same shape).

To summarize, each component (encapsulated in the
Component class) provides time tendency terms to the main
execution loop, and the model is stepped forward in time by inte-
grating these tendencies using the leapfrog integrator. Optionally,
the model state is displayed using a wrapper over matplotlib
and written to disk using the netCDF4 library. Since the model
state variables are Numpy arrays, they can be easily accessed
by external Python libraries for online processing or any other
purpose.

Combining multiple Component objects is made possible
using the Federation class. Combining two or more desired
Component objects in a Federation results in a climate
model of appropriate complexity.

The Component and Federation classes are the interface
between the end-user and CliMT, with all other classes being used
internally by these two classes.

*. A time tendency term at time t1 is the incremental value of a variable to
be added to obtain that variable’s value at time t2 , where t2 is the time instant
succeeding t1.

THE CLIMATE MODELLING TOOLKIT 71

Component

A Component class is the fundamental abstraction in CliMT. It
encapsulates the behavior of a component that takes certain inputs
and provides certain tendencies as output. Each Component
object has (among others) the following members which are
specified by the developer:

• Prognostic
• Diagnostic
• Fixed
• FromExtension
• ToExtension

These members are lists whose elements are one of
many predefined field names (available in the State
class) relevant to climate science applications. For example,
if Component.Prognostic = ['U', 'V', 'theta'],
then the component represents a model which can forecast the
future state of the wind along longitude, wind along latitude and
the potential temperature, respectively. The Diagnostic list
contains those fields which the component calculates using the
prognostic fields, and the Fixed list contains those fields which
are left unchanged by the component. The ToExtension list in-
dicates which fields are required by the component to forecast the
future state, and the FromExtension list indicates which fields
are returned by the component. Typically, the FromExtension
list contains the name of fields with an Inc suffix, indicating
that the component returns increments only, which are to be
stepped forward in time. The term Extension refers to the
compiled Fortran/C library which does the actual computation.
Each Component also keeps track of the time step dt taken
during each integration (normally decided by stability constraints),
and the time elapsed from the beginning of the integration.

Component has two main methods: compute and step.
The compute method calls the compiled Fortran/C code
and retrieves the increments and diagnostic fields and stores
them internally. compute takes an optional boolean argument
ForcedCompute. If ForcedCompute is true, then the ten-
dency terms are always calculated. If it is false (the default),
then the tendencies are calculated only if the elapsed time is at
least dt greater than the previous time at which the tendencies
were calculated. Such behavior is required when combining two
components which operate on very different time scales, such as
convection (time scale of hours) and radiation (time scale of days).
compute is also invoked by simply calling the object.

The step method steps the component forward in time by
taking the increments calculated in compute and passing them
on to the leapfrog integrator (available in the infrastructure code,
not in each individual component) to get future values of the
fields. step internally calls compute, so the user needs only
to call step. step accepts two optional arguments Inc and
RunLength. Inc which is a dictionary whose keys are some
or all of the elements in ToExtension, and the corresponding
values are additional tendency terms calculated outside the com-
ponent. These increments are added to the internally computed
tendency terms before calling the integrator. Runlength decides
how many seconds forward in time the component is stepped
forward. If RunLength is a positive integer, then the component
is stepped forward in time RunLength * dt seconds. If it is
a positive floating point number, then the component is stepped
foward in time RunLength seconds.

All parameters required by any Component are passed as a
dictionary during object instantiation. This includes initial values
of the fields integrated by the Component. If no initial values
are supplied, the fields are initialized as zeroed NumPy arrays of
the appropriate shape. An example which uses the CAM radiative
transfer model to compute the radiative tendencies is shown below
(also available in the source code itself):
import numpy as np
import climt

#--- instantiate radiation module
r = climt.radiation(scheme='cam3')

#--- initialise T,q
Surface temperature
Ts = 273.15 + 30.
Stratospheric temp
Tst = 273.15 - 80.
Surface pressure
ps = 1000.
Equispaced pressure levels
p = (np.arange(r.nlev)+ 0.5)/r.nlev * ps
Return moist adiabat with 70% rel hum
(T,q) = climt.thermodyn.moistadiabat(p, Ts, Tst, 1.)

Set values for cloud fraction and
#cloud liquid water path
cldf = q*0.
clwp = q*0.
cldf[len(cldf)/3] = 0.5
clwp[len(cldf)/3] = 100.

#--- compute radiative fluxes and heating rates
r(p=p, ps=ps, T=T, Ts=Ts, q=q, cldf=cldf, clwp=clwp)

In the above code, the computed outputs can be accessed by
treating r as a dictionary: the shortwave flux at the top of the
atmosphere is available at r['SwToa'], for example.

Federation

Federation is a subclass of Component which is instantiated
by providing two or more Component objects as arguments. It
provides the same interface as Component, and is the abstraction
of a climate model with multiple interacting components. On
instantiation, Federation does a few sanity checks to ensure
consistency of dimensions between its member Components. As
in Component, integrating the Federation forward in time
is simply achieved by calling step. An example which computes
the radiative convective equilibrium in a column of the atmosphere
is given below:
import climt
import numpy as np

Some code initialising kwargs
...

-- Instantiate components and federation

#Radiation is called only once every
#50 timesteps, since it is a slow process.
rad = climt.radiation(

UpdateFreq=kwargs['dt']*50,
scheme='cam3')

#Convection consumes the instability
#produced by radiation
con = climt.convection(

scheme='emanuel')

turbulence facilitates the exchange
of water vapour and momentum between

72 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

the ocean and the atmospheric column
dif = climt.turbulence()

#Ocean provides a source of water vapour
oce = climt.ocean()

#Instantiate the federation
fed = climt.federation(dif, rad, oce,

con, **kwargs)

Main timestepping loop
for i in range(1000):

The following code adds a uniform
1 K/day cooling rate to
the internally-computed tendencies
dT= np.array([[-1./86400.*kwargs['dt']*

2.*np.ones(rad.nlev)]]).transpose()

fed.step(Inc={'T':dT})

Fig. 2: The displayed output from a one dimensional (vertical)
radiative-convective simulation on day 150. The fields are updated
in real time during the simulation. The panels display (clockwise
from top left): Temperature, Potential Temperature, radiative heating
and specific humidity respectively. The y axis is height measured in
pressure and has units of millibar (100 Pascals = 1 millibar). As
expected from theory and observations, the temperature decreases
almost linearly in the lower levels of the column.

Here, the radiative code has an UpdateFreq value that is 50
times the actual timestep of the federation. As mentioned before,
this feature facilitates coupling of components whose charac-
teristic time scales are very different from each other without
increasing the computational load during the simulation. Notice
also the external tendency term dT passed on to fed in the step
method. The output fields are again accessed by treating fed as
a dictionary. Figure 2 shows the typical output from a CliMT
radiative-convective simulation; Display and I/O is discussed in
the next section.

Software Layout and Documentation

CliMT maintains the infrastructure code and the actual com-
ponent code in separate folders. The src directory con-
tains the component code whereas lib/climt contains the
infrastructure code. The main infrastructure code resides in

{component,federation,state,grid}.py. The vari-
ous physical processes are accessible from appropriately named
files in lib/climt (e.g, convection.py). These files im-
plement the Component class and act as an interface to the
underlying Fortran code. Note that there is no restriction on
the language in which extensions are written. All the physical
variables that CliMT recognises are listed in state.py. While
all files themselves have detailed inline documentation, there is
currently no automated system in place to build a module reference
based on these comments. Querying an object in an IPython envi-
ronment is currently the best way of accessing the documentation,
as demonstrated in Fig. 3. Addition of a new module would require
copying the extension code to src/, adding a reference to it in
the appropriate physical process file (e.g, a new dynamical core
would be included in dynamics.py), and adding a reference in
setup.py to enable building and installation.

Fig. 3: Accessing documentation for the dynamics class in an IPython
prompt.

Monitoring fields and I/O

CliMT also provides for real time display (monitoring) of the
simulated fields. Currently, up to four fields can be moni-
tored. Monitoring is activated by providing an additional argu-
ment during component instantiation called MonitorFields.
MonitorFields is a list of up to four fields that are part of
the simulation. If the field is three dimensional, the zonal average
(average along longitude) is displayed. The frequency at which the
display is refreshed is decided by the MonitorFreq argument.

CliMT can read intial conditions from the file whose name is
specified in the RestartFile argument. The output is written
to the file whose name is specified in the OutputFile argument.
If RestartFile and OutputFile are the same, then the
data is appended to OutputFile. The last time slice stored in
RestartFile is used to initialize the model. If some fields are
missing in RestartFile, they are initialized to default (zero)
values.

The fields written to the output file are specified in the
OutputFields argument. If OutputFields is not specified,
all fields are written to file. OutputFreq is an optional argument

THE CLIMATE MODELLING TOOLKIT 73

which specifies the time between writing data to file. If it is not
specified, the output is stored once every model day.

Developing new Components

CliMT requires a single point of entry into the Fortran/C code
to be provided by each Component: the driver method. The
driver method takes as input NumPy arrays representing the
fields required to calculate the tendency terms. The order in which
the fields are input is represented by the ToExtension list in
the Component. The output of the driver is a list of NumPy
arrays ordered in the same way as the FromExtension list.
The translation between NumPy arrays and the Fortran code is cur-
rently done automatically by f2py generated code. The Fortran/C
extension module itself is stored in Component.Extension
and an optional name is provided in Component.Name.
Component.Required is a list of those fields which are
essential for the component to calculate tendencies. These vari-
ables along with Prognostic, Diagnostic and Fixed lists
(which were previously discussed) enable CliMT to interface with
a new component.

We note that CliMT expects the tendency terms to be pre-
multiplied by dt, i.e, the units of the fields returned by driver
is expected to be the same as the units of the prognostic fields.
The integrator does not multiply the tendency terms by dt, as is
normally the case.

Current Development: towards CliMT 1.0

The space occupied by CliMT in the climate model hierarchy is
shown in Fig. 4. It is currently capable of simulating relatively
simple (1 and 2 dimensional) dynamics and quite sophisticated
physical processes. Moving forward, we hope fulfill the vision
of using CliMT as a full fledged moist idealized GCM. As a
first step, we have integrated a dynamical core adapted from the
Global Forecast System (GFS). Together with this, we have added
a new Held-Suarez module which provides the Held-Suarez
forcing terms for a 3-d atmosphere. A working example of the
benchmark is now available from a development fork (available
at https://github.com/JoyMonteiro/CliMT/lib/
examples). Figure 5 shows the mean wind along longitudes
("zonal" wind) simulated by the model. It shows most of
the important aspects of the mean circulation in the earth’s
atmosphere: strong westerly jet streams around 30 degrees N/S
and easterly winds near the surface and the top of the atmosphere
in the tropics.

Many changes were incorporated enroute this integration. The
dynamical core is the first component of CliMT that interfaces
with the Fortran library using Cython and the ISO_C_Binding
module introduced in Fortran 2003. This will be used as a template
to eventually move all components to a Cython interface: f2py
does not seem to be actively developed anymore, and currently
cannot interface with code that includes compound data structures,
like the FMS dynamical cores. Therefore, we expect the Cython-
ISO_C_Binding combination to enable CliMT to use a wider
range of libraries.

A new feature in CliMT 1.0 will be to allow components to
use an internal integrator and not the default leapfrog available in
CliMT. This is useful since components such as the 3-D dynamical
core already include non-trivial implementations of numerical
integrators which will have to be reimplemented in CliMT to
ensure stable integrations. Moreover, it is unlikely that atmosphere

Fig. 4: A look at the current capability and future directions for CliMT
development in context of the model hierarchy

Fig. 5: The mean wind along longitudes in the Held-Suarez simula-
tion. The mean is over 1000 days and over all longitudes (a "zonal"
mean). The y-axis has units of millibar (= 100 Pa). It compares well
with the simulated winds in [HS94] (see Fig. 2 in their paper)

and ocean models use similar numerical algorithms. Since the
focus of CliMT is on the infrastructure and not the numerics,
this feature enables rapid addition of new components into CliMT
without substantially changing its basic structure. This feature and
other enhancements will be described in detail in a forthcoming
paper accompanying the release of CliMT 1.0.

Next, we intend to interface the dynamical core with the grey
gas radiation module to enable CliMT to generate a realistic
general circulation without using the Held-Suarez forcing. Issues
we intend to address in the future include:

• scalability by making CliMT MPI and/or OpenMP-aware
• More systematic testing architecture
• A full user manual and IPython notebook examples

With these additions, we hope CliMT will be the framework
of choice for a wide audience, from undergraduates to scientists
to explore questions in climate science.

Acknowledgements

This work is supported by funding from the Swedish e-Science
Research Centre (http://www.e-science.se/).

74 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

REFERENCES

[CH13] R. Caballero and M. Huber. State-dependent climate sensitivity
in past warm climates and its implications for future climate
projections. Proceedings of the National Academy of Sciences,
110(35):14162–14167, August 2013.

[CPM08] R. Caballero, R. T. Pierrehumbert, and J. L. Mitchell. Axisym-
metric, nearly inviscid circulations in non-condensing radiative-
convective atmospheres. Quarterly Journal of the Royal Meteoro-
logical Society, 134(634):1269–1285, July 2008.

[FHZG06] D. M. W. Frierson, I. M. Held, and P. Zurita-Gotor. A Gray-
Radiation Aquaplanet Moist GCM. Part I: Static Stability and
Eddy Scale. Journal of the Atmospheric Sciences, 63(10):2548–
2566, October 2006.

[Hel05] I. M. Held. The Gap between Simulation and Understanding
in Climate Modeling. Bulletin of the American Meteorological
Society, 86(11):1609–1614, November 2005.

[HH80] I. M. Held and A. Y. Hou. Nonlinear Axially Symmetric Circula-
tions in a Nearly Inviscid Atmosphere. Journal of the Atmospheric
Sciences, 37(3):515–533, March 1980.

[HK81] B. J. Hoskins and D. J. Karoly. The steady linear response of a
spherical atmosphere to thermal and orographic forcing. Journal
of the Atmospheric Sciences, 38(6):1179–1196, 1981.

[HS94] I. M. Held and M. J. Suarez. A Proposal for the Intercomparison of
the Dynamical Cores of Atmospheric General Circulation Models.
75(10):1825–1830, October 1994.

[MFCE07] J. Marshall, D. Ferreira, J-M. Campin, and D. Enderton. Mean
Climate and Variability of the Atmosphere and Ocean on an
Aquaplanet. Journal of the Atmospheric Sciences, 64(12):4270–
4286, December 2007.

[MPFC09] J. L. Mitchell, R. T. Pierrehumbert, D. M.W. Frierson, and R. Ca-
ballero. The impact of methane thermodynamics on seasonal
convection and circulation in a model Titan atmosphere. Icarus,
203(1):250–264, September 2009.

[NZ00] J. D. Neelin and N. Zeng. A Quasi-Equilibrium Tropical Circu-
lation Model-Formulation. Journal of the atmospheric sciences,
57(11):1741–1766, 2000.

[Pie10] R. T. Pierrehumbert. Principles of planetary climate. Cambridge
University Press, 2010.

[RBSB10] M. T. Rosing, D. K. Bird, N. H. Sleep, and C. J. Bjerrum. No
climate paradox under the faint early Sun. Nature, 464(7289):744–
747, April 2010.

[Sch04] T. Schneider. The Tropopause and the Thermal Stratification in
the Extratropics of a Dry Atmosphere. Journal of the Atmospheric
Sciences, 61(12):1317–1340, June 2004.

	Introduction
	CliMT: best of both worlds
	Architecture
	Component
	Federation

	Software Layout and Documentation
	Monitoring fields and I/O
	Developing new Components
	Current Development: towards CliMT 1.0
	Acknowledgements

	References

