
Proceedings of the 15th

Python in Science Conference

July 11 - July 17 • Austin, Texas

Sebastian Benthall
Scott Rostrup

PROCEEDINGS OF THE 15TH PYTHON IN SCIENCE CONFERENCE

Edited by Sebastian Benthall and Scott Rostrup.

SciPy 2016
Austin, Texas
July 11 - July 17, 2016

Copyright c© 2016. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/Majora-2e17052b-014

ORGANIZATION

Conference Chairs
ARIC HAGBERG, Los Alamos National Laboratory
PRABHU RAMANCHANDRAN, Enthought, Inc. & IIT Bombay

Program
SERGE REY, Arizona State University
NELLE VAROQUAUX, Mines ParisTech, Institut Curie, INSERM

Communications
JULIE KRUGLER HOLLEK, Twitter

Birds of a Feather
AASHISH CHAUDHARY, Kitware
MIKE HEARNE, USGS

Proceedings
SEBASTIAN BENTHALL, University of Califronia - Berkeley
SCOTT ROSTRUP, AI and Robotics Startup

Financial Aid
SCOTT COLLIS, Argonne National Laboratory
ERIC MA, MIT

Tutorials
BEN ROOT, Atmospheric and Environmental Research, Inc.
JUSTIN VINCENT, Google

Sprints
ANDREW COLLETTE, Enthough Inc.
DHARHAS POTHINA, US Army Corps of Engineers, ERDC

Diversity
JULIE KRUGLER HOLLEK, Twitter

Activities
CHRIS NIEMIRA, AOL
RANDY PAFFENROTH, Worcester Polytechnic Institute

Sponsors
JILL COWAN, Enthought

Financial
BILL COWAN, Enthought
JODI HAVRANEK, Enthought

Logistics
JILL COWAN, Enthought
LEAH JONES, Enthought

Proceedings Reviewers
TOM ALDCROFT
ANKUR ANKAN
DANI ARRIBAS-BEL
KYLE BARBARY
SEBASTIAN BENTHALL
MATTHIAS BUSSONIER
CHRIS CALLOWAY
ONDREJ CERTÍK
DAV CLARK
MATTHEW COLLIER
JEAN CONNELLY
BEN DARWIN
JUAN DUQUE
CARSON FARMER
DAVID FOLCH
CHRIS FONNESBECK
MATT HALL
KATY HUFF
HANS PETER LANGTANGEN
DAN LEWIS
DAVID LIPPA
MATTHEW MCCORMICK
KYLE NIEMEYER
MIKE PACER
RANDY PAFFENROTH
FLORIAN RATHGEBER
THOMAS ROBITAILLE
MATTHEW ROCKLIN
SCOTT ROSTRUP
DAN SCHULT
SKIPPER SEABOLD
BILL SPOTZ
JORDAN SUCHOW
ERIK TOLLERUD
JAKE VANDERPLAS
BRYAN W. WEBER

SCHOLARSHIP RECIPIENTS

FILIPE FERNANDES, SECOORA
ISURU FERNANDO, University of Moratuwa
GILBERT FORSYTH, George Washington University
KESTREL GORLICK, Northern Arizona University
DEBORAH HANUS, Harvard University
MATAR HALLER, UC Berkeley
NOELLE HELD, MIT-WHOI Joint Program in Oceanography
AMIT KUMAR, SymPy
NELSON LIU, University of Washington
TAYLOR OSHAN, Arizona State University/Python Spatial Analysis Library
THOMAS ROBITAILLE, Freelance
SARTAJ SINGH, SymPy
AMAN SINGH, Scipy
LOIS SMITH, University of Michigan
ELIZABETH WICKES, University of Illinois at Urbana-Champaign
PAMELA WU, NYU Medical Center
V. ZACHARY, Golkhou ASU

CONTENTS

Fitting Human Decision Making Models using Python 1
Alejandro Weinstein, Wael El-Deredy, Stéren Chabert, Myriam Fuentes

Functional Uncertainty Constrained by Law and Experiment 7
Andrew M. Fraser, Stephen A. Andrews

Composable Multi-Threading for Python Libraries 15
Anton Malakhov

Generalized earthquake classification 20
Ben Lasscock

cesium: Open-Source Platform for Time-Series Inference 27
Brett Naul, Stéfan van der Walt, Arien Crellin-Quick, Joshua S. Bloom, Fernando Pérez

UConnRCMPy: Python-based data analysis for Rapid Compression Machines 36
Bryan W. Weber, Chih-Jen Sung

Storing Reproducible Results from Computational Experiments using Scientific Python Packages 45
Christian Schou Oxvig, Thomas Arildsen, Torben Larsen

datreant: persistent, Pythonic trees for heterogeneous data 51
David L. Dotson, Sean L. Seyler, Max Linke, Richard J. Gowers, Oliver Beckstein

Comparison of machine learning methods applied to birdsong element classification 57
David Nicholson

MONTE Python for Deep Space Navigation 62
Jonathon Smith, William Taber, Theodore Drain, Scott Evans, James Evans, Michelle Guevara, William Schulze,
Richard Sunseri, Hsi-Cheng Wu

The Climate Modelling Toolkit 69
Joy Merwin Monteiro, Rodrigo Caballero

Tell Me Something I Don’t Know: Analyzing OkCupid Profiles 75
Juan Shishido, Jaya Narasimhan, Matar Haller

PyTeCK: a Python-based automatic testing package for chemical kinetic models 82
Kyle E. Niemeyer

Linting science prose and the science of prose linting 90
Michael D. Pacer, Jordan W. Suchow

MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations 98
Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański,
David L. Dotson, Sébastien Buchoux, Ian M. Kenney, Oliver Beckstein

Validating Function Arguments in Python Signal Processing Applications 106
Patrick Steffen Pedersen, Christian Schou Oxvig, Jan Østergaard, Torben Larsen

Spreading the Adoption of Python in India: the FOSSEE Python Project 114
Prabhu Ramachandran

PySPH: a reproducible and high-performance framework for smoothed particle hydrodynamics 122
Prabhu Ramachandran

An Ecological Approach to Software Supply Chain Risk Management 130
Sebastian Benthall, Travis Pinney, JC Herz, Kit Plummer

Launching Python Applications on Peta-scale Massively Parallel Systems 137
Yu Feng, Nick Hand

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 1

Fitting Human Decision Making Models using Python

Alejandro Weinstein‡§∗, Wael El-Deredy‡§, Stéren Chabert‡, Myriam Fuentes‡

F

Abstract—A topic of interest in experimental psychology and cognitive neuro-
science is to understand how humans make decisions. A common approach
involves using computational models to represent the decision making process,
and use the model parameters to analyze brain imaging data. These computa-
tional models are based on the Reinforcement Learning (RL) paradigm, where
an agent learns to make decisions based on the difference between what it
expects and what it gets each time it interacts with the environment. In the
typical experimental setup, subjects are presented with a set of options, each
one associated to different numerical rewards. The task for each subject is to
learn, by taking a series of sequential actions, which option maximizes their
total reward. The sequence of actions made by the subject and the obtained
rewards are used to fit a parametric RL model. The model is fit by maximizing
the likelihood of the parameters given the experiment data. In this work we
present a Python implementation of this model fitting procedure. We extend
the implementation to fit a model of the experimental setup known as the
"contextual bandit", where the probabilities of the outcome change from trial
to trial depending on a predictive cue. We also developed an artificial agent
that can simulate the behavior of a human making decisions under the RL
paradigm. We use this artificial agent to validate the model fitting by comparing
the parameters estimated from the data with the known agent parameters.
We also present the results of a model fitted with experimental data. We use
the standard scientific Python stack (NumPy/SciPy) to compute the likelihood
function and to find its maximum. The code organization allows to easily change
the RL model. We also use the Seaborn library to create a visualization with the
behavior of all the subjects. The simulation results validate the correctness of the
implementation. The experimental results shows the usefulness and simplicity
of the program when working with experimental data. The source code of the
program is available at https://github.com/aweinstein/FHDMM.

Index Terms—decision making modeling, reinforcement learning

Introduction

As stated by the classic work of Rescorla and Wagner [Res72]
"... organisms only learn when events violate their

expectations. Certain expectations are built up about
the events following a stimulus complex; expectations
initiated by that complex and its component stimuli are
then only modified when consequent events disagree
with the composite expectation."

This paradigm allows to use the framework of Reinforcement
Learning (RL) to model the process of human decision making. In
the fields of experimental psychology and cognitive neuroscience
these models are used to fit experimental data. Once such a model

* Corresponding author: alejandro.weinstein@uv.cl
‡ Universidad de Valparaiso, Chile
§ Advanced Center for Electrical and Electronic Engineering

Copyright © 2016 Alejandro Weinstein et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

is fitted, one can use the model parameters to draw conclusions
about individual difference between the participants. The model
parameters can be co-varied with imaging data to make obser-
vations about the neural mechanisms underpinning the learning
process. For an in-depth discussion about the connections between
cognitive neuroscience and RL see chapter 16 of [Wie12].

In this work we present a Python program able to fit experi-
mental data to a RL model. The fitting is based on a maximum
likelihood approach [Cas02]. We present simulation and experi-
mental data results.

A Decision Making Model

In this section we present the model used in this work to describe
how an agent (either an artificial one or a human) learns to interact
with an environment. The setup assumes that at the discrete time
t the agent selects action at from the set A = {1, . . . ,n}. After
executing that action the agent gets a reward rt ∈ R, according to
the properties of the environment. Typically these properties are
stochastic and are defined in terms of probabilities conditioned by
the action. This sequence is repeated T times. The objective of the
agent is to take actions to maximize the total reward

R =
T

∑
t=1

rt .

In the RL literature, this setup is known as the "n-armed bandit
problem" [Sut98].

According to the Q-learning paradigm [Sut98], the agent keeps
track of its perceived value for each action through the so called
action-value function Q(a). When the agent selects action at at
time t, it updates the action-value function according to

Qt+1(at) = Qt(at)+α(rt −Qt(at)),

where 0 ≤ α ≤ 1 is a parameter of the agent known as learning
rate. To make a decision, the agent selects an action at random
from the set A with probabilities for each action given by the
softmax rule

P(at = a) =
eβQt (a)

∑n
i=1 eβQt (ai)

,

where β > 0 is a parameter of the agent known as inverse
temperature.

In this work we consider the case were the probabilities
associated to the reward, in addition to being conditioned by the
action, are also conditioned by a context of the environment. This
context change at each time step and is observed by the agent.
This means that the action-value function, the softmax rule, α ,

2 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

and β also depend on the current context of the environment. In
this scenario, the update action-value and softmax rules become

Qt+1(at ,ct) = Qt(at ,ct)+αct (rt −Qt(at ,ct)) (1)

P(at = a,ct) =
eβct Qt (a,ct)

∑n
i=1 eβct Qt (ai,ct)

, (2)

where ct is the cue observed at time t. In the literature, this setup is
known as associative search [Sut98] or contextual bandit [Lan08].

In summary, each interaction, or trial, between the agent and
the environment starts by the agent observing the environment
context, or cue. Based on that observed cue and on what the agent
has learned so far from previous interactions, the agent makes a
decision about what action to execute next. It then gets a reward
(or penalty), and based on the value of that reward (or penalty) it
updates the action-value function accordingly.

Fitting the Model Using Maximum Likelihood

In cognitive neuroscience and experimental psychology one is
interested in fitting a decision making model, as the one described
in the previous section, to experimental data [Daw11].

In our case, this means to find, given the sequences of cues,
actions and rewards

(c1,a1,r1),(c2,a2,r2) . . . ,(cT ,aT ,rT)

the corresponding αc and βc. The model is fit by maximizing the
likelihood of the parameters αc and βc given the experiment data.
The likelihood function of the parameters is given by

L (αc,βc) =
T

∏
t=1

P(at ,ct), (3)

where the probability P(at ,ct) is calculated using equations (1)
and (2).

Once one has access to the likelihood function, the parameters
are found by determining the αc and βc that maximize the
function. In practice, this is done by minimizing the negative of
the logarithm of the likelihood (NLL) function [Daw11]. In other
words, the estimate of the model parameters are given by

α̂c, β̂c = argmin
0≤α≤1,β≥0

− log(L (αc,βc)). (4)

The quality of this estimate can be estimated through the inverse of
the Hessian matrix of the NLL function evaluated at the optimum.
In particular, the diagonal elements of this matrix correspond to
the standard error associated to αc and βc [Daw11].

Details about the calculation of the likelihood function and its
optimization are given in the Implementation and Results section.

Experimental Data

The data used in this work consists on the record of a computerized
card game played by 46 participants of the experiment. The game
consists of 360 trials. Each trial begins with the presentation of
a cue during one second. This cue can be a circle, a square or a
triangle. The cue indicates the probability of winning on that trial.
These probabilities are 20%, 50% and 80%, and are unknown
to the participants. The trial continues with the presentation of
four cards with values 23, 14, 8 and 3. The participant select one
of these cards and wins or loses the amount of points indicated
on the selected card, according to the probabilities defined by
the cue. The outcome of the trial is indicated by a stimulus

23 14 8 3Cue

Chose action: place bet

Outcome: win (up) / lose (down)

Cue

1000 ms

Self-Paced

1000 ms

1000 ms

1000 ms

Intertrial inverval

Fig. 1: Schematic of the stimulus presentation. A trial begins with
the presentation of a cue. This cue can be a circle, a square or a
triangle and is associated with the probability of winning in that trial.
These probabilities are 20%, 50% and 80%, and are unknown to the
participants. The trial continues with the presentation of four cards
with values 23, 14, 8 and 3. After selecting a card, the participant
wins or lose the amount of points indicated on the card, according to
the probabilities associated with the cue. The outcome of the trial is
indicated by a stimulus, where the win or lose outcome is indicated
by an arrow up or down, respectively [Mas12].

that lasts one second (an arrow pointing up for winning and
down for losing). The trial ends with a blank inter-trial stimulus
that also last one second. Figure 1 shows a schematic of the
stimulus presentation. Participants were instructed to maximize
their winnings and minimize their losses. See [Mas12] for more
details about the experimental design.

Note that in the context with probability of winning 50% any
strategy followed by the subject will produce an expected reward
of 0. Thus, there is nothing to learn for this context. For this
reason, we do not consider this context in the following analysis.1

The study was approved by the University of Manchester
research ethics committee. Informed written consent was obtained
from all participants.

Implementation and Results

Before testing the experimental data, we present an implementa-
tion of an artificial agent that makes decisions according to the
decision model presented above. This artificial agent allows us to
generate simulated data for different parameters, and then use the
data to evaluate the estimation algorithm.

The code for the artificial agent is organized around two
classes. The class ContextualBandit provides a simulation
of the environment. The key two methods of the class are
get_context and reward. The get_context method sets
the context, or cue, for the trial uniformly at random and returns its
value. The reward method returns the reward, given the selected
action. The value of the reward is selected at random with the
probability of winning determined by the current context. The
following code snippet shows the class implementation.

1. This condition was included in the original work to do a behavioral study
not related to decision making.

FITTING HUMAN DECISION MAKING MODELS USING PYTHON 3

class ContextualBandit(object):
def __init__(self):

Contexts and their probabilities of
winning
self.contexts = {'punishment': 0.2,

'neutral': 0.5,
'reward': 0.8}

self.actions = (23, 14, 8, 3)
self.n = len(self.actions)
self.get_context()

def get_context_list(self):
return list(self.contexts.keys())

def get_context(self):
k = list(self.contexts.keys())
self.context = np.random.choice(k)
return self.context

def reward(self, action):
p = self.contexts[self.context]
if np.random.rand() < p:

r = action
else:

r = -action
return r

The behavior of the artificial agent is implemented in the
ContextualAgent class. The class is initialized with parame-
ters learning rate alpha and inverse temperature beta. Then,
the run method is called for each trial, which in turn calls
the choose_action and update_action_value methods.
These methods implement equations (2) and (1), respectively. The
action-value function is stored in a dictionary of NumPy arrays,
where the key is the context of the environment. The following
code snippet shows the class implementation.

class ContextualAgent(object):
def __init__(self, bandit, beta, alpha):

...

def run(self):
context = self.bandit.get_context()
action = self.choose_action(context)
action_i = self.actions[action]
reward = self.bandit.reward(action_i)
Update action-value
self.update_action_value(context, action,

reward)

def choose_action(self, context):
p = softmax(self.Q[context], self.beta)
actions = range(self.n)
action = np.random.choice(actions, p=p)
return action

def update_action_value(self, context, action,
reward):

error = reward - self.Q[context][action]
self.Q[context][action] += self.alpha * error

The function run_single_softmax_experiment shows
how these two classes interact:

def run_single_softmax_experiment(beta, alpha):
cb = ContextualBandit()
ca = ContextualAgent(cb, beta=beta, alpha=alpha)
trials = 360
for _ in range(steps):

ca.run()

In this function, after the classes are initialized, the run method
is run once per trial. The results of the simulation are stored in a
pandas dataframe (code not shown). Figure 2 shows an example of

0 20 40 60 80 100
trial

3

8

14

23

ac
tio

n

Win context

0 20 40 60 80 100
trial

3

8

14

23

ac
tio

n

Lose context

Fig. 2: Simulation results for an experiment with α = 0.1 and β =
0.5. Actions made by the agent when the context has a probability
of winning of 80% (top) and 20% (bottom). The plots also show a
vertical bar for each trial indicating if the agent won (blue) or lose
(red).

a simulation for α = 0.1 and β = 0.5 (same value for all contexts).
The top and bottom plots show the actions made by the agent when
it observes the context with a probability of winning of 80% and
20%, respectively. The plots also show a blue and red vertical bar
for each trial where the agent won or lost, respectively. We observe
that the agent learned to made actions close to the optimal ones.

The key step in the estimation of the parameters is the com-
putation of the likelihood function described by equation (3). As
explained before, for numerical reasons one works with the nega-
tive of the likelihood function of the parameters− log(L (αc,βc)).
The following code snippet describes the steps used to compute
the negative log likelihood function.

prob_log = 0
Q = dict([[cue, np.zeros(self.n_actions)]

for cue in self.cues])
for action, reward, cue in zip(actions, rewards, cues):

Q[cue][action] += alpha * (reward - Q[cue][action])
prob_log += np.log(softmax(Q[cue], beta)[action])

prob_log *= -1

After applying the logarithmic function to the likelihood function,
the product of probabilities becomes a sum of probabilities. We
initialize the variable prob_log to zero, and then we iterate
over the sequence (ct ,at ,rt) of cues, actions, and rewards. These
values are stored as lists in the variables actions, rewards,
and cues, respectively. The action value function Q(at ,ct) is
represented as a dictionary of NumPy arrays, where the cues
are the keys of the dictionary. The arrays in this dictionary are
initialized to zero. To compute each term of the sum of logarithms,
we first compute the corresponding value of the action-value
function according to equation (1). After updating the action-
value function, we can compute the probability of choosing the
action according to equation (2). Finally we multiply the sum of
probabilities by negative one.

Once we are able to compute the negative log-likelihood
function, to find the model parameter we just need to minimize
this function, according to equation (3). Since this is a con-

4 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

0.00 0.05 0.10 0.15 0.20

αc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
β
c

Fig. 3: Likelihood function of the parameters given the data of
the artificial agent for the win context. The data correspond to an
agent operating with αc = 0.1 and βc = 0.5 (red square). The model
parameters estimated using the maximum likelihood are α̂c = 0.098
and β̂c = 0.508 (red triangle).

strained minimization problem, we use the L-BFGS-B algorithm
[Byr95], available as an option of the minimize function of the
scipy.optimize module. The following code snippet shows
the details.

r = minimize(self.neg_log_likelihood, [0.1,0.1],
method='L-BFGS-B',
bounds=(0,1), (0,2))

This function also computes an approximation of the inverse
Hessian matrix evaluated at the optimum. We use this matrix to
compute the standard error associated to the estimated parameter.

Before using our implementation of the model estimation
method with real data, it is important, as a sanity check, to test the
code with the data generated by the artificial agent. Since in this
case we know the actual values of the parameters, we can compare
the estimated values with the real ones. To run this test we generate
360 trials (same number of trials as in the experimental data) with
an agent using parameters αc = 0.1 and βc = 0.5. Figure 3 shows
the likelihood function of the parameters. Using the maximum
likelihood criteria we find the estimated parameters α̂c = 0.098
and β̂c = 0.508. The actual values of the agent parameters are
shown with a red square and the estimated parameters with a red
plus sign. This result shows that our implementation is calculating
the parameter estimation as expected. The NLL function and the
quality of the estimation is similar for other parameter settings.

It is good practice to visualize the raw experimental data before
doing any further analysis. In this case, this means showing the
actions taken by each subject for each trial. Ideally, we wish to
show the behaviors of all the subject for a given context in a single
figure, to get an overview of the whole experiment. Fortunately,
the Seaborn library [Was16] allows us to do this with little effort.
Figure 5 shows the result for the context with a probability of
winning of 80%. We also add vertical lines (blue for winning and
red for losing) for each trial.

Finally, we can fit a model for each subject. To do this we
perform the maximum likelihood estimation of the parameters
using the experimental data. Figure 4 shows the estimated α̂c and

0.0 0.2 0.4 0.6 0.8 1.0
αc

0.0

0.5

1.0

1.5

2.0

β
c

win good fit
win poor fit
lose good fit
lose poor fit

Fig. 4: Estimated model parameters. Each point shows the estimated
α̂c and β̂c for each subject and and context. Blue upside/down trian-
gles are the estimates for the "win context" (probability of winning
80%). Red left/right triangles are the estimates for the "lose context"
(probability of winning 20%). We show the standard error for the
estimates that are a good fit.

β̂c for each subject and context. Blue upside/down triangles are
the estimates for the "win context" (probability of winning 80%).
Red left/right triangles are the estimates for the "lose context"
(probability of winning 20%). We show the standard error for the
estimates that are a good fit, declared when the standard error is
below 0.3 for both α̂c and β̂c.

We notice from this result that not all behaviors can be
properly fitted with the RL model. This is a known limitation
of this model [Daw11]. We also observe that in general the
parameters associated with the "lose context" exhibit larger values
of learning rate α and smaller values of inverse temperature β .
Although at this point of our research it is not clear the reason
for this difference, we conjecture that this phenomenon can be
explained by two factors. First, in the lose context people bet
smaller amounts after learning that the probability of wining is
low in this context. This means that the term (rt −Qt(at ,ct))
in equation (1) is smaller compared to the win context. Thus, a
larger learning rate is needed to get an update on the action value
function of a magnitude similar to the win context.2 Secondly, it
is known that humans commonly exhibit a loss aversion behavior
[Kah84]. This can explain, at least in part, the larger learning
rates observed for the lose context, since it could be argued that
people penalized more their violation of their expectations, as
reflected by the term (rt −Qt(at ,ct)) of equation (1), when they
were experiencing the losing situation.

In terms of execution time, running a simulation of the artifi-
cial agent consisting of 360 steps takes 34 milliseconds; minimiz-
ing the NLL function for a single subject takes 21 milliseconds;
and fitting the model for all 43 subjects, including loading the
experimental data from the hard disk, takes 14 seconds. All these
measurements were made using the IPython %timeit magic
function in a standard laptop (Intel Core i5 processor with 8
gigabytes of RAM).

2. This difference suggests that the experimental design should be modified
to equalize this effect between the contexts.

FITTING HUMAN DECISION MAKING MODELS USING PYTHON 5

3
8

14
23

ch
oi

ce

subject = 4 subject = 6 subject = 10 subject = 12 subject = 14 subject = 16

3
8

14
23

ch
oi

ce

subject = 17 subject = 18 subject = 20 subject = 27 subject = 28 subject = 29

3
8

14
23

ch
oi

ce

subject = 30 subject = 31 subject = 32 subject = 33 subject = 34 subject = 35

3
8

14
23

ch
oi

ce

subject = 36 subject = 37 subject = 38 subject = 39 subject = 40 subject = 41

3
8

14
23

ch
oi

ce

subject = 42 subject = 43 subject = 50 subject = 52 subject = 53 subject = 55

3
8

14
23

ch
oi

ce

subject = 56 subject = 57 subject = 58 subject = 59 subject = 60 subject = 61

3
8

14
23

ch
oi

ce

subject = 62

action

subject = 63

action

subject = 64

action

subject = 66

action

subject = 67

action

subject = 68

action
3
8

14
23

ch
oi

ce

subject = 69

Fig. 5: Actions taken by all the subjects for trials with context associated to the 80% probability of winning. The vertical bars show if the
subject won (blue) or lost (red) in that particular trial.

Discussion

We have shown a Python program able to fit a decision making
model from experimental data, using the maximum likelihood
principle. Thanks to Python and the SciPy stack, it was possible
to implement this program in a way that we believe is easy to
understand and that has a clear correspondence to the theoretical
development of the model. We think that the structure of the code
allows to easily extend the implementation to test variations in the
decision making model presented in this work.

Acknowledgments

We thanks Liam Mason for sharing the experimental data used
in this work. This work was supported by the Advanced Center
for Electrical and Electronic Engineering, AC3E, Basal Project
FB0008, CONICYT.

REFERENCES

[Byr95] R.Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for
Bound Constrained Optimization, SIAM Journal on Scientific and
Statistical Computing 16 (5): 1190-1208, 1995.

[Cas02] G. Casella and R. L. Berger, Statistical Inference. Thomson Learning,
2002.

[Daw11] N. D. Daw, Trial-by-trial data analysis using computational models,
Decision making, affect, and learning: Attention and performance
XXIII, vol. 23, p. 1, 2011.

[Kah84] D. Kahneman and A. Tversky. Choices, values, and frames., Ameri-
can psychologist 39.4, 1984.

[Lan08] J. Langford, and T. Zhang, The epoch-greedy algorithm for multi-
armed bandits with side information, Advances in neural information
processing systems, 2008.

[Mas12] L. Mason, N. O’Sullivan, R. P. Bentall, and W. El-Deredy, Better
Than I Thought: Positive Evaluation Bias in Hypomania, PLoS ONE,
vol. 7, no. 10, p. e47754, Oct. 2012.

[Res72] R. A. Rescorla and A. R. Wagner, A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement,
Classical conditioning II: Current research and theory, vol. 2, pp.
64–99, 1972.

[Sut98] R. Sutton and A. Barto, Reinforcement Learning. Cambridge, Mas-
sachusetts: The MIT press, 1998.

6 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[Wie12] M. Wiering and M. van Otterlo, Eds., Reinforcement Learning, vol.
12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[Was16] M. Waskom et al. seaborn: v0.7.0 (January 2016). ; DOI:
10.5281/zenodo.45133. Available at: http://dx.doi.org/10.5281/
zenodo.45133.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 7

Functional Uncertainty Constrained by Law and
Experiment

Andrew M. Fraser‡∗, Stephen A. Andrews‡

F

Abstract—Many physical processes are modeled by unspecified functions.
Here, we introduce the F_UNCLE project which uses the Python ecosystem
of scientific software to develop and explore techniques for estimating such
unknown functions and our uncertainty about them. The work provides ideas
for quantifying uncertainty about functions given the constraints of both laws
governing the function’s behavior and experimental data. We present an analy-
sis of pressure as a function of volume for the gases produced by detonating an
imaginary explosive, estimating a best pressure function and using estimates
of Fisher information to quantify how well a collection of experiments constrains
uncertainty about the function. A need to model particular physical processes
has driven our work on the project, and we conclude with a plot from such a
process.

Index Terms—python, uncertainty quantification, Bayesian inference, convex
optimization, reproducible research, function estimation, equation of state, in-
verse problems

Introduction

Some tasks require one to quantitatively characterize the accuracy
of models of physical material properties which are based on
existing theory and experiments. If the accuracy is inadequate, one
must then evaluate whether or not proposed experiments or the-
oretical work will provide the necessary information. Faced with
several such tasks, we have chosen to first work on the equation of
state (EOS) of the gas produced by detonating an explosive called
PBX-9501 because it is relatively simple. In particular Hixson
et al. [hixson2000] describe a model form that roughly defines
its properties in terms of an unknown one dimensional function
(pressure as a function of volume on a special path) and simple
constraints. This EOS estimation problem shares the following
challenges with many of the other material models that we must
analyze:

1) The uncertain object is a function. In principal it has an
infinite number of degrees of freedom. In order to imple-
ment a Bayesian analysis one must define and manipulate
probability measures on sets in function space. We do
not know how to define a probability measure on sets in
function space, and we do not know how to compare the
utility of different families of parametric approximations.

* Corresponding author: afraser@lanl.gov
‡ XCP-8, Los Alamos National Laboratory

Copyright © 2016 Andrew M. Fraser et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. LA-UR-16-23717

2) Understanding the constraints on the unknown function
and the connection between it and experimental measure-
ments requires understanding some detailed physics.

3) Simulations of some of the experiments run for more than
a few minutes on high performance computers. The job
control is unwieldy as are the mechanisms for expressing
trial instances of the unknown functions and connecting
them to the simulations.

We are organizing our efforts to address those challenges under
the title F_UNCLE (Functional UNcertainty Constrained by Law
and Experiment). We work in two parallel modes as we develop
ideas and algorithms. We write code for a surrogate problem that
runs in a fraction of a minute on a PC, and we write code for
fitting a model to PBX-9501 in a high performance computing
environment. Our focus shifts back and forth as we find and
resolve problems. As we have progressed, we have found that
improving our software practices makes it easier to express ideas,
test them on PCs and implement them on the HPCs. In this paper,
we introduce the [F_UNCLE] code, the surrogate problem we
have developed for the EOS and our analysis of that problem.

We are also using the project to learn and demonstrate Best
Practices for Scientific Computing (eg, [wilson2014]) and Repro-
ducible Research (eg, [fomel2009]). The work is designed to be
modular, allowing a wide range of experiments and simulations
to be used in an analysis. The code is self documenting, with full
docstring coverage, and is converted into online documentation
using [sphinx]. Each class has a test suite to allow unit testing.
Tests are collected and run using [nose]. Each file is also tested
using [pylint] with all default checks enabled to ensure it adheres
to Python coding standards, including PEP8. Graphics in this
paper were generated using [matplotlib] and the code made use of
the [numpy] and [scipy] packages. Among the reasons we chose
the Python/SciPy ecosystem, the most important are:

Readable
Writing in Python helps us implement the most im-
portant point in [wilson2014] : "Write programs for
people, not computers."

Versatile
The Python Standard Library lets us easily connect
our scripts to other code, eg, submitting HPC jobs
and wrapping libraries written in other languages.

Community support
Because of the large number of other users, it is easy
to get answers to questions.

Numerical packages

8 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

We use a host of modules from Numpy, SciPy and
other sources.

Portable
With the Python/SciPy ecosystem, it is easy to write
code that runs on our desktops and also runs in our
HPC environment.

The task of mapping measurements to estimates of the charac-
teristics of models for the physical processes that generated them
is called an inverse problem. Classic examples include RADAR,
tomography and image estimation. Our problems differ from
those in the diverse and indirect nature of the measurements, the
absence of translation invariance and in the kinds of constraints.
[F_UNCLE] uses constrained optimization and physical models
with many degrees of freedom to span a large portion of the
allowable function space while strictly enforcing constraints. The
analysis determines the function that maximizes the a posteriori
probability (the MAP estimate) using simulations to match K
data-sets. We characterize how each experiment constrains our
uncertainty about the function in terms of its Fisher information.

As a surrogate problem, we have chosen to investigate the
equation of state (EOS) for the products-of-detonation of a hypo-
thetical High Explosive (HE). The EOS relates the pressure to the
specific volume of the products-of-detonation mixture. We follow
traditional practice (eg, [ficket2000]) and constrain the function to
be positive, monotonically decreasing and convex. To date we have
incorporated two examples of experiments: the detonation velocity
of a rate stick of HE, and the velocity of a projectile driven by HE.
The behavior of both these experiments depend sensitively on the
EOS function.

The following sections describe the choices made in modeling
the EOS function, the algorithm used for estimating the func-
tion and the use of the Fisher information to characterize the
uncertainty about the function. Results so far indicate optimization
can find good approximations to the unknown functions and that
analysis of Fisher information can quantify how various experi-
ments constrain uncertainty about their different aspects. While
these preliminary results are limited to an illustration of the ideas
applied to synthetic data and simple models, the approach can be
applied to real data and complex simulations. A plot from work
on estimating the EOS of the high explosive PBX-9501 appear in
the concluding section.

Fisher Information and a Sequence of Quadratic Programs

Our analysis is approximately Bayesian and Gaussian. We suppose
that:

1) Experiments provide data x = [x0, . . . ,xn], where xk is the
data from the kth experiment

2) We have a likelihood function pl(x|θ) = ∏k pk(xk|θ) in
which the data from different experiments are condition-
ally independent given the parameters θ

3) We have a prior on the parameters pp(θ)

From those assumptions, one can write the a posteriori distri-
bution of the parameters as

p(θ |x) = pl(x|θ)pp(θ)∫
pl(x|φ)pp(φ)dφ

. (1)

Rather than implement Equation (1) exactly, we use a Gaussian
approximation calculated at

θ̂ ≡ argmaxθ p(θ |x). (2)

Since θ does not appear in the denominator on the right hand side
of Equation (1), in a Taylor series expansion of the log of the a
posteriori distribution about θ̂ the denominator only contributes a
constant added to expansions of the log of the likelihood and the
log of the prior, and

log(p(θ |x)) = log

(
pl(x|θ̂)pp(θ̂)∫
pl(x|φ)pp(φ)dφ

)

+
1
2
(
θ − θ̂

)T
(

d2 log(pl(x|φ))
dφ 2 +

d2 log(pp(φ))
dφ 2

)

φ=θ̂

(
θ − θ̂

)

+R

≡C+
1
2
(
θ − θ̂

)T
H
(
θ − θ̂

)
+R.

Dropping the higher order terms in the remainder R in leaves the
normal or Gaussian approximation

θ |x∼N
(
θ̂ ,Σ = H−1)

p(θ |x) = 1√
(2π)dim|Σ|

exp
(
−1

2
(θ − θ̂)TΣ−1(θ − θ̂)

)
.

With this approximation, experiments constrain the a posteriori
distribution by the second derivative of their log likelihoods.
Quoting Wikipedia: “If p(x|θ) is twice differentiable with respect
to θ , and under certain regularity conditions, then the Fisher
information may also be written as

I (θ) =−EX

[
∂ 2

∂θ 2 log p(X ;θ)
∣∣∣∣θ
]
. (3)

[...] The Cramér–Rao bound states that the inverse of the Fisher
information is a lower bound on the variance of any unbiased
estimator”

Our simulated measurements have Gaussian likelihood func-
tions in which the unknown function only influences the mean.
Thus we calculate the second derivative of the log likelihood as
follows:

L≡−1
2
(x−µ(θ))T Σ−1 (x−µ(θ))+C

∂L
∂θ

= (x−µ(θ))T Σ−1 ∂ µ
∂θ

∂ 2

∂θ 2 L =−
(

∂ µ
∂θ

)T

Σ−1
(

∂ µ
∂θ

)

)
+(x−µ(θ))T Σ−1 ∂ 2µ

∂θ 2

and

EX
∂ 2

∂θ 2 L =−
(

∂ µ
∂θ

)T

Σ−1
(

∂ µ
∂θ

)
,

because Σ−1 ∂ 2µ
∂θ 2 is independent of X and EX (x−µ(θ)) = 0.

Iterative Optimization

We maximize the log of the a posteriori probability as the
objective function which is equivalent to 2. Dropping terms that
do not depend on θ , we write the cost function as follows:

C(θ)≡− log(p(θ))−∑
k

log(p(xk|θ))

≡ 1
2
(θ −µ)T Σ−1(θ −µ)−∑

k
log(p(xk|θ)),

where k is an index over a set of independent experiments. We
use the following iterative procedure to find θ̂ , the Maximum A
posteriori Probability (MAP) estimate of the parameters:

FUNCTIONAL UNCERTAINTY CONSTRAINED BY LAW AND EXPERIMENT 9

1) Set i = 0 and θi[j] = µ[j], where i is the index of the
iteration and j is index of the components of θ .

2) Increment i
3) Estimate Pi and qi defined as

qT
i ≡

d
dθ

C(θ)
∣∣∣∣
θ=θi−1

Pi ≡
d2

dθ 2 C(θ)
∣∣∣∣
θ=θi−1

Since the experiments are independent, the joint likeli-
hood is the product of the individual likelihoods and the
log of the joint likelihood is the sum of the logs of the
individual likelihoods, ie,

qT
i ≡ (θi−1−µ)Σ−1 +∑

k

d
dθ

log(p(xk|θ)
∣∣∣∣
θ=θi−1

≡ (θi−1−µ)Σ−1 +∑
k

qT
i,k

Pi ≡ Σ−1 +∑
k

d2

dθ 2 log(p(xk|θ)
∣∣∣∣
θ=θi−1

≡ Σ−1 +∑
k

Pi,k

where in Pi,k and qi,k, i is the iteration number and k is
the experiment number.

4) Calculate the matrix Gi and the vector hi to express the
appropriate constraints2.

5) Calculate θi = θi−1 +d by solving the quadratic program

Minimize
1
2

dT Pid +qT d

Subject to Gid � hi

where � means that for each component the left hand
side is less than or equal to the right hand side.

6) If not converged go back to step 2.

This algorithm differs from modern SQP methods as each QP
sub-problem is has no knowledge of the previous iteration. This
choice is justified as the algorithm converges in less than 5 outer
loop iterations. This unconventional formulation helps accelerate
convergence as the algorithm does not need multiple outer loop
iterations to obtain a good estimate of the Hessian, as in modern
SQP methods.

The assumption that the experiments are statistically indepen-
dent enables the calculations for each experiment k in to be done
independently. In the next few sections, we describe both the data
from each experiment and the procedure for calculating Pi,k and
qi,k.

Equation of State

For our surrogate problem, we say that the thing we want to
estimate, θ , represents the equation of state (EOS) of a gas.
We also say that the state of the gas in experiments always lies
on an isentrope3 and consequently the only relevant data is the
pressure as a function of specific volume (cm3/gram) of the gas.

2. For our surrogate problem, we constrain the function at the last knot to be
positive and have negative slope. We also constrain the second derivative to be
positive at every knot. See the [F_UNCLE] code and documentation for more
details.

0 1 2 3

Iteration number

103

104

105

106

N
e
g
a
ti

v
e
 a

 p
o
st

e
o
ri

 l
o
g
 l
ik

e
lih

o
o
d

Fig. 1: Convergence history of a typical solution to the MAP opti-
mization problem

For physical plausibility, we constrain the function to have the
following properties:

• Positive
• Monotonic
• Convex

Here, let us introduce the following notation:

• v Specific volume
• p Pressure
• f An EOS that maps specific volume to pressure, f : v 7→ p.
• v0 The minimum relevant volume.
• v1 The maximum relevant volume.
• F The set of possible EOS functions, p(v),v0 ≤ v≤ v1

Cubic Splines

While no finite dimensional coordinate scheme can represent every
element of F , the flexibility of cubic splines lets us get close
to any element of F using a finite number of parameters. (An
analysis of the efficiency of various representations is beyond the
scope of this paper.)

Constraining f to be positive and to be a convex function of
v is sufficient to ensure that it is also monotonic. Although we
are working on a definition of a probability measure on a sets of
functions that obeys those constraints and is further constrained by
| f (v)−µ f (v)|

µ f (v)
≤∆, for now, we characterize the prior as Gaussian. As

we search for the mean of the a posteriori distribution, we enforce
the constraints, and the result is definitely not Gaussian. For the
remainder of the present work we ignore that inconsistency and
use a prior defined in terms of spline coefficients. We start with a
nominal EOS

f̃ (v) =
F
v3 , where F ↔ 2.56×109Pa at one cm3g−1 (4)

3. In an isentropic expansion or compression there is no heat conduction.
Our isentropic approximation relies on the expansion being so rapid that there
is not enough time for heat conduction.

10 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

and over a finite domain we approximate it by a cubic spline with
coefficients

{
c̃ f [j]

}
. Thus c, the vector of spline coefficients, is the

set of unknown parameters that we have previously let θ denote.
Then we assign a variance to each coefficient:

σ2[j] =
(
c f [j]∆

)2
. (5)

We set ∆ = 0.05. These choices yield:

µ f ↔{c̃[j]}
Σ f [i, j] = σ̃2[j]δi, j

Thus we have the following notation for splines and a prior
distribution over F .

• c f ,b f Vector of coefficients and cubic spline basis func-
tions that define an EOS. We will use c f [j] and b f [j] to
denote components.

• µ f ,Σ f Mean and covariance of prior distribution of EOS.
In a context that requires coordinates, we let µ f =(
c f [0],c f [1], . . . ,c f [n]

)T .

The Nominal and True EOS

For each experiment, data comes from a simulation using a true
function and each optimization starts from the nominal EOS which
is the mean of the prior given in 4. We’ve made the true EOS differ
from the nominal EOS by a sum of Gaussian bumps. Each bump
is characterized by a center volume vk, a width wk and a scale sk,
with:

bk(v) =
skF
v3

k
e
−
(v− vk)

2

2w2
k

Throughout the remainder of this paper, the true EOS that we have
used to generate pseudo-experimental data is:

f (v) =
F
v3 +b0(v)+b1(v) (6)

where: v0 = .4cm3g−1, w0 = .1cm3g−1, s0 = .25, v1 = .5cm3g−1,
w1 = .1cm3g−1, and s1 =−.3.

A Rate Stick

The data from this experiment represent a sequence of times that a
detonation shock is measured arriving at locations along a stick of
HE that is so thick that the detonation velocity is not reduced by
curvature. The code for the pseudo data uses the average density
and sensor positions given by Pemberton et al. [pemberton2011]
for their Shot 1.

Implementation

The only property that influences the ideal measurements
of rate stick data is the HE detonation velocity. Code in
F_UNCLE.Experiments.Stick calculates that velocity following
Section 2A of Fickett and Davis [ficket2000] (entitled The Sim-
plest Theory). The calculation solves for conditions at what is
called the Chapman Jouguet (CJ) state. The CJ state is defined im-
plicitly by a line (called the Rayleigh line) in the (p,v) plane that
goes through (p0,v0), the pressure and volume before detonation,
and (pCJ,vCJ). The essential requirement is that the Rayleigh line
be tangent to the isentrope or EOS curve in the (p,v) plane. The
slope of the Rayleigh line that satisfies those conditions defines
the CJ velocity, V in terms of the following equation:

V 2

v2
0
=

pCJ− p0

v0− vCJ
.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Specific volume / cm3 g−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
re

ss
u
re

 /
 P

a

1e11

Prior EOS

True EOS

Fig. 2: The prior and nominal true equation of state function. The two
models differ most at a specific volume of 0.4 cm3g−1

x1 xn

High explosive at
inital density and
pressure

High explosive
products-of-detonation

Detonation wave
traveling at VCJ

Fig. 3: The rate stick experiment showing the detonation wave
propagating through the rate stick at the CJ velocity. Detonation
velocity is measured by the arrival time of the shock at the sensors
placed along the stick.

For each trial EOS, the F_UNCLE code uses the
scipy.optimize.brentq method in a nested loop to solve for
(pCJ,vCJ). Figure 4 shows the EOS and both the Rayleigh line
and the CJ point that the procedure yields.

Comparison to Pseudo Experimental Data

The previous section explained how to calculate the detonation
velocity, VCJ(f), but the experimental data are a series of times
when the shock reached specified positions on the rate-stick. The
simulated detonation velocity is related to these arrival times by:

t[i] =
x[i]

VCJ(f)
.

FUNCTIONAL UNCERTAINTY CONSTRAINED BY LAW AND EXPERIMENT 11

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Specific volume / cm3 g−1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
P
re

ss
u
re

 /
 P

a
1e11

Fit EOS

Rayleigh line

CJ point

(vo, po)

Prior EOS

True EOS

Fig. 4: Isentropes, a Rayleigh line and the CJ conditions. Starting
from the isentrope labeled Prior EOS and using data from simu-
lated experiments based on the isentrope labeled True EOS, the
optimization algorithm described in the Algorithm section produced
the estimate labeled Fit EOS. Solving for the CJ state of Fit EOS
isentropes yields a Rayleigh line. The data constrains the isentrope
only at vCJ.

where x[i] are the locations of each sensor measuring arrival time.
We let D denote the sensitivity of the set of simulated arrival

times to the spline coefficients governing the equation of state, and
write:

D[i, j]≡ ∂ t[i]
∂c[j]

.

We use finite differences to estimate D.

The Gun

The data from this experiment are a time series of measurements of
a projectile’s velocity as it accelerates along a gun barrel driven by
the expanding products-of-detonation of HE. Newton’s equation

F = ma

determines the velocity time series. The product of the pressure
from the EOS and the area of the barrel cross section is the force.

Implementation

The position and velocity history of the projectile is generated
by the scipy.integrate.odeint algorithm. This method solves the
differential equation for the projectile position and velocity as it is
accelerated along the barrel.

dx(t)
dt

= v(t) (7)

dv(t)
dt

=
A

mpro j
f
(

x(t)A
mHE

)
(8)

where:

• t is time from detonation (assuming the HE burns in-
stantly)

High explosive

Projectile
Gun

xi xf

+x

m
area{

mass HE

Fig. 5: The gun experiment. The projectile of a given mass and
cross-sectional area is accelerated along the barrel by the expanding
products of combustion from the high explosives in the barrel.

• x(t) is the position of the projectile along the barrel
• v(t) is the velocity of the projectile
• A is the cross-sectional area of the barrel
• mHE is the mass of high explosives
• mpro j is the mass of the projectile
• f is the equation of state which relates the pressure to the

specific volume of the HE products-of-detonation

The acceleration is computed based the projectile’s mass
and the force resulting from the uniform pressure acting on the
projectile. This pressure is related to the projectile’s position by
the EOS, assuming that the projectile perfectly seals the barrel so
the mass of products-of-detonation behind the projectile remains
constant.

Comparison to Pseudo Experimental Data

We generated experimental data using our simulation code with
the nominal true EOS described previously. These experimental
data were a series of times and corresponding velocities. To
compare the experiments to simulations, which may use a different
time discretization, the simulated response was represented by a
spline, and was compared to the experiments at each experimental
time stamp.

D[i, j] =
∂ v̂(texp[i])

∂c f [j]
(9)

where:

• v̂ is the velocity given from the spline fit to simulated v(t)
data

• texp is the times where experimental data were available

Numerical Results

The algorithm was applied to the sets of simulation results and
pseudo experimental data for both the rate-stick and gun models.
Figure 6 shows the improved agreement between the simulated
and experimental arrival times for the rate-stick after the algorithm
adjusts the equation of state. Similar results are shown in Figure
7 for the gun experiment, where the significant error in velocity
history at early times is reduced by an order of magnitude with
the optimized EOS model.

12 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

0 2 4 6 8 10 12 14 16 18

Sensor position / cm

0

1

2

3

4

5

6

7
S
h
o
ck

 a
rr

iv
a
l
ti

m
e
 /

 m
s

1e 8

Fit EOS

True EOS

Prior EOS

Fig. 6: Fitting an isentrope to rate stick data. Green +’s denote
measured shock arrival time at various positions. The blue line
represents the shock velocity calculated from the prior EOS, and the
black line is the result of the optimization algorithm described in the
text.

Fisher Information Matrix

The Fisher information matrix characterizes how tightly the ex-
perimental data constrain the spline coefficients. This matrix can
be better understood through a spectral decomposition to show the
magnitude of the eigenvalues and the eigenvector behavior.

Figure 8 illustrates the spectral decomposition of the Fisher
information matrix for the rate-stick experiment. To machine
precision, there is only one nonzero eigenvalue. We expect that
because only the CJ point on the EOS influences the forecast data,
µ(c). The eigenvector corresponding to this eigenvalue is most
influential about the specific volume corresponding to the CJ state.

The Fisher information matrix of the gun experiment is more
complex as changes to the EOS affect the entire time history of
the projectile velocity. In Figure 9 There is no clear dominating
eigenvalue, the largest eigenvalue corresponds to an eigenvector
which is more influential at smaller projectile displacements while
the next three largest eigenvalues correspond to eigenvectors
which are more influential across the range of displacements.

These preliminary investigations of the Fisher information
matrix show how this matrix can be informative in describing the
uncertainty associated with the optimal EOS function determined
by the [F_UNCLE] algorithm. Notice that the eigenvectors of the
matrix describe functions that are zero for states not visited by the
gun experiment.

Conclusion, Caveats and Future Work

We have described an iterative procedure for estimating functions
based on experimental data in a manner that enforces chosen
constraints. The [F_UNCLE] code implements the procedure, and
we used it to make the figures in the previous sections. The code
runs on a modest desktop computer and makes the figures in a

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Specific volume / cm3 g−1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
re

ss
u
re

 /
 P

a

1e11

Fit EOS

Prior EOS

True EOS

0.000 0.002 0.004 0.006 0.008 0.010

Time / s

0

10

20

30

40

50

V
e
lo

ci
ty

 /
 c

m
 s
−

1

Fit EOS

Prior EOS

True EOS

Error

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
rr

o
r

/
cm

 s
−

1

Fig. 7: Estimation of the maximum a posteriori probability parameters
of the gun experiment. The True EOS appears in the upper plot, and
the optimization starts with the Prior EOS and ends with Fit EOS. The
corresponding velocity for the gun as a function of position appears
in the lower plot. The estimation also used experimental data from the
rate stick.

fraction of a minute. That speed and simplicity allows one to easily
try out new ideas and code. We have relied on the [F_UNCLE]
code to guide work with real experimental data and simulations on
high performance computers that use proprietary software. Figure
10 is the result of applying the ideas presented here to the physical
experiments described in [pemberton2011].

The [F_UNCLE] code has been useful for us, and while we
believe it could be useful for others, we emphasize that it is a work
in progress. In particular:

• The prior is inconsistent. We hope to analyze and perhaps
mitigate the effects of that inconsistency in future work.

• The choice of splines is not justified. We plan to compare
the performance of coordinate system options in terms of
quantities such as bias and variance in future work.

• The optimization procedure is ad hoc and we have not con-
sidered convergence or stability. We have already begun to
consider other optimization algorithms.

We have designed the [F_UNCLE] code so that one can easily
use it to model any process where there is a simulation which
depends on a model with an unknown functional form. The self
documenting capabilities of the code and the test suites included
with the source code will help others integrate other existing
models and simulations into this framework to allow it to be
applied to many other physical problems.

FUNCTIONAL UNCERTAINTY CONSTRAINED BY LAW AND EXPERIMENT 13

0 1 2

Eigenvalue number

10-30

10-28

10-26

10-24

10-22

10-20

10-18

10-16

10-14

E
ig

e
n
v
a
lu

e
 /

 P
a
−

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Specific volume / cm3 g−1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
ig

e
n
fu

n
ct

io
n
 r

e
sp

o
n
se

 /
 P

a

vCJ

Eigen-
functions

0

Fig. 8: Fisher Information of the Rate Stick Experiment. The largest
two eigenvalues of I (ĉ) appear in the upper plot, and the eigenfunc-
tion corresponding to the largest eigenvalue appears in the lower plot.

REFERENCES

[cvxopt] Andersen, M. and Vandenberghe, L.. "cvxopt: Convex
Optimization Package" http://cvxopt.org/ [Online; accessed
2016-05-27].

[ficket2000] Ficket, W. and Davis, W. C., 2000. "Detonation". University
of California Press: Berkeley, CA.

[fomel2009] Fomel, Sergey, and Jon F. Claerbout. "Reproducible re-
search." Computing in Science & Engineering 11.1 (2009):
5-7.

[F_UNCLE] "F_UNCLE: Functional Uncertainty Constrained by
Law and Experiment" https://github.com/fraserphysics/F_
UNCLE [Online; accessed 2016-05-27].

[hill1997] Hill, L. G., 1997. "Detonation Product Equation-of-State
Directly From the Cylinder Test". Proc. 21st Int. Symp. on
Shock Waves, Great Keppel Insland, Australia.

[hixson2000] Hixson, R. S. et al., 2000. "Release isentropes of overdriven
plastic-bonded explosive PBX-9501." J. Applied Physics 88
(11) pp. 6287-6293

[matplotlib] Hunter, J. D.. "Matplotlib: A 2D Graphics Environment",
Computing in Science & Engineering, 9, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

[nose] "nose: Nose Extends Unittest to Make Testing Easier" https:
//pypi.python.org/pypi/nose/1.3.7 [Online; accessed 2016-
05-27].

[numpy] van der Walt, S. , Colbert, C. S. and Varoquaux, G..
"The NumPy Array: A Structure for Efficient Numerical
Computation", Computing in Science & Engineering, 13,
22-30 (2011), DOI:10.1109/MCSE.2011.37

[pemberton2011] Pemberton et al. "Test Report for Equation of State Mea-
surements of PBX-9501". LA-UR-11-04999, Los Alamos
National Laboratory, Los Alamos, NM.

[pylint] "pylint: Python Code Static Checker" https://www.pylint.
org/ [Online; accessed 2016-05-27].

0 1 2 3 4

Eigenvalue number

10-19

10-18

10-17

10-16

E
ig

e
n
v
a
lu

e
 /

 P
a
−

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Specific volume / cm3 g−1

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

E
ig

e
n
fu

n
ct

io
n
 r

e
sp

o
n
se

 /
 P

a Eigen-
functions

0

1

2

3

4

Fig. 9: Fisher Information of the Gun Experiment. The largest five
eigenvalues of I (ĉ) appear in the upper plot and the eigenfunctions
corresponding to the largest five eigenvalues appear in the lower plot.

0 5 10 15

t/(µ sec)

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

ve
l/

(c
m
/µ

se
c)

PDVµ
v0

fit1

fit4

fit5

Fig. 10: Improvement of match between true experiments on PBX-
9501 and simulations on a high performance computer. The mean of
the experimental data is labeled µ , and the optimization scheme yields
the EOSs that produce the traces labeled f itn.

14 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[scipy] Jones, E., Oliphant, E., Peterson, P., et al. "SciPy: Open
Source Scientific Tools for Python", 2001-, http://www.
scipy.org/ [Online; accessed 2016-05-27].

[sphinx] "sphinx: Python Documentation Generator" http://www.
sphinx-doc.org/ [Online; accessed 2016-05-27].

[wilson2014] Wilson, Greg, et al. "Best practices for scientific comput-
ing." PLoS Biol 12.1 (2014): e1001745.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 15

Composable Multi-Threading for Python Libraries

Anton Malakhov‡∗

https://youtu.be/kfQcWez2URE

F

Abstract—Python is popular among numeric communities that value it for easy
to use number crunching modules like [NumPy], [SciPy], [Dask], [Numba], and
many others. These modules often use multi-threading for efficient multi-core
parallelism in order to utilize all the available CPU cores. Nevertheless, their
threads can interfere with each other leading to overhead and inefficiency if used
together in one application. The loss of performance can be prevented if all the
multi-threaded parties are coordinated. This paper describes usage of Intel®
Threading Building Blocks (Intel® TBB), an open-source cross-platform library
for multi-core parallelism [TBB], as the composability layer for Python modules.
It helps to unlock additional performance for numeric applications on multi-core
systems.

Index Terms—Multi-threading, Over-subscription, Parallel Computations,
Nested Parallelism, Multi-core, Python, GIL, Dask, Joblib, NumPy, SciPy,
Numba, TBB

Motivation

The fundamental shift toward parallelism was loudly declared
more than 11 years ago [HSutter] and multi-core processors have
become ubiquitous nowadays [WTichy]. However, the adoption
of multi-core parallelism in the software world has been slow and
Python along with its computing ecosystem is not an exception.
Python suffers from several issues which make it suboptimal for
parallel processing.

The parallelism with multiple isolated processes is popular
in Python but it is prone to inefficiency due to memory-related
overhead. On the other hand, multi-threaded parallelism is known
to be more efficient but with Python, though it suffers from the
limitations of the global interpreter lock [GIL], which prevents
scaling of Python programs effectively serializing them. However,
when it comes to numeric computations, most of the time is spent
in native code where the GIL can easily be released and programs
can scale.

Scaling parallel programs is not an easy thing. There are
two fundamental laws which mathematically describe and predict
scalability of a program: Amdahl’s Law and Gustafson-Barsis’
Law [AGlaws]. According to Amdahl’s Law, speedup is limited
by the serial portion of the work, which effectively puts a limit
on scalability of parallel processing for a fixed-size job. Python
is especially vulnerable to this because it makes the serial part
of the same code much slower compared to implementations in

* Corresponding author: Anton.Malakhov@intel.com
‡ Intel Corporation

Copyright © 2016 Anton Malakhov. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

some other languages due to its deeply dynamic and interpretative
nature. Moreover, the GIL makes things serial often where they
potentially can be parallel, further adding to the serial portion of a
program.

Gustafson-Barsis’ law offers some hope stating that if the
problem-size grows along with the number of parallel processors,
while the serial portion grows slowly or remains fixed, speedup
grows as processors are added. This might relax the concerns
regarding Python as a language for parallel computing since
the serial portion is mostly fixed in Python when all the data-
processing is hidden behind libraries like NumPy and SciPy which
are written in other languages. Nevertheless, a larger problem size
demands more operational memory to be used for processing it,
but memory is a limited resource. Thus, even working with "Big
Data", it must be processed by chunks that fit into memory, which
puts a limit for the growth of the problem-size. As result, the
best strategy to efficiently load a multi-core system is still to fight
against serial regions and synchronization.

Nested Parallelism

One way to do that is to expose parallelism on all the pos-
sible levels of an application, for example, by making outer-
most loops parallel or exploring functional or pipeline types
of parallelism on the application level. Python libraries that
help to achieve this are Dask [Dask], Joblib [Joblib], and even
the built-in multiprocessing module [mproc] (including its
ThreadPool class). On the innermost level, data-parallelism
can be delivered by Python modules like NumPy [?] and SciPy
[SciPy]. These modules can be accelerated with an optimized math
library like Intel® Math Kernel Library (Intel® MKL) [MKL],
which is multi-threaded internally using OpenMP [OpenMP] (with
default settings).

When everything is combined together, it results in a construc-
tion where code from one parallel region calls a function with
another parallel region inside. This is called nested parallelism.
It is an efficient way for hiding latencies of synchronization and
serial regions which are an inevitable part of regular NumPy/SciPy
programs.

Issues of Over-subscription

Nevertheless, the libraries named above do not coordinate the cre-
ation or pooling of threads, which may lead to over-subscription,
where there are more active software threads than available
hardware resources. It can lead to sub-optimal execution due to
frequent context switches, thread migration, broken cache-locality,

16 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

and finally to a load imbalance when some threads have finished
their work but others are stuck, thus halting the overall progress.

For example, OpenMP (used by NumPy/SciPy) may keep
its threads active for some time to start subsequent parallel
regions quickly. Usually, this is a useful approach to reduce work
distribution overhead. Yet with another active thread pool in the
application, it impairs better performance because while OpenMP
worker threads keep consuming CPU time in busy-waiting loops,
the other parallel work cannot start until OpenMP threads stop
spinning or are preempted by the OS.

Because overhead from linear over-subscription (e.g. 2x) is
not always visible on the application level (especially for small
systems), it can be tolerated in many cases when the work for
parallel regions is big enough. However, in the worst case a
program starts multiple parallel tasks and each of these tasks
ends up executing an OpenMP parallel region. This results in
quadratic over-subscription (with default settings) which ruins
multi-threaded performance on systems with a significant number
of threads (roughly more than ten). In some big systems, it may
not even be possible to create as many software threads as the
number of hardware threads multiplied by itself due to insufficient
resources.

Threading Composability

Altogether, the co-existing issues of multi-threaded components
define threading composability of a program module or a com-
ponent. A perfectly composable component should be able to
function efficiently among other such components without affect-
ing their efficiency. The first aspect of building a composable
threading system is to avoid creation of an excessive number
of software threads, preventing over-subscription. That effectively
means that a component and especially a parallel region cannot
dictate how many threads it needs for execution (mandatory
parallelism). Instead, it should expose available parallelism to a
work scheduler (optional parallelism), which is often implemented
as a user-level work stealing task scheduler that coordinates tasks
between components and parallel regions and map them onto
software threads. Since such a task scheduler shares a single thread
pool among all the program modules and native libraries, it has to
be efficient enough to be attractive for high-performance libraries.
Otherwise, these libraries will not be able or willing to switch their
own threading model to the new scheme.

Intel Solution

Intel’s approach to achieve threading composability is to use
Intel® Threading Building Blocks (Intel® TBB) library as the
common work scheduler, see Figure 1. Intel® TBB is an open-
source, cross-platform, mature and recognized C++ library for
enabling multi-core parallelism. It was designed for composability,
as well as optional and nested parallelism support.

In the Intel® Distribution for Python 2017 Beta and later,
as part of Intel® TBB release 4.4 Update 5, I introduce an
experimental module which unlocks the potential for additional
performance for multi-threaded Python programs by enabling
threading composability between two or more thread-enabled
libraries. Thanks to threading composability, it can accelerate
programs by avoiding inefficient thread allocation as discussed
above.

The TBB module implements a Pool class with the standard
Python interface using Intel® TBB which can be used to replace

Fig. 1: Intel® Threading Building Blocks is used as a common runtime
for different Python modules.

Python’s ThreadPool. Python allows users to dynamically re-
place any object (e.g. class or function) at runtime (monkey patch-
ing). Thanks to this technique implemented in class Monkey, no
source code change is needed in order to enable single thread pool
across different Python modules. The TBB module also switches
Intel® MKL to use TBB-based threading layer, which automat-
ically enables composable parallelism [ParUniv] for NumPy and
SciPy calls.

Usage example

For our first experiment, we need Intel® Distribution for Python
[IntelPy] to be installed along with the Dask [Dask] library which
simplifies parallelism with Python.
install Intel(R) Distribution for Python
<path to installer of the Distribution>/install.sh
setup environment
source <path to the Distribution>/bin/pythonvars.sh
install Dask
conda install dask

The code below is a simple program using NumPy that validates
QR decomposition by multiplying computed components and
comparing the result against the original input:
1 import time, numpy as np
2 x = np.random.random((100000, 2000))
3 t0 = time.time()
4 q, r = np.linalg.qr(x)
5 test = np.allclose(x, q.dot(r))
6 assert(test)
7 print(time.time() - t0)

And here is the same program using Dask:
1 import time, dask, dask.array as da
2 x = da.random.random((100000, 2000),
3 chunks=(10000, 2000))
4 t0 = time.time()
5 q, r = da.linalg.qr(x)
6 test = da.all(da.isclose(x, q.dot(r)))
7 assert(test.compute()) # threaded
8 print(time.time() - t0)

Here, Dask splits the array into 10 chunks and processes them in
parallel using multiple threads. However, each Dask task executes
the same NumPy matrix operations which are accelerated using
Intel® MKL under the hood and thus multi-threaded by default.
This combination results in nested parallelism, i.e. when one par-
allel component calls another component, which is also threaded.

The reason why the Dask version was set to have only 10
tasks is to model real-life applications with limited parallelism

COMPOSABLE MULTI-THREADING FOR PYTHON LIBRARIES 17

Fig. 2: Execution times for QR validation example.

on the outermost level, which is quite typical for functional and
pipeline types of parallelism. Such cases might benefit the most
from enabling parallelism at inner levels of the code. In the case
when the top-level parallelism can load all the available cores and
is well-balanced, nested parallelism is not that likely to improve
performance (but can make it much worse without a composable
threading solution).

Here is an example of running the benchmark program in three
different modes:

1 python bench.py # Default MKL
2 OMP_NUM_THREADS=1 python bench.py # Serial MKL
3 python -m TBB bench.py # Intel TBB mode

Figure 2 shows performance results acquired on a 32-core (no
hyper-threading) machine with 64GB memory. The results pre-
sented here were acquired with cpython v3.5.1; however, there is
no performance difference with cpython v2.7.1. The Dask version
runs slower than the NumPy version with the default setting
because 10 outermost tasks end up calling 10 OpenMP-based
parallel regions that create 10 times more threads than available
hardware resources.

The second command runs this benchmark with innermost
OpenMP parallelism disabled. It results in the worst performance
for the NumPy version since everything is now serialized. More-
over, the Dask version is not able to close the gap completely since
it has only 10 tasks, which can run in parallel, while NumPy with
parallel MKL is able to utilize the whole machine with 32 threads.

The last command demonstrates how Intel® TBB can be
enabled as the orchestrator of multi-threaded modules. The
TBB module runs the benchmark in the context of with
TBB.Monkey(): which replaces the standard Python Thread-
Pool class used by Dask and also switches MKL into TBB
mode. In this mode, NumPy executes in more than twice the
time compared to the default NumPy run. This happens because
TBB-based threading in MKL is new and not as optimized as the
OpenMP-based MKL threading implementation. However despite
that fact, Dask in TBB mode shows the best performance for this
benchmark, 46% improvement compared to default NumPy. This
happens because the Dask version exposes more parallelism to
the system without over-subscription overhead, hiding latencies of
serial regions and fork-join synchronization in MKL functions.

1. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]

Fig. 3: Case study results: Generation of User Recommendations.

Case study

The previous example was intentionally selected to be small
enough to fit into this paper with all the sources. Here is another
case study [FedLitC] that is closer to real-world applications. It
implements a recommendation system similar to the ones used
on popular web-sites for generating suggestions for the next
application to download or the next movie to watch. However,
the core of the algorithm is still quite simple and spends most of
the time in matrix multiplication. Figure 3 shows results collected
on an older machine with a bigger number of cores.

The leftmost result in Figure 3 was acquired on pure, non-
accelerated Python that comes by default on Fedora 23. It is
used as the base of comparison. Running the same application
without modifications with Intel® Distribution for Python results
in a 17 times speedup. One reason for this performance increase
is that Intel® MKL runs computations in parallel. Thus, for the
sake of experiment, outermost parallelism was implemented on
the application level processing different user requests in parallel.
For the same system-default python, the new version helped to
close the gap with the MKL-based version though not completely:
executing 15 times faster than the base. However, running the
same parallel application with the Intel Distribution resulted in
worse performance (11x). This is explained by overhead induced
by over-subscription.

In order to remove overhead, the previous experiment was
executed with the TBB module on the command line. It results
in the best performance for the application - 27 times speedup
over the base.

Numba

NumPy and SciPy provide a rich but fixed set of mathematical
instruments accelerated with C extensions. However, sometimes
one might need non-standard math to be as fast as C extensions.
That’s where Numba [Numba] can be efficiently used. Numba is
a Just-In-Time compiler (JIT) based on LLVM [LLVM]. It aims
to close the gap in performance between Python and statically
typed, compiled languages like C/C++, which also have popular
implementation based on LLVM.

Numba implements the notion of universal functions (ufunc,
a scalar function which can be used for processing arrays as
well) defined in SciPy [ufunc] and extends it to a computation
kernel that can be not only mapped onto arrays but can also
spread the work across multiple cores. The original Numba version
implements it using a pool of native threads and a simple work-
sharing scheduler, which coordinates work distribution between

18 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 4: Black Scholes benchmark running with Numba on 32 threads.

them. If used in a parallel numeric Python application, it adds
a third thread pool to the existing threading mess described in
previous sections. Thus, our strategy was to put it on top of the
common Intel® TBB runtime as well.

The original version of Numba’s multi-threading runtime was
replaced with a very basic and naive implementation based on
TBB tasks. Nevertheless, even without nested parallelism and
advanced features of Intel® TBB such as work partitioning al-
gorithms, it resulted in improved performance.

Figure 4 shows how original Numba and TBB-based versions
perform with the Black Scholes [BSform] benchmark imple-
mented with Numba. Whether the problem size is small or big,
they work at almost the same speed. However, TBB-based Numba
performs up to 3 or 4 times faster for the problem sizes in between.

The following code is a simplified version of this benchmark
that gives an idea how to write parallel code using Numba:
1 import numba as nb, numpy.random as rng
2 from math import sqrt, log, erf, exp
3

4 @nb.vectorize('(f8,f8,f8,f8,f8)',target='parallel')
5 def BlackScholes(S, X, T, R, V):
6 VqT = V * sqrt(T)
7 d1 = (log(S / X) + (R + .5*V*V) * T) / VqT
8 d2 = d1 - VqT
9 n1 = .5 + .5 * erf(d1 * 1./sqrt(2.))

10 n2 = .5 + .5 * erf(d2 * 1./sqrt(2.))
11 eRT = exp(-R * T)
12 return S * n1 - X * eRT * n2 # Call price
13 # Put price = (X * eRT * (1.-n2) - S * (1.-n1))
14

15 price = rng.uniform(10., 50., 10**6) # array
16 strike = rng.uniform(10., 50., 10**6) # array
17 time = rng.uniform(1.0, 2.0, 10**6) # array
18 BlackScholes(price, strike, time, .1, .2)

Here is the scalar function BlackScholes, consisting of
many elementary and transcendental operations, which is ap-
plied (broadcasted) by Numba to every element of the input
arrays. Additionally, target='parallel' specifies to run the
computation using multiple threads. The real benchmark also
computes the put price using numba.guvectorize, uses an
approximated function instead of erf() for better SIMD opti-
mization, optimizes the sequence of math operations for speed,
and repeats the calculation multiple times.

Limitations and Future Work

Intel® TBB does not work well for blocking I/O operations
because it limits the number of active threads. It is applicable

only for tasks, which do not block in the operating system. If your
program uses blocking I/O, please consider using asynchronous
I/O that blocks only one thread for the event loop and so prevents
other threads from being blocked.

The Python module for Intel® TBB is in an experimental
stage and might be not sufficiently optimized and verified with
different use-cases. In particular, it does not yet use the master
thread efficiently as a regular TBB program is supposed to do.
This reduces performance for small workloads and on systems
with small numbers of hardware threads.

As was discussed above, the TBB-based implementation of
Intel® MKL threading layer is yet in its infancy and is therefore
suboptimal. However, all these problems can be eliminated as
more users will become interested in solving their composability
issues and Intel® MKL and the TBB module are further devel-
oped.

Another limitation is that Intel® TBB only coordinates threads
inside a single process while the most popular approach to
parallelism in Python is multi-processing. Intel® TBB survives
in an oversubscribed environment better than OpenMP because
it does not rely on the particular number of threads participating
in a parallel computation at any given moment, thus the threads
preempted by the OS do not prevent the computation from making
an overall progress. Nevertheless, it is possible to implement a
cross-process mechanism to coordinate resources utilization and
avoid over-subscription.

A different approach is suggested by the observation that a
moderate over-subscription, such as from two fully subscribed
thread pools, does not significantly affect performance for most
use cases. In this case, preventing quadratic over-subscription from
the nested parallelism (in particular, with OpenMP) can be a prac-
tical alternative. Therefore, the solution for that can be as simple as
"Global OpenMP Lock" (GOL) or a more elaborate inter-process
semaphore that coordinates OpenMP parallel regions.

Conclusion

This paper starts with substantiating the necessity of broader usage
of nested parallelism for multi-core systems. Then, it defines
threading composability and discusses the issues of Python pro-
grams and libraries which use nested parallelism with multi-core
systems, such as GIL and over-subscription. These issues affect
performance of Python programs that use libraries like NumPy,
SciPy, Dask, and Numba.

The suggested solution is to use a common threading runtime
library such as Intel® TBB which limits the number of threads
in order to prevent over-subscription and coordinates parallel
execution of independent program modules. A Python module
for Intel® TBB was introduced to substitute Python’s ThreadPool
implementation and switch Intel® MKL into TBB-based thread-
ing mode, which enables threading composability for mentioned
Python libraries.

The examples referred in the paper show promising results,
where, thanks to nested parallelism and threading composability,
the best performance was achieved. In particular, QR decom-
position example is faster by 46% comparing to the baseline
implementation that uses parallelism only on the innermost level.
This result was confirmed by the case study of a recommendation
system where 59% increase was achieved for the similar base.

2. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]

COMPOSABLE MULTI-THREADING FOR PYTHON LIBRARIES 19

And finally, Intel® TBB was proved as a mature multi-threading
system by replacing threading runtime implemented in Numba and
achieving more than 3 times speedup on several problem sizes.

Intel® TBB along with the Python module are available in
open-source [TBB] for different platforms and architectures while
Intel® Distribution for Python accelerated with Intel® MKL is
available for free as a stand-alone package [IntelPy] and on
anaconda.org/intel channel.

REFERENCES

[NumPy] NumPy, http://www.numpy.org/
[SciPy] SciPy, https://www.scipy.org/
[Dask] Dask, http://dask.pydata.org/
[Numba] Numba, http://numba.pydata.org/
[TBB] Intel(R) TBB open-source site, https://www.

threadingbuildingblocks.org/
[HSutter] Herb Sutter, "The Free Lunch Is Over", Dr. Dobb’s Journal, 30(3),

March 2005. http://www.gotw.ca/publications/concurrency-ddj.htm
[WTichy] Walter Tichy, "The Multicore Transformation", Ubiquity, Volume

2014 Issue May, May 2014. DOI: 10.1145/2618393. http://ubiquity.
acm.org/article.cfm?id=2618393

[GIL] David Beazley, "Understanding the Python GIL", PyCON Python
Conference, Atlanta, Georgia, 2010. http://www.dabeaz.com/
python/UnderstandingGIL.pdf

[AGlaws] Michael McCool, Arch Robison, James Reinders, "Amdahl’s Law
vs. Gustafson-Barsis’ Law", Dr. Dobb’s Parallel, October 22,
2013. http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-
barsis-law/240162980

[mproc] Python documentation on multiprocessing, https://docs.python.org/
library/multiprocessing.html

[Joblib] Joblib, http://pythonhosted.org/joblib/
[OpenMP] The OpenMP(R) API specification for parallel programming, http:

//openmp.org/
[MKL] Intel(R) MKL, https://software.intel.com/intel-mkl
[ParUniv] Vipin Kumar E.K. A Tale of Two High-Performance Libraries, The

Parallel Universe Magazine, Special Edition, 2016. https://software.
intel.com/intel-parallel-universe-magazine

[IntelPy] Intel(R) Distribution for Python, https://software.intel.com/python-
distribution

[FedLitC] Alexey Fedotov, Vasilij Litvinov, "Faster, Python!" (in Russian),
CodeFest, Novosibirsk, 2016 http://2016.codefest.ru/lecture/1117

[LLVM] The LLVM Compiler Infrastructure, http://llvm.org/
[ufunc] Universal functions (ufunc), SciPy documentation http://docs.scipy.

org/doc/numpy/reference/ufuncs.html
[BSform] Fischer Black, Myron Scholes, "The Pricing of Options and Corpo-

rate Liabilities", Journal of Political Economy 81 (3) 1973: 637-654.
doi:10.1086/260062

[OptNote] https://software.intel.com/en-us/articles/optimization-notice

20 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Generalized earthquake classification

Ben Lasscock‡∗

https://youtu.be/uT0Nkf0BA7o

F

Abstract—We characterize the source of an earthquake based on identifying
the nodal lines of the radiation pattern it produces. These characteristics are
the mode of failure of the rock (shear or tensile), the orientation of the fault
plane and direction of slip. We will also derive a correlation coefficient comparing
the source mechanisms of different earthquakes. The problem is formulated in
terms of a simple binary classification on the surface of the sphere. Our design
goal was to derive an algorithm that would be both robust to misclassification
of the observed data and suitable for online processing. We will then go on
to derive a mapping which translates the learned solution for the separating
hyper-plane back to the physics of the problem, that is, the probable source type
and orientation. For reproducibility, we will demonstrate our algorithm using the
example data provided with the HASH earthquake classification software, which
is available online.

Index Terms—machine learning, earthquake, hazard, classification.

Introduction

In this paper we are going to explain how to classify earthquake
data using a support vector classifier (SVC) and then how to
interpret the result physically. We will be drawing on the scikit-
learn [sklearn] project for the SVC, the ObsPy seismological
Python package [ObsPy] for some utility routines and mplstere-
onet [mplstereonet], which is a matplotlib [mpl] plugin for visual-
ization.

Much of the discussion will center around deriving a mapping
from the solution of the SVC to the physical process that origi-
nated the earthquake. The key concept we will be elaborating on
is understanding the relationship between what we call the input
and feature spaces of the SVC. The results of the classification
are curves separating points on the surface of the focal sphere (the
input space), which is the domain of the input data. However, the
physics and understanding of the result lies in the representation
of the solution in the feature space, which a higher dimensional
space where the classifier may linearly separate the data.

For the sake of reproducibility, the demonstration will use the
same dataset provided with the US Geological Survey (USGS)
HASH software. HASH [HASH] is an earthquake classification
code provided by the USGS and it is built upon an earlier package
called FPFIT, which implements a least squares classifier. For each
case we will be comparing and contrasting our solutions with those
generated by HASH, which we generally expect to be similar.

* Corresponding author: blasscoc@gmail.com
‡ Geotrace Technologies

Copyright © 2016 Ben Lasscock. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: A seismogram measured at the WR1 node of the Warramunga
seismic array showing displacement due to an aftershock of the April
2007 Solomon Islands earthquake. The red dot indicates the first break
motion. The data was obtained by querying the IRIS database http:
//ds.iris.edu/ds/nodes/dmc/data/ types/events/ .

Fig. 2: A portion of the Australian seismic network showing the
location of the Warramunga seismic array, the map was obtained
from http://www.fdsn.org/networks/detail/AU/ .

Our discussion will include annotated software explaining
the important steps in the computation. We will be contributing
software1 to reproduce the results of this paper.

1. https://github.com/blasscoc/FocalMechClassifier

GENERALIZED EARTHQUAKE CLASSIFICATION 21

Problem statement

Consider a particular example where we would apply the analysis
presented in this paper. In Fig. 1, we show a seismogram (record-
ing) of an earthquake that was located in Solomon Islands. The
black and white glyph is a graphical representation of the type of
focal mechanism. The orientation of the nodal lines of this glyph
displays the orientation of the fault plane. The recording shown
was made by the WR1 node of the Warramunga seismic array,
which is part of the Australian seismic network, shown partially
in Fig. 2. The goal of hazard monitoring in this case would be to
characterize the deformation of the earth (focal mechanism) that
caused this earthquake. This analysis would involve first locating
the source spatially and then classifying its focal mechanism, and
importantly the orientation of the fault plane. The orientation of
the fault plan is important because displacement of the sea-floor
can cause the formation of tsunamis. The algorithm discussed in
this paper provides the analysis of the focal mechanism, with the
extension that we can also compare the spectrum of the solution
with a past events located in this area. This additional information
may be useful for decision making regarding what action should be
taken given the risk of a historical (or perhaps modeled) scenario
repeating.

We proceed by detailing exactly the parameters of the problem
at hand. The raw data are recordings of the initial arrival of
energy from this earthquake, measured across a seismic network.
From each recording, the initial displacement (or first motion) is
identified (or picked), as shown by a red dot in Fig. 2. Consider
this is as a radiation amplitude from the earthquake measured
at a particular location. Further measurements across the seismic
network begin to inform the shape of the radiation pattern created
by the event. However, a radiation pattern measured far from the
event becomes distorted because of the refraction of the seismic
wave as it propagates through the earth. To remove this distortion,
this energy must migrated, along an estimated ray path, back to
the neighborhood of the estimated source location . We call this
neighborhood the focal sphere. The process of picking, locating
and migrating seismic events is beyond the scope of this paper.
However, seismograms can be requested from the IRIS database2

and a suite of Python tools for processing this data is made
available by the ObsPy [ObsPy] Python project.

The input data to our analysis is the polarity (signed amplitude)
of the picks, and the azimuth and co-latitude of the observation
migrated onto the focal sphere.The design goal is to provide an
online tool for characterizing the source mechanism. The emphasis
is on robustness of the algorithm, without the need for post facto
processing of the data. We also need a system that provides natural
metrics of similarity between seismic events.

Physically, the initial arrival of energy will be in the form
of a compressional wave. The amplitude of these compressional
waves are solutions to the scalar wave equation, which are the
spherical harmonic functions3. Hence any function that classifies
the polarity data should be a superposition of these spherical
harmonics. We will learn this classifying function using the SVC.
However, it is the spectral representation (harmonic content) of
the radiation pattern that contains the physical meaning of the
solution.

2. http://www.iris.edu
3. http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_

harm.html

Source (Fault normal/slip) Template
Shear (31) + (13) −i(Y12 +Y−12)

Tensile (3) αY00 +4
√

5Y02
Tangential (3) Y02− i

2 (Y22 +Y−22) .

TABLE 1: Describes the angular variation of the displacement
due to three types of earthquake sources in terms of a basis of
spherical harmonic functions. The source templates summarized are
shear, tensile and tangential dislocation. The brackets (·, ·) define the
template direction of the fault normal and the direction of slip in
rectangular coordinates. The constant α = 2+ 3 λ

µ , where λ and µ
are the first Lamé parameter and the shear modulus respectively.

In Sec. Theory we will review the basic results we need from
the theory of seismic sources. In Sec. Existing Least Squares
Methods we will review existing methods for classifying earth-
quake data. The Sec. Earthquake - Learning with Kernels reviews
the Python code used in the classification, and derives a mapping
between the input space of the problem, to the feature space
(represented by the spectrum). In Sec. Physical Interpretation we
translate this spectral representation back to the physics of the
problem, and explain how to evaluate the correlation metric. In
Sec. Discussion we provide an example of the analysis and then
we wrap things up with Sec. Conclusions.

Theory

The observed displacement created by the collective motion of
particles along a fault plane is described by the theory of seismic
sources. We will not go into all the details here, but the reference
on seismic source theory we follow is Ben-Menahem and Singh
[Ben81]. The key result we will draw upon is a formula for the
displacement for various types of seismic sources summarized
in Table 4.4 of [Ben81], which is presented in terms of Hansen
vectors. Physically, a shear type failure would represent the slip
of rock along the fault plane and a tensile failure would represent
cracking of the rock. The results of [Ben81] are general, however
we are only modeling the angular variation of the displacement
due to the compressional wave measured radially to the focal
sphere. From this simplification we can translate solutions of
[Ben81] into solutions for just the angular variation using the basis
of spherical harmonic functions, which we tabulate in Table 1.
Notes on translating between [Ben81] and Table 1 are summarized
in the Appendix. This result gives us an analytical expression for
the spectral content of seismic sources given a certain orientation
of the fault plane. We will use this information to find general
solutions in Sec. Physical Interpretation.

The amplitude of the radiation pattern cannot typically be
migrated back to the location of the event unless an accurate model
of seismic attenuation is available, which is not generally the case,
even in commercial applications. However, supposing the source
type and orientation were known, then the sign of this radiation
pattern is a function that must classify the polarity data on the
focal sphere. As an example, in Fig. 3 we render in, 3-dimensions,
the signed radiation pattern predicted for shear and tensile source,
in a particular orientation.

The black areas of this beachball diagram represents the
region where the displacement at the source is radially outward
(vice versa for the white regions). The nodal lines represent the
separating margin between classes of data (outward and inward
displacement). For the shear source, the nodal lines are called the
fault and auxiliary planes respectively.

22 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 3: Rendered in 3-dimensions, (left) the signed radiation pattern
for a possible tensile type source. (right) Similarly for the case of
shear type source. Figures are generated using SciPy’s spherical
harmonic functions and Mayavi.

Fig. 4: For event 3146815 from north1 dataset (blue) preferred nodal
line estimated by HASH, (red) a sample from the set of acceptable
estimates.

One observation we can immediately take away from Fig 3
is that two diagrams are topologically different. The nodal lines
of the shear source are great circles, which is not the case from
the tensile source. That means there is no rotation or smooth
deformation that can make one look like the other. This suggests
that the two source are distinguishable, but also that there is
some potential of identifying admixtures of the two based on their
spectral content.

Existing Least Squares Methods

Currently, a common method (called FPFIT [FPFIT]) for earth-
quake classification is to assume that shear failure is the source
mechanism, and then, through a least squares optimization, find
the fault plane orientation that minimizes the rate of misclassifi-
cation to the data. A modern code built upon FPFIT is the HASH
algorithm [HASH]. The HASH software is available for download
from the USGS4 website. The HASH software comes with an
example "NorthRidge" dataset which we will use to demonstrate
our method. We compare the results of our algorithm with the
results of HASH, which is the current state of the art. HashPy

Fig. 5: A schematic of the optimization strategy of the SVC. The
dashed lines represent the edges of the separating margin. The blue
open and red closed dots are the polarity data represented in a feature
space. The dashed lines represent a separating margin between the
two classes, the solid line represents the optimal separating hyper-
plane.

[HashPy] is a Python project for that provides a wrapper for
HASH.

Figure 4 demonstrates how the FPFIT algorithm works.
The coordinate system in the figure is a stereonet projection
[mplstereonet] of the lower half space of a sphere. The solid red
(open blue) dots are positive (negative) polarity measured across
a seismic network for the 3146815 event, which was taken from
the Northridge dataset "north1.phase" supplied with the HASH
software. Recall, FPFIT is a least squares method, however the
function it is optimizing need not be convex. As such, there
are many solutions that have a similar goodness of fit. Using a
grid search method, FPFIT draws a ensemble of these possible
solutions (red lines). The blue line is the preferred or most likely
solution.

Earthquake - Learning with Kernels

In this section we discuss the classification algorithm we develop
using the scikit-learn [sklearn] library. Whilst our interest was
classification of earthquakes, the algorithm is applicable for any
classification problem defined on a sphere.

Define the input space of the problem as the surface of the
focal sphere, represented for example by the stereonet in Fig.
4. The data is not linearly separable on this space. The strategy
of the SVC is to project the problem into a higher dimensional
feature space. And in this feature space, determine the best hyper-
plane to separate the two classes of data by maximizing the
width of the separating margin, subject to the constraint that the
classes are either side of the separating margin, Fig. 5 shows a
schematic of the algorithm. An important feature of the SVC is
that it is robust to misclassification close to the decision boundary.
Physically these are curves where the amplitude of the radiation
is becoming small and then changing sign. What we believe to

4. http://earthquake.usgs.gov/research/software/index.php

GENERALIZED EARTHQUAKE CLASSIFICATION 23

be more important than the overall rate of misclassification of the
algorithm, is the stability of the result given erroneous input data.
from sklearn import svm

def classify(cartesian_coords, polarity,
kernel_degree=2):

"""
cartesian_coords - x, y, z coordinates on
sphere polarity (1,-1) first break polarity
kernel_degree - truncates the dimension of
expansion.
"""

C : slack variable, use the default of 1.0
poly_svc = svm.SVC(kernel='poly',

degree=kernel_degree,
coef0=1, C=1.0).fit(cartesian_coords,

polarity)

intercept = poly_svc.intercept_
Angle [0,pi] - the colatitude
colat = arccos(poly_svc.support_vectors_[:,2])
Angle [0,2*pi] measured as azimuth
azim = arctan2(poly_svc.support_vectors_[:,1],

poly_svc.support_vectors_[:,0])
The lagrange multipliers * class,
classes are labeled -1 or 1.
dual_coeff = poly_svc.dual_coef_[0,:]
Remember which points where mis-classified
in_sample = poly_svc.predict(c_[inputs])

return (dual_coeff, azim, colat,
intercept, in_sample)

A Python implementation of the support vector classifier5 is
included in scikit-learn. The projection to a higher dimensional
space is done using a kernel, and evaluated in the input space
using the kernel trick. For classification on a sphere, we need to
use an inner product kernel, which has the form

k(~x,~xi) = (〈~x,~xi〉+1)d .

Here "d" is the degree of the kernel. The parameter "C" in
the above code snippet is a slack variable. This provides a soft
thresholding, which allows for some misclassification; the default
value is usually sufficient. Given a set of data yi, the support vector
machine learns a corresponding set of coefficients αi and intercept
β0, which determines a classifying function in the input space,

f (~x) =
N

∑
i=1

αiyik(~x,~xi)+β0 . (1)

In our application, the zero of this function is the nodal line, and
the sign of the function is a prediction for the direction of the
displacement radial to the focal sphere, given the observed data.
Not all of the data is relevant for determining the best separating
margin, many of the coefficients αi may be zero. The support
vectors are the locations of the data where αi are non-zero. The
product αiyi associated with each of the support vectors are called
the dual coefficients (see the code snippet).

In Fig. 6 we demonstrate the SVC classifier applied to an
event from the Northridge dataset. The red line represents zeros of
the classifying function f(x), the green line is the solution for the
fault (and auxiliary) planes determined by HASH. Note that the
auxiliary plane is computed using the aux_plane function provided
by the ObsPy library [ObsPy]. The learned nodal line is simply
connected, the zeros of the classifying function f(x) have been
determined using matplotlib’s contour function.

5. http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Fig. 6: For event 3146815 from the NorthRidge dataset. The green
nodal line is estimated by HASH and the red nodal line is estimated
by the SVC.

Both the HASH solution and the learned solution have a
similar rate of misclassification. However the learned solution is
still unsatisfactory to us because we cannot make physical sense
of the result. What we want is an explanation of the type of source
mechanism and its orientation. To be physically meaningful, we
need an expression for the nodal lines in terms of its spectrum
in the basis of spherical harmonic functions. In this basis we can
then use the seismic source theory of [Ben81] to relate the result
to a physical process. What we want is to determine the spectral
content of f(x),

f (~x) =
∞

∑
l=1

l

∑
m=−l

f̂lmYlm(θ ,φ)

that is, we want to derive its representation in the feature space.
Here, the azimuth θ and colatitude φ , are the angles that orientate
the unit vector ~x. The steps in deriving this representation are to
first expand the inner product kernel in terms of the Legendre
polynomials [Scholkopf],

al =
∫ 1

−1
dx (x+1)dPl(x) (2)

al =

{
2d+1Γ(d+1)

Γ(d+2+l)Γ(d+1−l) +
1
2

√
1
π β0δl0 if l ≤ d

0 otherwise
.

When we do this, we see that the degree parameter provides
a natural truncation on the complexity of the function we are
learning. This gives us an intermediate result which expresses the
separating margin in terms of Legendre polynomials

f (~x) =
N

∑
i=1

αiyi

∞

∑
l=1

alPl(〈~x,~xi〉) .

The next step is to apply the addition theorem to express this in
terms of the spherical harmonics,

Pl(〈~x,~xi〉) =
l

∑
m=−l

Y ∗lm(θ
′,φ ′) Ylm(θ ,φ) .

24 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

The result is a formula for the spectral content of the focal
mechanism given the dual coefficients estimated by the support
vector classifier,

f̂lm =
4π

2l +1

N

∑
i=1

αiyial Y ∗lm(θ
′,φ ′) .

Finally, suppose we have solutions for the classification from two
different sources, either observed or modeled from Table 1. A
natural metric for comparing the two sources is a correlation
coefficient,

ρ =
‖〈g, f 〉‖2

‖g‖‖ f‖ . (3)

Using the orthogonality condition of the spherical harmonic func-
tions, we can show that inner product is,

〈g, f 〉 =
∫

d3x g∗(~x) f (~x)

=
∞

∑
l=0

∑
m,n

ĝ∗ln f̂lm ,

here the integral is over the surface of the focal sphere and the
star-notation means complex conjugation.

In the context of hazard monitoring, we could use the as a
metric of risk, without having to propose a source mechanism or
fault plane orientation.

Physical Interpretation

In the previous section we derived the general earthquake classi-
fication algorithm and a metric of correlation. Now suppose we
were to assume a model for the source mechanism (e.g shear
failure), how would we estimate the most likely orientation of
the fault plane in this model?

First of all, in Table 1, we have a template for the spectral
content of the shear source given a particular orientation. Using
this template we compute a function g(x), and then generate a
rotation in the input space to realign it with the classifying function
f(x). This rotation would be estimated by optimizing a correlation
coefficient with respect to the Euler angles,

〈g, f 〉 = arg max
α,β ,γ

∫
d3x g∗(R(α,β ,γ)~x) f (~x)

Here, R represents a rotation matrix. This would be a relatively
complicated procedure in the input space because we would
need to re-evaluate the function g(x) at each iteration of the
optimization. It is far more efficient to instead generate rotations
in the feature space. To do this we borrow from quantum theory,
and present Wigner’s D-matrices,

g(R(α,β ,γ)~x) =
∞

∑
l=0

∑
m,n

Dl
mn(α,β ,γ)ĝlnYlm(θ ,φ) .

Wigner’s D-matrices are operators which generate rotations in the
feature space of the problem. This means that we can translate a
template solution (Table 1.) in a particular orientation, to a solution
in any arbitrary orientation, by acting on its spectral content.
from scipy.optimize import minimize

def _corr_shear(x, alm):
strike, dip, rake = x
Wigner is ZYZ Euler rotation, \gamma = -rake
D = WignerD2(strike, dip, -rake).conjugate()
Template (13)/(31) : glm = (0, -1j, 0, -1j, 0)
prop = (inner(D[:,3], alm) +

Fig. 7: For event 314681 from NorthRidge dataset. The green nodal
line estimated by HASH and the solid red line is the optimal solution
for the nodal lines derived from the SVC assuming a shear source.
The dashed red line is the nodal line estimated by the SVC.

inner(D[:,1], alm))*1j
Maximize, not minimize.
return -norm(prop)

def corr_shear(Alm):
pick a good starting point.
x0 = _scan_shear(alm)
f = lambda x : _corr_shear(x,alm)
results = minimize(f, x0=x0,

bounds=((0,2*pi), (0,pi), (0,2*pi)))
return rad2deg(results.x), results.fun

The function corr_shear shown in the code snippet implements
the optimization of the above equation. The function WignerD2
implements the Wigner-D matrices defined in [Morrison], the
variable "prop" is the projection of the learned solution onto the
rotated template shear solution shown in Table 1, and Alm is the
learned spectral content of the source. The initial guess is found
scanning a coarse grid to find the best the quadrant with the highest
initial correlation. This stops SciPy’s default minimization [scipy]
getting stuck in a local minima.

As an example, in Fig. 7 we show the classification results for
the 3146815 event. The (dashed red) line shows the nodal line of
the classifier function. The (solid red) line is the template shear
solution, orientated by optimizing the correlation function, and
the (solid green) line shows the preferred solution estimated by
HASH.

Discussion

In Figures 6 and 7 we have shown examples of the classification
and fault plane estimation methods. In this section we want to
explore the robustness of the algorithm and try to gain some
insight into the utility of the correlation functions.

The HASH program has an input (scsn.reverse) which identi-
fies stations whose polarity was found to be erroneous in the past.
These reversals are applied post facto to correct the input polarity
data. We will use this feature to demonstrate an example where the
support vector and least squares classifiers behave differently. In
Fig 8 we give an example where we flipped the polarity of a single
datum (indicated by the black arrow). The corresponding solutions
are shown with (solid lines) and without (dashed lines) the benefit

GENERALIZED EARTHQUAKE CLASSIFICATION 25

Fig. 8: For event 3145744 from the NorthRidge dataset. The color
scheme for each subplot as in Fig. 7, the dashed lines are solutions
without the station reversal being applied. The black arrow points to
datum for which the polarity is flipped.

Fig. 9: The correlation score for each event in the Northridge dataset,
comparing to event 3146815. (red) The events with maximum and
minimum correlation score. (green) The correlation between 3146815
and itself rotated by 90-degrees strike, (cyan) the correlation between
3146815 and the tensile source found in Table 1.

of the polarity correction. The datum that was changed is close
to the nodal line estimated by the SVC, which, given the soft
thresholding, is forgiving of misclassification along its separating
margin. The SVC solution for the nodal line is largely unchanged.
On the other hand, the strategy of FPFIT is to minimize the overall
rate of misclassification. And indeed, in each case, it finds the
optimal solution on this basis. In fact, in terms of misclassified
points, FPFIT outperforms the SVC classifier. But we would
question whether minimizing the overall rate of misclassification
is reasonable from an applied perspective. Consider that since
the nodal line represents a point where the radiation pattern is
changing sign, we expect that the signal to noise level will be
smaller in this region. Conversely, from the point of view of the
SVC, these are also the points that are most informative to the
proper location of its separating margin. Indeed, many of the best
quality picks far from the nodal lines will not influence the solution
for the separating plane (recall dual coefficients can be zero). And
it is reasonable that data of the correct class located far from the
separating margin should not influence the solution. Looking at
the problem from this perspective the solution of the SVC is more
reasonable.

Fig. 10: The color scheme for each subplot as in Fig. 7. (top left) The
solution for event 3146815, (top right) the solution for events 3158361
and (bottom right) 3153955. Events 3158361 and 3153955 represent
the maximum and minimum correlation score with event 3146815.

Finally, we derived a metric of similarity based on a correlation
score Eq. 3. To provide an example of how we might use this
correlation score, we take the event 3146815, which has the largest
number of data associate with it, and compute the correlation
coefficient with each of the other events in the Northridge dataset.
According to [HASH], the NorthRidge dataset we analyzed is
expected to contain similar source mechanisms and certainly we
see that the correlation score is high for the majority of the
events. To test the sensitivity of the metric, we also compute
the correlation between event 3146815 and itself rotated by 90-
degrees strike, and we see that this has low correlation, which we
would expect.

In Fig. 10 we provide a visualization of the events with the
highest (top right) and lowest (bottom right) correlation score
comparing with event 3146815 (top left). The orientation of the
nodal lines for event 3153955, which has the lowest correlation
score, indeed is qualitatively different than the solution for event
3146815. Qualitatively, we have demonstrated that the correlation
score is a reasonable metric of similarity. Determining the actual
statistical significance of the correlation score is left as future
work.

Conclusions

We have presented a tool for classifying and comparing earth-
quake source mechanisms using tools from the scientific Python
ecosystem. The important steps were to define the problem in
terms of classification, which is solved robustly by the scikit-
learn [sklearn] support vector classifier. We then used results from
seismic source theory [Ben81] to derive a mapping between the
input and feature spaces of the classification problem. Using the
representation of the solution in the feature space, we derived a
correlation coefficient.

This allowed us to generalize the earthquake classification to
support both shear and tensile sources. As a particular example,
we showed how maximizing correlation with the template shear
solution could be used to estimate fault plane orientation. The key

26 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

to efficiency here was to generate rotations in the feature space of
the problem using Wigner’s D matrices.

At each step along the way, we made a comparison with
similar solutions obtained with the HASH algorithm [HASH], and
found good general agreement. However, we argued that for this
application, the optimization strategy of the SVC should prove
more robust to misclassification than the least squares method.

Finally, we showed qualitatively, that the correlation coeffi-
cient provided a good metric for comparison between sources
within the Northridge dataset. This technique has some promise
as a tool for earthquake monitoring.

Appendix

The template solutions shown in Table 1 were derived from
solutions tabulated in Table 4.4 of [Ben81]. Here, [Ben81] gives
the solutions for the first P-wave arrival in terms of the Hansen
vector L (in spherical polar coordinates) of the form,

~Llm(r,θ ,φ) = ~∇h2
l (r)Ỹlm(θ ,φ) ,

where "h" is the spherical Hankel functions of a second kind. The
amplitudes of the first break are required to be measured radially
to the focal sphere, the projection of the Hansen vector radially is,

r̂ ·~Llm(r,θ ,φ) =
∂
∂ r

h2
l (r)Ỹlm(θ ,φ) .

The angular variation is given by the spherical harmonic function,
up to an overall phase associated with radial component. Asymp-
totically (measurements are made far from the source), in this limit
the Hankel functions tend to [Morse53],

h2
l (x) =

1
x
(i)l+1exp−ix ,

which introduces a relative phase when collecting terms of differ-
ent degree. We also note that the normalization of the spherical
harmonics used in [Ben81] does not include the Cordon Shortley
phase convention. Since we are using Wigner-D matrices to
generate rotations, it is convenient to use that convention,

Ỹlm(θ ,φ) = (−1)m

√
4π(l +m)!

(2l +1)(l−m)!
Ylm(θ ,φ) .

The reference implementation6 includes its own sph_harm func-
tion to add this phase factor. With these adjustments, the am-
plitudes (up to an overall constant) for a common set of source
mechanism, in terms of the spherical harmonics, are given in Table
1.

REFERENCES

[Ben81] A. Ben-Menahem and S. J. Singh Seismic Waves and Sources
Springer-Verlag New York Inc., 1981

[Aki02] K. Aki and P. G. Richards Quantitative Seismology, second ed.
University Science Books, 2002

[Morse53] M. Morse and F. Feshbach, Methods of theoretical physics
Feschbach Publishing LLC, 1953

[HASH] J. L. Hardeback and P. M. Shearer, A New Method for
Determining First-Motion Focal Mechanisms, Bulletin of the
Seismological Socity of America, Vol. 92, pp 2264-2276, 2002

[FPFIT] Reasenberg, P., and D. Oppenheimer (1985). FPFIT, FPPLOT,
and FPPAGE: FORTRAN computer programs for calculating
and displaying earthquake faultplane solutions, U.S. Geol.
Surv. Open-File Rept. 85-739, 109 Pp.

6. https://github.com/blasscoc/FocalMechClassifier

[Morrison] M. A. Morrison and G. A. Parker, Australian Journal of
Physics 40, 465 (1987).

[Scholkopf] B. Scholkopf and A. Smola, Learning with Kernels, The MIT
Press, 2002

[sklearn] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, Édouard Duchesnay. Scikit-learn:
Machine Learning in Python, Journal of Machine Learning
Research, 12, 2825-2830 (2011)

[scipy] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computa-
tion, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37 (publisher link)

[mpl] John D. Hunter. Matplotlib: A 2D Graphics Environment,
Computing in Science & Engineering, 9, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

[ObsPy] M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr and
J. Wassermann (2010), ObsPy: A Python Toolbox for Seismol-
ogy, SRL, 81(3), 530-533, DOI: 10.1785/gssrl.81.3.530

[HashPy] hashpy, https://github.com/markcwill/hashpy,
DOI:10.5281/zenodo.9808

[mplstereonet] mplstereonet, https://pypi.python.org/pypi/mplstereonet

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 27

cesium: Open-Source Platform for Time-Series
Inference

Brett Naul‡∗, Stéfan van der Walt‡, Arien Crellin-Quick‡, Joshua S. Bloom§‡, Fernando Pérez§‡

https://youtu.be/ZgHGCfwExw0

F

Abstract—Inference on time series data is a common requirement in many
scientific disciplines and internet of things (IoT) applications, yet there are few
resources available to domain scientists to easily, robustly, and repeatably build
such complex inference workflows: traditional statistical models of time series
are often too rigid to explain complex time domain behavior, while popular
machine learning packages require already-featurized dataset inputs. Moreover,
the software engineering tasks required to instantiate the computational plat-
form are daunting. cesium is an end-to-end time series analysis framework,
consisting of a Python library as well as a web front-end interface, that allows re-
searchers to featurize raw data and apply modern machine learning techniques
in a simple, reproducible, and extensible way. Users can apply out-of-the-box
feature engineering workflows as well as save and replay their own analyses.
Any steps taken in the front end can also be exported to a Jupyter notebook, so
users can iterate between possible models within the front end and then fine-
tune their analysis using the additional capabilities of the back-end library. The
open-source packages make us of many use modern Python toolkits, including
xarray, dask, Celery, Flask, and scikit-learn.

Index Terms—time series, machine learning, reproducible science

Introduction

From the reading of electroencephalograms (EEGs) to earthquake
seismograms to light curves of astronomical variable stars, glean-
ing insight from time series data has been central to a broad
range of scientific disciplines. When simple analytical thresholds
or models suffice, technicians and experts can be easily removed
from the process of inspection and discovery by employing custom
algorithms. But when dynamical systems are not easily modeled
(e.g., through physics-based models or standard regression tech-
niques), classification and anomaly detection have traditionally
been reserved for the domain expert: digitally recorded data are
visually scanned to ascertain the nature of the time variability and
find important (perhaps life-threatening) outliers. Does this person
have an irregular heartbeat? What type of supernova occurred in
that galaxy? Even in the presence of sensor noise and intrinsic
diversity of the samples, well-trained domain specialists show a
remarkable ability to make discerning statements about complex
data.

* Corresponding author: bnaul@berkeley.edu
‡ University of California, Berkeley
§ Lawrence Berkeley National Laboratory

Copyright © 2016 Brett Naul et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In an era when more time series data are being collected
than can be visually inspected by domain experts, computational
frameworks must necessarily act as human surrogates. Capturing
the subtleties that domain experts intuit in time series data (let
alone besting the experts) is a non-trivial task. In this respect,
machine learning has already been used to great success in several
disciplines, including text classification, image retrieval, segmen-
tation of remote sensing data, internet traffic classification, video
analysis, and classification of medical data. Even if the results
are similar, some obvious advantages over human involvement
are that machine learning algorithms are tunable, repeatable, and
deterministic. A computational framework built with elasticity can
scale, whereas experts (and even crowdsourcing) cannot.

Despite the importance of time series in scientific research,
there are few resources available that allow domain scientists to
easily build robust computational inference workflows for their
own time series data, let alone data gathered more broadly in their
field. The difficulties involved in constructing such a framework
can often greatly outweigh those of analyzing the data itself:

It may be surprising to the academic community
to know that only a tiny fraction of the code in many
machine learning systems is actually doing "machine
learning"...a mature system might end up being (at most)
5% machine learning code and (at least) 95% glue code.
[SHG+14]

Even if a domain scientist works closely with machine learning
experts, the software engineering requirements can be daunting. It
is our opinion that being a modern data-driven scientist should
not require an army of software engineers, machine learning
experts, statisticians and production operators. cesium [cT16]
was created to allow domain experts to focus on the inference
questions at hand rather than needing to assemble a complete
engineering project.

The analysis workflow of cesium can be used in two forms:
a web front end which allows researchers to upload their data, per-
form analyses, and visualize their models all within the browser;
and a Python library which exposes more flexible interfaces to
the same analysis tools. The web front end is designed to handle
many of the more cumbersome aspects of machine learning
analysis, including data uploading and management, scaling of
computational resources, and tracking of results from previous
experiments. The Python library is used within the web back end
for the main steps of the analysis workflow: extracting features
from raw time series, building models from these features, and

28 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

2000 2500 3000 3500 4000 4500 5000
time (days)

10.0

10.5

11.0

11.5

12.0

m
ag

Beta_Persei
LSP
Delta_Scuti

Fig. 1: Typical data for a classification task on variable stars from
the All Sky Automated Survey; shown are flux measurements for three
stars irregularly sampled in time [RSM+12].

generating predictions. The library also supplies data structures
for storing time series (including support for irregularly-sampled
time series and measurement errors), features, and other relevant
metadata.

In the next section, we describe a few motivating examples of
scientific time series analysis problems. The subsequent sections
describe in detail the cesium library and web front end, including
the different pieces of functionality provided and various design
questions and decisions that arose during the development process.
Finally, we present an end-to-end analysis of an EEG seizure
dataset, first using the Python library and then via the web front
end.

Example time series machine learning problems

cesium was designed with several time series inference use cases
across various scientific disciplines in mind.

1) Astronomical time series classification. Beginning in
2020, the Large Synoptic Survey Telescope (LSST) will
survey the entire night’s sky every few days producing
high-quality time series data on approximately 800 mil-
lion transient events and sources with variable brightness
(Figure 1 depicts the brightness of several types of star
over the course of several years) [AAA+09]. Much of
the best science in the time domain (e.g., the discovery
of the accelerating universe and dark energy using Type
Ia supernovae [PAG+99], [RFC+98]) consists of first
identifying possible phenomena of interest using broad
data mining approaches and following up by collecting
more detailed data using other, more precise observa-
tional tools. For many transient events, the time scale
during which observations can be collected can be on the
order of days or hours. Not knowing which of the millions
of variable sources to examine more closely with larger
telescopes and specialized instruments is tantamount to
not having discovered those sources at all. Discoveries
must be identified quickly or in real time so that informed
decisions can be made about how best to allocate addi-
tional observational resources.

300
200
100

0
100
200

si
gn

al

Ictal

300
200
100

0
100
200

si
gn

al

Interictal

0 5 10 15 20
300
200
100

0
100
200

si
gn

al

Normal

Fig. 2: EEG signals from patients with epilepsy [ALM+01].

2) Neuroscience time series classification. that might need
to be classified in order to make treatment decisions. Neu-
roscience experiments now produce vast amounts of time
series data that can have entirely different structures and
spatial/temporal resolutions, depending on the recording
technique. Figure 2 shows an example of different types
of EEG signals The neuroscience community is turning to
the use of large-scale machine learning tools to extract in-
sight from large, complex datasets [LCL+07]. However,
the community lacks tools to validate and compare data
analysis approaches in a robust, efficient and reproducible
manner: even recent expert reviews on the matter leave
many of these critical methodological questions open for
the user to explore in an ad hoc way and with little
principled guidance [PG07].

3) Earthquake detection, characterization and warning.
Earthquake early warning (EEW) systems are currently
in operation in Japan, Mexico, Turkey, Taiwan and Ro-
mania [AGKB09] and are under development in the US
[BAH+11]. These systems have employed sophisticated
remote sensors, real-time connectivity to major broadcast
outlets (such as TV and radio), and have a growing
resumé of successful rapid assessment of threat levels
to populations and industry. Traditionally these warning
systems trigger from data obtained by high-quality seis-
mic networks with sensors placed every ~10 km. Today,
however, accelerometers are embedded in many con-
sumer electronics including computers and smartphones.
There is tremendous potential to improve earthquake
detection methods using streaming classification analysis
both using traditional network data and also harnessing
massive data from consumer electronics.

Simple and reproducible workflows

In recent years, there has been rapid growth in the availability
of open-source tools that implement a wide variety of machine
learning algorithms: packages within the R [T+13] and Python
programming languages [PVG+11], standalone Java-based pack-
ages such as Moa [BHKP10] and Weka [HFH+09], and online
webservices such as the Google Prediction API, to name a few.
To a domain scientist that does not have formal training in

CESIUM: OPEN-SOURCE PLATFORM FOR TIME-SERIES INFERENCE 29

machine learning, however, the availability of such packages is
both a blessing and a curse. On one hand, most machine learning
algorithms are now widely accessible to all researchers. At the
same time, these algorithms tend to be black boxes with potentially
many enigmatic knobs to turn. A domain scientist may rightfully
ask just which of the many algorithms to use, which parameters to
tune, and what the results actually mean.

The goal of cesium is to simplify the analysis pipeline so
that scientists can spend less time solving technical computing
problems and more time answering scientific questions. cesium
provides a library of feature extraction techniques inspired by
analyses from many scientific disciplines, as well as a surrounding
framework for building and analyzing models from the resulting
feature information using scikit-learn (or potentially other
machine learning tools).

By recording the inputs, parameters, and outputs of previous
experiments, cesium‘ allows researchers to answer new questions
that arise out of previous lines of inquiry. Saved cesium work-
flows can be applied to new data as it arrives and shared with
collaborators or published so that others may apply the same
beginning-to-end analysis for their own data.

For advanced users or users who wish to delve into the source
code corresponding to a workflow produced through the cesium
web front end, we are implementing the ability to produce a
Jupyter notebook [PG07] from a saved workflow with a single
click. While our goal is to have the front end to be as robust and
flexible as possible, ultimately there will always be special cases
where an analysis requires tools which have not been anticipated,
or where the debugging process requires a more detailed look at
the intermediate stages of the analysis. Exporting a workflow to
a runnable notebook provides a more detailed, lower-level look at
how the analysis is being performed, and can also allow the user to
reuse certain steps from a given analysis within any other Python
program.

cesium library

The first half of the cesium framework is the back-end Python-
based library, aimed at addressing the following uses cases:

1) A domain scientist who is comfortable with programming
but is unfamiliar with time series analysis or machine
learning.

2) A scientist who is experienced with time series analysis
but is looking for new features that can better capture
patterns within their data.

3) A user of the cesium web front end who realizes
they require additional functionality and wishes to add
additional stages to their workflow.

Our framework primarily implements "feature-based meth-
ods", wherein the raw input time series data is used to compute
"features" that compactly capture the complexity of the signal
space within a lower-dimensional feature space. Standard machine
learning approaches (such as random forests [Bre01] and support
vector machines [SV99]) may then be used for supervised classi-
fication or regression.

cesium allows users to select from a large library of features,
including both general time series features and domain-specific
features drawn from various scientific disciplines. Some specific
advantages of the cesium featurization process include:

• Support for both regularly and irregularly sampled time
series.

2000 2500 3000 3500 4000 4500 5000
time (days)

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

m
ag

Fig. 3: Fitted multi-harmonic Lomb-Scargle model for a light curve
from a periodic Mira-class star. cesium automatically generates
numerous features based on Lomb-Scargle periodogram analysis.

• Ability to incorporate measurement errors, which can
be provided for each data point of each time series (if
applicable).

• Support for multi-channel data, in which case features are
computed separately for each dimension of the input data.

Example features

Some cesium features are extremely simple and intuitive: sum-
mary statistics such as maximum/minimum values, mean/median
values, and standard deviation or median absolute deviation are a
few such examples. Other features involve measurement errors if
they are available: for example, a mean and standard deviation that
is weighted by measurement errors allows noisy data with large
outliers to be modeled more precisely.

Other more involved features could be the estimated parame-
ters for various fitted statistical models: Figure 3 shows a multi-
frequency, multi-harmonic Lomb-Scargle model that describes the
rich periodic behavior in an example time series [Lom76], [Sca82].
The Lomb-Scargle method is one approach for generalizing the
process of Fourier analysis of frequency spectra to the case of
irregularly sampled time series. In particular, a time series is
modeled as a superposition of periodic functions

ỹ(t) =
m

∑
k=1

n

∑
l=1

Akl coskωlt +Bkl sinkωlt,

where the parameters Akl ,Bkl , and ωl are selected via non-convex
optimization to minimize the residual sum of squares (weighted
by measurement errors if applicable). The estimated periods,
amplitudes, phases, goodness-of-fits, and power spectrum can then
be used as features which broadly characterize the periodicity of
the input time series.

Usage overview

Here we provide a few examples of the main cesium API com-
ponents that would be used in a typical analysis task. A workflow
will typically consist of three steps: featurization, model building,
and prediction on new data. The majority of cesium func-
tionality is contained within the cesium.featurize module;
the cesium.build_model and cesium.predict modules
primarily provide interfaces between sets of feature data, which

30 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

contain both feature data and a variety of metadata about the input
time series, and machine learning models from scikit-learn
[PVG+11], which require dense, rectangular input data. Note that,
as cesium is under active development, some of the following
details are subject to change.

The featurization step is performed using one of two main
functions:

• featurize_time_series(times, values,
errors, ...)

– Takes in data that is already present in memory
and computes the requested features (passed in as
string feature names) for each time series.

– Features can be computed in parallel across work-
ers via Celery, a Python distributed task queue
[Sol14], or locally in serial.

– Class labels/regression targets and meta-
data/features with known values are passed
in and stored in the output dataset.

– Additional feature functions can be passed in as
custom_functions.

• featurize_data_files(uris, ...),

– Takes in a list of file paths or URIs and dispatches
featurization tasks to be computed in parallel via
Celery.

– Data is loaded only remotely by the workers rather
than being copied, so this approach should be
preferred for very large input datasets.

– Features, metadata, and custom feature
functions are passed in the same way as
featurize_data_files.

The output of both functions is a Dataset object from the
xarray library [Hoy15], which will also be referred to here
as a "feature set" (more about xarray is given in the next
section). The feature set stores the computed feature values for
each function (indexed by channel, if the input data is multi-
channel), as well as time series filenames or labels, class labels
or regression targets, and other arbitrary metadata to be used in
building a statistical model.

The build_model contains tools meant to to simplify
the process of building sckit-learn models from (non-
rectangular) feature set data:

• model_from_featureset(featureset, ...)

– Returns a fitted scikit-learn model based on
the input feature data.

– A pre-initialized (but untrained) model can be
passed in, or the model type can be passed in as a
string.

– Model parameters can be passed in as fixed values,
or as ranges of values from which to select via
cross-validation.

Analogous helper functions for prediction are available in the
predict module:

• model_predictions(featureset, model,
...)

– Generates predictions from a feature set
outputted by featurize_time_series
or featurize_data_files.

• predict_data_files(file_paths, model,
...)

– Like featurize_data_files, generate pre-
dictions for time series which have not yet been
featurized by dispatching featurization tasks to
Celery workers and then passing the resulting
featureset to model_predictions.

After a model is initially trained or predictions have been
made, new models can be trained with more features or unin-
formative features can be removed until the result is satisfactory.

Implementation details

cesium is implemented in Python, along with some C code
(integrated via Cython) for especially computationally-intensive
feature calculations. Our library also relies upon many other open
source Python projects, including scikit-learn, pandas,
xarray, and dask. As the first two choices are somewhat
obvious, here we briefly describe the roles of the latter two
libraries.

As mentioned above, feature data generated by cesium is
returned as a Dataset object from the xarray package, which
according to the documentation "resembles an in-memory repre-
sentation of a NetCDF file, and consists of variables, coordinates
and attributes which together form a self describing dataset".
A Dataset allows multi-channel feature data to be faithfully
represented in memory as a multidimensional array so that the
effects of each feature (across all channels) or channel (across all
features) can be evaluated directly, while also storing metadata
and features that are not channel-specific. Storing feature outputs
in NetCDF format allows for faster and more space-efficient
serialization and loading of results (as compared to a text-based
format).

The dask library provides a wide range of tools for organizing
computational full process of exporting tasks. cesium makes use
of only one small component: within dask, tasks are organized
as a directed acyclic graph (DAG), with the results of some tasks
serving as the inputs to others. Tasks can then be computed in
an efficient order by dask’s scheduler. Within cesium, many
features rely on other features as inputs, so internally we represent
our computations as dask graphs in order to minimize redundant
computations and peak memory usage. Part of an example DAG
involving the Lomb-Scargle periodogram is depicted in Figure 4:
circles represent functions, and rectangles the inputs/outputs of the
various steps. In addition to the built-in features, custom feature
functions passed in directly by the user can similarly make use of
the internal dask representation so that built-in features can be
reused for the evaluation of user-specified functions.

Web front end

The cesium front end provides web-based access to time series
analysis, addressing three common use cases:

1) A scientist needs to perform time series analysis, but is
unfamiliar with programming and library usage.

2) A group of scientists want to collaboratively explore
different methods for time-series analysis.

3) A scientist is unfamiliar with time-series analysis, and
wants to learn how to apply various methods to their
data, using industry best practices.

CESIUM: OPEN-SOURCE PLATFORM FOR TIME-SERIES INFERENCE 31

time

period_fold

lomb_scargle

Period-folded light curve

mag

Period

err

Fig. 4: Example of a directed feature computation graph using dask.

The front-end system (together with its deployed back end),
offers the following features:

• Distributed, parallelized fitting of machine learning mod-
els.

• Isolated1, cloud-based execution of user-uploaded featur-
ization code.

• Visualization and analysis of results.
• Tracking of an entire exploratory workflow from start-to-

finish for reproducibility (in progress).
• Downloads of Jupyter notebooks to replicate analyses2.

Implementation

The cesium web front end consists of several components:

• A Python-based Flask [Ron15] server which provides a
REST API for managing datasets and launching featuriza-
tion, model-building, and prediction tasks.

• A JavaScript-based web interface implemented using Re-
act [Gac15b] and Redux [Gac15a] to display results to
users.

• A custom WebSocket communication system (which we
informally call message flow) that notifies the front end
when back-end tasks complete.

While the deployment details of the web front end are beyond
the scope of this paper, it should be noted that it was designed
with scalability in mind. The overarching design principle is to
connect several small components, each performing only one,
simple task. An NGINX proxy exposes a pool of WebSocket
and Web Server Gateway Interface (WSGI) servers to the user.
This gives us the flexibility to choose the best implementation
of each. Communications between WSGI servers and WebSocket

1. Isolation is currently provided by limiting the user to non-privileged
access inside a Docker [Mer14] container.

2. Our current implementation of the front end includes the ability to track
all of a user’s actions in order to produce a notebook version, but the full
process of generating the notebook is still a work in progress.

servers happen through a ZeroMq XPub-XSub (multi-publisher
publisher-subscriber) pipeline [Hin13], but could be replaced with
any other broker, e.g., RabbitMQ [VW12]. The "message flow"
paradigm adds WebSocket support to any Python WSGI server
(Flask, Django3, Pylons, etc.), and allows scaling up as demand
increases. It also implement trivially modern data flow models
such as Flux/Redux, where information always flows in one di-
rection: from front end to back end via HTTP (Hypertext Transfer
Protocol) calls, and from back end to front end via WebSocket
communication.

Computational Scalability

In many fields, the volumes of available time series data can be
immense. cesium includes features to help parallelize and scale
an analysis from a single system to a large cluster.

Both the back-end library and web front end make use of Cel-
ery [Sol14] for distributing featurization tasks to multiple workers;
this could be used for anything from automatically utilizing all the
available cores of a single machine, to assigning jobs across a large
cluster. Similarly, both parts of the cesium framework include
support for various distributed filesystems, so that analyses can
be performed without copying the entire dataset into a centralized
location.

While the cesium library is written in pure Python, the
overhead of the featurization tasks is minimal; the majority of
the work is done by the feature code itself. Most of the built-in
features are based on high-performance numpy functions; others
are written in pure C with interfaces in Cython. The use of
dask graphs to eliminate redundant computations also serves to
minimize memory footprint and reduce computation times.

Automated testing and documentation

Because the back-end library and web front end are developed
in separate GitHub repositories, the connections between the two
somewhat complicate the continuous integration testing setup.
Both repositories are integrated with Travis CI for automatic
testing of all branches and pull requests; in addition, any new
pushes to cesium/master trigger a set of tests of the front
end using the new version of the back-end library, with any
failures being reported but not causing the cesium build to fail
(the reasoning being that the back-end library API should be the
"ground truth", so any updates represent a required change to the
front end, not a bug per se).

Documentation for the back-end API is automatically gen-
erated in ReStructured Text format via numpydoc; the result
is combined with the rest of our documentation and rendered
as HTML using sphinx. Code examples (without output) are
stored in the repository in Markdown format as opposed to Jupyter
notebooks since this format is better suited to version control.
During the doc-build process, the Markdown is converted to
Jupyter notebook format using notedown, then executed using
nbconvert and converted back to Markdown (with outputs
included), to be finally rendered by sphinx. This allows the code
examples to be saved in a human-readable and version control-
friendly format while still allowing the user to execute the code
themselves via a downloadable notebook.

3. At PyCon2016, Andrew Godwin presented a similar solution for Django
called "channels". The work described here happened before we became aware
of Andrew’s, and generalizes beyond Django to, e.g., Flask, the web framework
we use.

32 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Example EEG dataset analysis

In this example we compare various techniques for epilepsy
detection using a classic EEG time series dataset from Andrzejak
et al. [ALM+01]. The raw data are separated into five classes: Z,
O, N, F, and S; we consider a three-class classification problem
of distinguishing normal (Z, O), interictal (N, F), and ictal (S)
signals. We show how to perform the same analysis using both the
back-end Python library and the web front end.

Python library

First, we load the data and inspect a representative time se-
ries from each class: Figure 2 shows one time series from
each of the three classes, after the time series are loaded from
cesium.datasets.andrzejak.

Once the data is loaded, we can generate features for
each time series using the cesium.featurize module. The
featurize module includes many built-in choices of features
which can be applied for any type of time series data; here
we’ve chosen a few generic features that do not have any special
biological significance.

If Celery is running, the time series will automatically be split
among the available workers and featurized in parallel; setting
use_celery=False will cause the time series to be featurized
serially.

from cesium import featurize

features_to_use = ['amplitude', 'maximum',
'max_slope', 'median',
'median_absolute_deviation',
'percent_beyond_1_std',
'percent_close_to_median',
'minimum', 'skew', 'std',
'weighted_average']

fset_cesium = featurize.featurize_time_series(
times=eeg["times"],
values=eeg["measurements"],
errors=None,
features_to_use=features_to_use,
targets=eeg["classes"])

<xarray.Dataset>
Dimensions: (channel: 1, name: 500)
Coordinates:
* channel (channel) int64 0
* name (name) int64 0 1 ...
target (name) object 'Normal' 'Normal' ...

Data variables:
minimum (name, channel) float64 -146.0 -254.0 ...
amplitude (name, channel) float64 143.5 211.5 ...
...

The resulting Dataset contains all the feature information
needed to train a machine learning model: feature values are stored
as data variables, and the time series index/class label are stored
as coordinates (a channel coordinate will also be used later for
multi-channel data).

Custom feature functions not built into cesium may
be passed in using the custom_functions keyword, ei-
ther as a dictionary {feature_name: function}, or as
a dask graph. Functions should take three arrays times,
measurements, errors as inputs; details can be found in
the cesium.featurize documentation. Here we compute
five standard features for EEG analysis suggested by Guo et al.
[GRD+11]:

import numpy as np, scipy.stats

def mean_signal(t, m, e):
return np.mean(m)

def std_signal(t, m, e):
return np.std(m)

def mean_square_signal(t, m, e):
return np.mean(m ** 2)

def abs_diffs_signal(t, m, e):
return np.sum(np.abs(np.diff(m)))

def skew_signal(t, m, e):
return scipy.stats.skew(m)

Now we pass the desired feature functions as a dictionary via the
custom_functions keyword argument (functions can also be
passed in as a list or a dask graph).

guo_features = {
'mean': mean_signal,
'std': std_signal,
'mean2': mean_square_signal,
'abs_diffs': abs_diffs_signal,
'skew': skew_signal

}
fset_guo = featurize.featurize_time_series(

times=eeg["times"],
values=eeg["measurements"],
errors=None, targets=eeg["classes"],
features_to_use=guo_features.keys(),
custom_functions=guo_features)

<xarray.Dataset>
Dimensions: (channel: 1, name: 500)
Coordinates:
* channel (channel) int64 0
* name (name) int64 0 1 ...
target (name) object 'Normal' 'Normal' ...

Data variables:
abs_diffs (name, channel) float64 4695.2 6112.6 ...
mean (name, channel) float64 -4.132 -52.44 ...
...

The EEG time series considered here consist of univari-
ate signal measurements along a uniform time grid. But
featurize_time_series also accepts multi-channel data.
To demonstrate this, we will decompose each signal into five
frequency bands using a discrete wavelet transform as suggested
by Subasi [Sub07], and then featurize each band separately using
the five functions from above.

import pywt

eeg["dwts"] = [pywt.wavedec(m, pywt.Wavelet('db1'),
level=4)

for m in eeg["measurements"]]
fset_dwt = featurize.featurize_time_series(

times=None, values=eeg["dwts"], errors=None,
features_to_use=guo_features.keys(),
targets=eeg["classes"],
custom_functions=guo_features)

<xarray.Dataset>
Dimensions: (channel: 5, name: 500)
Coordinates:
* channel (channel) int64 0 1 ...
* name (name) int64 0 1 ...
target (name) object 'Normal' 'Normal' ...

Data variables:
abs_diffs (name, channel) float64 25131 18069 ...

CESIUM: OPEN-SOURCE PLATFORM FOR TIME-SERIES INFERENCE 33

skew (name, channel) float64 -0.0433 0.06578 ...
...

The output feature set has the same form as before, ex-
cept now the channel coordinate is used to index the fea-
tures by the corresponding frequency band. The functions in
cesium.build_model and cesium.predict all accept
feature sets from single- or multi-channel data, so no additional
steps are required to train models or make predictions for multi-
channel feature sets using the cesium library.

Model building in cesium is handled by
the model_from_featureset function in the
cesium.build_model module. The feature set output
by featurize_time_series contains both the
feature and target information needed to train a model;
model_from_featureset is simply a wrapper that calls
the fit method of a given scikit-learn model with the
appropriate inputs. In the case of multichannel features, it also
handles reshaping the feature set into a (rectangular) form that is
compatible with scikit-learn.

For this example, we test a random forest classifier for the
built-in cesium features, and a 3-nearest neighbors classifier for
the others, as in [GRD+11].

from cesium.build_model import model_from_featureset
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import train_test_split

train, test = train_test_split(500)

rfc_param_grid = {'n_estimators': [8, 32, 128, 512]}
model_cesium = model_from_featureset(

fset_cesium.isel(name=train),
RandomForestClassifier(),
params_to_optimize=rfc_param_grid)

knn_param_grid = {'n_neighbors': [1, 2, 3, 4]}
model_guo = model_from_featureset(

fset_guo.isel(name=train),
KNeighborsClassifier(),
params_to_optimize=knn_param_grid)

model_dwt = model_from_featureset(
fset_dwt.isel(name=train),
KNeighborsClassifier(),
params_to_optimize=knn_param_grid)

Making predictions for new time series based on these
models follows the same pattern: first the time se-
ries are featurized using featurize_timeseries and
then predictions are made based on these features using
predict.model_predictions,

from cesium.predict import model_predictions
preds_cesium = model_predictions(

fset_cesium, model_cesium,
return_probs=False)

preds_guo = model_predictions(fset_guo, model_guo,
return_probs=False)

preds_dwt = model_predictions(fset_dwt, model_dwt,
return_probs=False)

And finally, checking the accuracy of our various models, we find:

Builtin: train acc=100.00%, test acc=83.20%
Guo et al.: train acc=90.93%, test acc=84.80%
Wavelets: train acc=100.00%, test acc=95.20%

The workflow presented here is intentionally simplistic and
omits many important steps such as feature selection, model

Fig. 5: "Data" tab

Fig. 6: "Featurize" tab

parameter selection, etc., which may all be incorporated just as
they would for any other scikit-learn analysis. But with
essentially three function calls (featurize_time_series,
model_from_featureset, and model_predictions),
we are able to build a model from a set of time series and
make predictions on new, unlabeled data. In the next section we
introduce the web front end for cesium and describe how the
same analysis can be performed in a browser with no setup or
coding required.

Web front end

Here we briefly demonstrate how the above analysis could be con-
ducted using only the web front end. Note that the user interface
presented here is a preliminary version and is undergoing frequent
updates and additions. The basic workflow follows the same
featurize—build model—predict pattern. First, data is uploaded as
in Figure 5. Features are selected from available built-in functions
as in Figure 6, or may be computed from user-uploaded Python
code which is securely executed within a Docker container. Once
features have been extracted, models can be created as in Figure
7, and finally predictions can be made as in Figure 8. Currently
the options for exploring feature importance and model accuracy
are limited, but this is again an area of active development.

Future work

The cesium project is under active development. Some of our
upcoming goals include:

34 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 7: "Build Model" tab

Fig. 8: "Predict" tab

• Full support for exporting Jupyter notebooks from any
workflow created within the web front end.

• Additional features from other scientific disciplines (cur-
rently the majority of available features are taken from
applications in astronomy).

• Improved web front end user interface with more tools for
visualizing and exploring a user’s raw data, feature values,
and model outputs.

• More tools to streamline the process of iteratively explor-
ing new models based on results of previous experiments.

• Better support for sharing data and results among teams.
• Extension to unsupervised problems.

Conclusion

The cesium framework provides tools that allow anyone from
machine learning specialists to domain experts without any ma-
chine learning experience to rapidly prototype explanatory models
for their time series data and generate predictions for new, un-
labeled data. Aside from the applications to time domain infor-
matics, our project has several aspects which are relevant to the
broader scientific Python community.

First, the dual nature of the project (Python back end vs.
web front end) presents both unique challenges and interesting
opportunities in striking a balance between accessibility and
flexibility of the two components. Second, the cesium project
places a strong emphasis on reproducible workflows: all actions

performed within the web front end are logged and can be easily
exported to a Jupyter notebook that exactly reproduces the steps
of the analysis. Finally, the scope of our project is simultaneously
both narrow (time series analysis) and broad (numerous distinct
scientific disciplines), so determining how much domain-specific
functionality to include is an ongoing challenge.

REFERENCES

[AAA+09] Paul A Abell, Julius Allison, Scott F Anderson, John R Andrew,
J Roger P Angel, Lee Armus, David Arnett, SJ Asztalos, Tim S
Axelrod, Stephen Bailey, et al. Lsst science book, version 2.0.
arXiv preprint arXiv:0912.0201, 2009.

[AGKB09] Richard M Allen, Paolo Gasparini, Osamu Kamigaichi, and
Maren Böse. The status of earthquake early warning around the
world: An introductory overview. Seismological Research Letters,
80(5):682–693, 2009.

[ALM+01] Ralph G. Andrzejak, Klaus Lehnertz, Florian Mormann,
Christoph Rieke, Peter David, and Christian E. Elger. Indications
of nonlinear deterministic and finite-dimensional structures in
time series of brain electrical activity: Dependence on recording
region and brain state. Physical Review E, 64(6):061907, 2001.
doi:10.1103/PhysRevE.64.061907.

[BAH+11] Holly M Brown, Richard M Allen, Margaret Hellweg, Oleg
Khainovski, Douglas Neuhauser, and Adeline Souf. Development
of the elarms methodology for earthquake early warning: Real-
time application in california and offline testing in japan. Soil
Dynamics and Earthquake Engineering, 31(2):188–200, 2011.

[BHKP10] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. Moa: Massive online analysis. Journal of Machine
Learning Research, 11(May):1601–1604, 2010.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[cT16] cesium Team. cesium: Open-Source Machine Learning for Time
Series Analysis. 2016. URL: http://cesium.ml.

[Gac15a] Cory Gackenheimer. Introducing flux: An application architecture
for react. In Introduction to React, pages 87–106. Springer, 2015.

[Gac15b] Cory Gackenheimer. What is react? In Introduction to React,
pages 1–20. Springer, 2015.

[GRD+11] Ling Guo, Daniel Rivero, Julián Dorado, Cristian R. Munteanu,
and Alejandro Pazos. Automatic feature extraction using genetic
programming: An application to epileptic EEG classification.
Expert Systems with Applications, 38(8):10425–10436, 2011.
doi:10.1016/j.eswa.2011.02.118.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H Witten. The weka data mining
software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18, 2009.

[Hin13] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. "
O’Reilly Media, Inc.", 2013.

[Hoy15] S Hoyer. xray: ND labeled arrays and datasets in Python. 2015.
URL: http://github.com/xray/xray.

[LCL+07] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice
Lamarche, and Bruno Arnaldi. A review of classification al-
gorithms for EEG-based brain–computer interfaces. Journal of
neural engineering, 4(2):R1, 2007.

[Lom76] Nicholas R Lomb. Least-squares frequency analysis of unequally
spaced data. Astrophysics and space science, 39(2):447–462,
1976.

[Mer14] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239):2, 2014.

[PAG+99] Saul Perlmutter, G Aldering, G Goldhaber, RA Knop, P Nugent,
PG Castro, S Deustua, S Fabbro, A Goobar, DE Groom, et al.
Measurements of ω and λ from 42 high-redshift supernovae. The
Astrophysical Journal, 517(2):565, 1999.

[PG07] Fernando Pérez and Brian E Granger. IPython: a system for inter-
active scientific computing. Computing in Science & Engineering,
9(3):21–29, 2007.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

CESIUM: OPEN-SOURCE PLATFORM FOR TIME-SERIES INFERENCE 35

[RFC+98] Adam G Riess, Alexei V Filippenko, Peter Challis, Alejandro
Clocchiatti, Alan Diercks, Peter M Garnavich, Ron L Gilliland,
Craig J Hogan, Saurabh Jha, Robert P Kirshner, et al. Observa-
tional evidence from supernovae for an accelerating universe and
a cosmological constant. The Astronomical Journal, 116(3):1009,
1998.

[Ron15] Armin Ronacher. Flask (A Python Microframework), 2015.
[RSM+12] Joseph W Richards, Dan L Starr, Adam A Miller, Joshua S

Bloom, Nathaniel R Butler, Henrik Brink, and Arien Crellin-
Quick. Construction of a calibrated probabilistic classification
catalog: Application to 50k variable sources in the all-sky au-
tomated survey. The Astrophysical Journal Supplement Series,
203(2):32, 2012.

[Sca82] Jeffrey D Scargle. Studies in astronomical time series analysis.
ii-statistical aspects of spectral analysis of unevenly spaced data.
The Astrophysical Journal, 263:835–853, 1982.

[SHG+14] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young.
Machine learning: The high interest credit card of technical debt.
In SE4ML: Software Engineering for Machine Learning (NIPS
2014 Workshop), 2014.

[Sol14] Ask Solem. Celery: Distributed task queue, 2014. URL: http:
//celeryproject.org.

[Sub07] Abdulhamit Subasi. EEG signal classification using wavelet
feature extraction and a mixture of expert model. Expert Systems
with Applications, 32(4):1084–1093, 2007.

[SV99] Johan AK Suykens and Joos Vandewalle. Least squares support
vector machine classifiers. Neural processing letters, 9(3):293–
300, 1999.

[T+13] R Core Team et al. R: A language and environment for statistical
computing. 2013.

[VW12] Alvaro Videla and Jason JW Williams. RabbitMQ in action.
Manning, 2012.

36 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

UConnRCMPy: Python-based data analysis for Rapid
Compression Machines

Bryan W. Weber‡∗, Chih-Jen Sung‡

https://youtu.be/tsjqkIAh8cw

F

Abstract—The ignition delay of a fuel/air mixture is an important quantity in
designing combustion devices, and these data are also used to validate compu-
tational kinetic models for combustion. One of the typical experimental devices
used to measure the ignition delay is called a Rapid Compression Machine
(RCM). This paper presents UConnRCMPy, an open-source Python package to
process experimental data from the RCM at the University of Connecticut. Given
an experimental measurement, UConnRCMPy computes the thermodynamic
conditions in the reaction chamber of the RCM during an experiment along
with the ignition delay. UConnRCMPy relies on several packages from the SciPy
stack and the broader scientific Python community. UConnRCMPy implements
an extensible framework, so that alternative experimental data formats can be
incorporated easily. In this way, UConnRCMPy improves the consistency of
RCM data processing and enables reproducible analysis of the data.

Index Terms—rapid compression machine, engineering, kinetic models

Introduction

The world relies heavily on combustion to provide energy in
useful and clean forms for human consumption; in particular,
the transportation sector accounts for nearly 30% of the energy
use in the United States and of that, more than 90% is supplied
by combustion of fossil fuels [US 16]. Unfortunately, emissions
from the combustion of traditional fossil fuels have been impli-
cated in a host of deleterious effects on human health and the
environment [ADF+02]. Two methods are being considered to
reduce the impact of fossil fuel combustion in transportation on
the environment, namely: 1) development of new fuel sources and
2) development of new engine technologies.

The challenge for engineers is that it is not straightforward
to combine new fuels with newly designed engines. Employing
computer-aided design and modeling of new engines with new
fuels will be critical to develop advanced engines to be able to
utilize multiple conventional and alternative fuels. The key to this
process is the development of accurate and predictive combustion
models.

These models of combustion are typically descriptions of the
chemical kinetic pathways the hydrocarbon fuel and oxidizer
undergo as they break down into carbon dioxide and water. There

* Corresponding author: bryan.w.weber@gmail.com
‡ Mechanical Engineering Department, University of Connecticut, Storrs, CT
06269

Copyright © 2016 Bryan W. Weber et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

may be as many as several tens of thousands of pathways in the
model for combustion of a particular fuel, with each pathway
requiring several parameters to describe its rate. Therefore, it is
important to thoroughly validate the operation of the model by
comparison to experimental data collected over a wide range of
conditions.

One type of data that is particularly relevant for transportation
applications is the ignition delay. The ignition delay is a global
combustion property depending on the interaction of many of
the pathways present in the model. There are several methods to
measure the ignition delay at engine-relevant conditions, including
shock tubes and rapid compression machines (RCMs).

An RCM is typically designed with one or two pistons that
rapidly compress a homogeneous fuel and oxidizer mixture inside
a reaction chamber. After the end of compression (EOC), the pis-
ton(s) is (are) locked in place, creating a constant volume reaction
chamber. The primary diagnostic in most RCM experiments is the
pressure measured as a function of time in the reaction chamber.
This pressure trace is then processed to extract the ignition delay.

In this paper, the design and operation of a software package to
process the pressure data collected from RCMs is described. Our
package, called UConnRCMPy [Web16], is designed to analyze
the data acquired from the RCM at the University of Connecticut
(UConn). Despite the initial focus on data from the UConn RCM,
the package is designed to be extensible so that it can be used for
data in different formats while providing a consistent interface to
the user.

Recognizing that reproducible research is an important goal
for the scientific community [Nat16], and that the code used to
process experimental data is an important part of reproducing
research, the primary goal of UConnRCMPy is to enable con-
sistent, reproducible analysis of RCM data. Thus, UConnRCMPy
offers all of the features required to process standard RCM data
including:

• Filtering and smoothing the raw voltage generated by the
pressure transducer

• Converting the voltage trace into a pressure trace using
settings recorded from the RCM

• Processing the pressure trace to determine parameters of
interest in reporting the experiments, including the ignition
delay and machine-specific effects on the experiment

• Conducting simulations utilizing the experimental infor-
mation to calculate the temperature during the experiment

Previous software used to analyze RCM data has generally

UCONNRCMPY: PYTHON-BASED DATA ANALYSIS FOR RAPID COMPRESSION MACHINES 37

been undocumented and untested code specific to the researcher
conducting the experiments. Moreover, the software typically used
to estimate the temperature in the experiments is difficult to
integrate with the data processing code. To the best of the authors’
knowledge, UConnRCMPy is the first package for analysis of
standard RCM data to be presented in detail in the literature, and
it tightly integrates the temperature estimation routine into the
workflow, reducing errors and inefficiencies.

This paper serves to describe some of the important aspects
of RCM data processing, particularly the choices that the operator
must make that are rarely documented. In addition, as a comple-
ment to the in-source documentation, this paper documents the
design choices, interface, and flexibility of UConnRCMPy.

Background

The RCMs at the University of Connecticut have been described
extensively elsewhere [DSZM12], [MS07], and will be summa-
rized here for reference. The RCMs use a single pneumatically
accelerated and hydraulically decelerated piston. In a typical
experiment, the reaction chamber is evacuated to an absolute
pressure near 1 Torr, measured by a high-accuracy static pressure
transducer. Next, the reactants are filled in to the desired initial
pressure (P0), and a valve on the reaction chamber is closed.
Compression is triggered by a digital control circuit. After com-
pression, the piston is held in place to create a constant volume
chamber in which reactions proceed. For appropriate combina-
tions of pressure, temperature, and mixture composition, ignition
will occur after some delay period. A single compression-delay-
ignition sequence is referred to as an experiment or a run. Each
experiment is repeated approximately 5 times at the same nominal
initial conditions to ensure repeatability of the data, and this set of
experiments is referred to in the following as a condition.

The primary diagnostic on the RCM is the reaction chamber
pressure, measured by a dynamic pressure transducer (separate
from the static transducer used to measure P0). The pressure trace
is processed to determine the quantities of interest, including the
pressure and temperature at the EOC, PC and TC respectively, and
the ignition delay, τ . The ignition delay is typically measured
at several values of TC for a given value of PC and mixture
composition; this is referred to in the following as a data set.

RCM Signal Processing Procedure

Signal measurement

The dynamic pressure transducer outputs a charge signal that is
converted to a voltage signal by a charge amplifier with a nominal
output of 0 V prior to the start of compression. In addition, the
output range of 0 V to 10 V is set by the operator to correspond
to a particular pressure range by setting a "scale factor". Typical
values for the scale factor range between 10 bar/V and 100 bar/V.

The voltage output from the charge amplifier is digitized by a
hardware data acquisition system (DAQ) and recorded into a plain
text file by a LabView Virtual Instrument. The voltage is sampled
at a rate chosen by the operator, typically between 50 kHz and 100
kHz. This provides sufficient resolution for events on the order of
milliseconds; the typical ignition delay measured with this RCM
approximately ranges from 5 ms to 100 ms.

Figure 1 shows a typical voltage trace measured from the RCM
at UConn. Several features are apparent from this figure. First,
the compression stroke takes approximately 30 ms to 40 ms and
approximately 50% of the pressure rise occurs in the last 5 ms

of compression. Second, there is a slow pressure decrease after
the EOC due to heat transfer from the reactants to the relatively
colder chamber walls. Third, after some delay period there is a
spike in the pressure corresponding to rapid heat release due to
combustion. Finally, the signal can be somewhat noisy, requiring
filtering and/or smoothing to produce a useful pressure trace.

Filtering and Smoothing

In the current version of UConnRCMPy [Web16], the voltage
is filtered using a low-pass filter with a cutoff frequency of 10
kHz. The filter is constructed using the firwin() function from
the signals module of SciPy [JOPosh] with the Blackman
window [BT58], [OSB99] and a filter order of 214 −1. The cutoff
frequency, window type, and filter order were determined empir-
ically, based on Fig. 2. Methods to select a cutoff frequency that
optimizes the signal-to-noise ratio are currently being investigated.

After filtering, the signal is smoothed by a moving average
filter with a width of 21 points. This width was selected empiri-
cally based on Fig. 1 to minimize the deviation of the smoothed
voltage from the raw voltage during the ignition, and methods
to automatically choose an optimal width are being investigated.
It is desired that the signal remain the same length through this
operation, but the convolution operation used to apply the moving
average zero-pads the first and last 10 points. To avoid a bias in the
initial voltage, the first 10 points are set equal to the value of the
11th point; the final 10 points are not important in the rest of the
analysis and are ignored. The result of the filtering and smoothing
operations is shown on Fig. 1.

Offset Correction and Pressure Calculation

In general, the voltage trace can be converted to a pressure trace
by

P(t) = F ·V (t)+P0 (1)

where V (t) is the filtered and smoothed voltage trace and F is the
scale factor from the charge amplifier. However, as can be seen in
Fig. 1b there is a small offset in the initial voltage relative to the
nominal value of 0 V. To correct for this offset, it can be subtracted
from the voltage trace

P(t) = F ·
[
V (t)−V (0)

]
+P0 (2)

where V (0) is the initial voltage of the filtered and smoothed
signal. Assuming the noise in the signal has an equal probability of
being above or below the mean voltage, choosing the initial point
(i.e., V (0)) to set the voltage offset is equivalent to choosing any
other point prior to the start of compression. The result is a vector
of pressure values that must be further processed to determine the
time of the EOC and the ignition delay.

Finding the EOC

In the current version of UConnRCMPy [Web16], the EOC is
determined by finding the local maximum of the pressure prior
to ignition. This is done by searching backwards in time from
the global maximum pressure in the pressure trace (typically,
the global maximum of the pressure is due to ignition) until a
minimum in the pressure is reached. Since the precise time of the
minimum is not important for this method, the search is done by
comparing the pressure at a given index i to the pressure at point
i− 50, starting with the index of the global maximum pressure.
The comparison is not made to the adjacent point to avoid the
influence of noise. If P(i) ≥ P(i− 50), the index is decremented

38 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 1: Raw voltage trace and the voltage trace after filtering and smoothing from a typical RCM experiment. Note that the voltage in the
figure varies from 0 V to 1 V because the scale factor is 100 bar/V and the maximum pressure for this case is near 100 bar. (a): Close up of the
time around the EOC, demonstrating the fidelity of the smoothed and filtered signal with the original signal. (b): Close up of the time before
the start of compression, demonstrating the offset of the initial voltage slightly below 0 V.

Fig. 2: Power spectral density profiles of the original, filtered, and
filtered and smoothed signals, showing the peaks of noise above 10
kHz.

and the process is repeated until P(i)< P(i−50). This value of i
is approximately at the minimum of pressure prior to ignition, so
the maximum of the pressure in points to the left of the minimum
will be the EOC.

This method is generally robust, but it fails when there is no
minimum in the pressure between the EOC and ignition, or the
minimum pressure is very close to the EOC pressure. This may
be the case for short ignition delays, on the order of 5 ms or
less. In these cases, the comparison offset (which is set to 50

points by default) can be reduced to improve the granularity of the
search; if the method still fails, manual intervention is necessary
to determine the EOC. In either case, the value of the pressure at
the EOC, PC, is recorded and the time at the EOC is taken to be
t = 0.

Calculating Ignition Delay

The ignition delay is determined as the time difference between the
EOC and the point of ignition. There are several definitions of the
point of ignition; the most commonly used in RCM experiments is
the inflection point in the pressure trace due to ignition. As before,
finding zero crossings of the second time derivative of the pressure
to define the inflection point is difficult due to noise; however,
finding the maximum of the first derivative is trivial, particularly
since the time before and shortly after the EOC can be excluded
to avoid the peak in the derivative around the EOC.

In the current version of UConnRCMPy [Web16], the first
derivative of the experimental pressure trace is computed by a
second-order forward differencing method. The derivative is then
smoothed by the moving average algorithm with a width of 151
points. This value for the moving average window was chosen
empirically.

For some conditions, the reactants may undergo two distinct
stages of ignition. These cases can be distinguished by a pair of
peaks in the first time derivative of the pressure. For some two-
stage ignition cases, the first-stage pressure rise, and consequently
the peak in the derivative, are relatively weak, making it hard to
distinguish the peak due to ignition from the background noise.

UCONNRCMPY: PYTHON-BASED DATA ANALYSIS FOR RAPID COMPRESSION MACHINES 39

Fig. 3: Illustration of the definition of the ignition delay in a two-stage
ignition case.

This is currently the area requiring the most manual intervention,
and one area where significant improvements can be made by
refining the differentiation and filtering/smoothing algorithms. An
experiment that shows two clear peaks in the derivative is shown
in Fig. 3 to demonstrate the definition of the ignition delays.

Calculating the EOC Temperature

The final parameter of interest presently is the EOC temperature,
TC. This temperature is often used as the reference temperature
when reporting ignition delays. In general, it is difficult to measure
the temperature as a function of time in the reaction chamber of the
RCM, so methods to estimate the temperature from the pressure
trace are generally used.

The law of conservation of energy written for the ideal gases
in the reaction chamber is:

cv
dT
dt

=−P
dv
dt

−∑
k

uk
dYk

dt
(3)

where cv is the specific heat at constant volume of the mixture, v
is the specific volume, uk and Yk are the specific internal energy
and mass fraction of the species k, and t is time. For a constant-
area piston, the rate of change of the volume is equal to the
piston velocity. In UConnRCMPy, Eq. 3 is integrated by Cantera
[GMS16].

In Cantera, intensive thermodynamic information about the
system is stored in an instance of the Solution class. The
Solution classes used in this study model simple, compressible
systems and require two independent properties, plus the com-
position, to fix the state. The two properties must be intensive
(i.e., not dependent on system size), and are typically chosen
from the pressure, temperature, and density. The thermodynamic
information for each species is read from a file in the CTI
format, described in the Cantera documentation [GMS16], when a
Solution instance is created.

In addition to evaluating thermodynamic data, Cantera
[GMS16] contains several objects used to model homoge-
neous reacting systems; the two used in UConnRCMPy are the
Reservoir and the IdealGasReactor, which are subclasses
of the generic Reactor class. A Solution object is installed in
each Reactor subclass instance to manage the state information
and evaluate thermodynamic properties. The difference between
the Reservoir and the IdealGasReactor is simply that the

state (i.e., the pressure, temperature, and chemical composition)
of the Solution in a Reservoir is fixed.

Integrating Eq. 3 requires knowledge of the volume of the
reaction chamber as a function of time. To calculate the volume
as a function of time, it is assumed that there is a core of gas
in the reaction chamber that undergoes an isentropic compression
[LH98]. Furthermore, it is assumed that there is negligible reactant
consumption during the compression stroke.

Constructing the volume trace is triggered by the user by
running the create_volume_trace() method that imple-
ments the following procedure. A Cantera Solution object is
initialized at the initial temperature, pressure, and composition of
the reaction chamber. After initialization, UConnRCMPy stores
the initial mass-specific entropy (s0) and density (ρ0). The initial
volume is arbitrarily taken to be V0 = 1.0m3. The initial volume
used in constructing the volume trace is arbitrary provided that
the same value is used for the initial volume in the simulations
described below. However, extensive quantities such as the total
heat release during ignition cannot be compared to experimental
values.

The measured pressure at each point in the pressure trace (Pi)
is used with the previously recorded initial entropy (s0) to set the
state of the Solution object sequentially. At each point, the
volume is computed by applying the ideal gas law:

Vi =V0
ρ0

ρi
(4)

where ρi is the density at each point computed by the Cantera
Solution. This procedure effects a constant composition isen-
tropic compression process.

Once the volume trace has been generated, it can be utilized
in the IdealGasReactor and the solution of Eq. 3 by in-
stalling an instance of the Wall class. Walls must be installed
between instances of Reactors, so in UConnRCMPy a Wall
is installed between the IdealGasReactor that represents the
reaction chamber and an instance of the Reservoir class. By
specifying the velocity of the Wall using the volume trace, the
IdealGasReactor will proceed through the same states as the
reaction chamber in the experiment. The velocity of the Wall
is specified by using an instance of the VolumeProfile class
from the CanSen software [Web15], which computes the first
forward difference of the volume as a function of time.

Finally, the IdealGasReactor is installed into an instance
of ReactorNet from Cantera [GMS16]. The ReactorNet
implements the interface to the solver CVODES. CVODES is an
adaptive-time-stepping solver, distributed as part of the SUNDI-
ALS suite [HBG+05].

Two simulations can be triggered by the user that utilize this
procedure. In the first, the multiplier for all the reaction rates is set
to zero, to simulate a constant composition (non-reactive) process.
In the second, the reactions are allowed to proceed as normal. Only
the non-reactive simulation is necessary to determine TC, which is
defined as the simulated temperature at the EOC time.

When a reactive simulation is conducted, the user must com-
pare the temperature traces from the two simulations to verify
that the inclusion of the reactions does not change TC, validating
the assumption of adiabatic, constant composition compression.
Although including reactions during the compression stroke does
not affect the value of TC, it does allow for the buildup of a
small pool of radicals that can affect processes after the EOC
[MCSD08]. Thus, it is critical to include reactions during the

40 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

compression stroke when conducting simulations to compare a
kinetic model to experimental results.

Simulating Post-EOC Processes

As can be seen in Fig. 3, the pressure decreases after the EOC
due to heat transfer from the higher temperature reactants to the
reaction chamber walls. This process is specific to the machine that
carried out the experiments, and to the conditions under which
the experiment was conducted. Therefore, the rate of pressure
decrease should be modeled and included in simulations that
compare predicted ignition delays to the experimental values.

To conduct this modeling, a non-reactive experiment is con-
ducted, where O2 in the oxidizer is replaced with N2 to maintain
a similar specific heat ratio but suppress the oxidation reactions
that lead to ignition. The pressure trace from this non-reactive
experiment should closely match that from the reactive experiment
during the compression stroke, further validating the assumption
of adiabatic, constant composition compression. Furthermore, the
non-reactive pressure trace should closely match the reactive
pressure trace after the EOC until exothermic reactions cause the
pressure in the reactive experiment to begin to increase.

To apply the effect of the post-compression heat loss into
the simulations, the reaction chamber is modeled as undergoing
an adiabatic volume expansion. Since the post-compression time
is modeled as an isentropic expansion, the same procedure is
used as in the computation of TC to compute a volume trace for
the post-EOC time. The only difference is that the non-reactive
pressure trace is used after the EOC instead of the reactive pressure
trace. Once the volume trace is generated, it can be applied to a
simulation by concatenating the volume trace of the compression
stroke and the post-EOC volume trace together and following
the procedure outlined in Calculating the EOC Temperature. For
consistency, the ignition delay in a reactive simulation is defined
in the same manner as in the reactive experiments, as the maxima
of the time derivative of the pressure trace. This procedure has
been validated experimentally by measuring the temperature in
the reaction chamber during and after the compression stroke. The
temperature of the reactants was found to be within ±5 K of the
simulated temperature [DUS12], [UDS12].

Implementation of UConnRCMPy

UConnRCMPy is constructed in a hierarchical manner. The main
user interface to UConnRCMPy is through the Condition class,
the highest level of data representation. The Condition class
contains all of the information pertaining to the experiments at a
given condition. The intended use of this class is in an interactive
Python interpreter (the author prefers the Jupyter Notebook with
an IPython kernel [PG07]). Condition also contains all the
methods that make up the user interface:

• add_experiment()
• create_volume_trace()
• compare_to_sim()

The usage of these methods will be described in detail in the
Usage Example section. In general, the user will conduct several
experiments and, using the add_experiment() method, will
trigger UConnRCMPy to create instances of the Experiment
class and extract the ignition delay.

All of the information about a particular experimental run
is stored in the Experiment class. When initialized, the

Experiment expects an instance of the pathlib.Path class;
if none is provided, it prompts the user to enter a file name that
is expected to be in the current working directory. The file name
should point to a tab-delimited plain text file that contains the
voltage trace recorded by LabView from one experimental run.
Then UConnRCMPy creates an instance of VoltageTrace,
followed by an instance of ExperimentalPressureTrace.
The pressure trace from the latter is processed to extract the
ignition delay(s).

The lowest level representation of data in UConnRCMPy is the
VoltageTrace that contains the raw voltage signal and timing
recorded from the DAQ, as well as the filtered and smoothed
voltage traces. The filtering and smoothing algorithms are im-
plemented as separate methods so they can be reused in other
situations and are run automatically when the VoltageTrace is
initialized.

One step up from the VoltageTrace is the
ExperimentalPressureTrace class. This class consumes
a VoltageTrace and processes it into a pressure trace, given
the multiplication factor from the charge amplifier and the
initial pressure. This class also contains methods to compute
the derivative of the experimental pressure trace, as discussed in
Calculating Ignition Delay.

When all the experiments are conducted and processed,
create_volume_trace() further processes the experiments
to create the volume trace necessary to run the simulations to
determine TC. The actual computation of the volume trace is done
by the VolumeFromPressure class. First, the volume trace
of the pre-EOC portion is generated using the pre-EOC pressure
trace, the experimental initial temperature, and an initial volume
of V0 = 1.0m3, as discussed in Calculating the EOC Temperature.
A temperature trace is also constructed for the pre-EOC pressure
trace using the TemperatureFromPressure class.

For the post-EOC volume trace, the initial temperature is
estimated as the final value of the temperature trace constructed for
the pre-EOC period. Furthermore, the initial volume of the post-
EOC volume trace is taken to be the final value of the pre-EOC
volume trace, so that although there may be small mismatches in
PC, the volume trace will be consistent.

After generation, create_volume_trace() writes the
volume trace out to a CSV file so that the volume trace can
be used in other software. The reactive pressure trace is also
written to a tab-separated file. Before writing, the volume and
pressure traces are both downsampled by a factor of 5. This
reduces the computational time of a simulation and does not have
any effect on the simulated results. create_volume_trace()
also generates a figure that plots the complete reactive pressure
trace, a non-reactive pressure trace generated from the volume
trace using the PressureFromVolume class, and a linear fit to
the constant pressure period prior to the start of compression. This
linear fit aids in determining a suitable compression time. Finally,
the value of the pressure at the beginning of compression is put on
the system clipboard to be pasted into a spreadsheet to record the
P0 used for simulations. This may differ slightly from the P0 read
from the static transducer due to noise in the signal.

The final step is to use the volume trace in a
simulation to determine TC. To begin the simulations,
the user calls the compare_to_sim() method of the
Condition. The compare_to_sim() method relies on the
run_simulation() method, which in turn adds instances of
the class Simulation to the Condition instance. Instances

UCONNRCMPY: PYTHON-BASED DATA ANALYSIS FOR RAPID COMPRESSION MACHINES 41

Fig. 4: Flowchart of information in UConnRCMPy.

of Simulation can represent a reactive or a non-reactive exper-
iment; if either type of simulation has already been added to the
Condition instance, the user is asked whether they would like
to overwrite the existing simulation.

The Simulation class sets up the simulation in Cantera and
importantly, sets the maximum time step to be the time step used
in the volume trace, so that the solver does not take steps larger
than the resolution of the velocity. Larger time steps may result
in incorrect calculation of the state if the velocity is not prop-
erly applied to the reactor. The time, temperature, pressure, and
simulated volume are stored in NumPy arrays [vCV11] and the
derivative is computed using second order Lagrange polynomials,
as suggested by Chapra and Canale [CC10] because the time step
is not constant in the simulation. Finally, the calculated value of
TC is placed into the system clipboard. If the reactive simulation is
conducted, the overall ignition delay is also copied into the system
clipboard. The first stage ignition delay must be found manually
because determining peaks in the derivative is currently unreliable,
as mentioned in Calculating Ignition Delay for experiments.

The compare_to_sim() method also plots the experimen-
tal pressure trace and any of the simulated pressure traces that
have been generated. If the simulated reactive pressure trace is
generated, the time derivative of the pressure is also plotted, where
the derivative is scaled by the maximum pressure in the reactive
simulation.

The general flow of the user interaction with UConnRCMPy
is shown in Fig. 4. The Inputs are required input from the user,
while the User Interface are classes and functions called by the
user during processing.

UConnRCMPy is documented using standard Python doc-
strings for functions and classes. The documentation is converted
to HTML files by the Sphinx documentation generator [Bra16].
The format of the docstrings conforms to the NumPy docstring
format so that the autodoc module of Sphinx can be used. The
documentation is available on the web at https://bryanwweber.
github.io/UConnRCMPy/.

Usage Example

In the following, two examples of using UConnRCMPy are given,
first with the standard interface and second utilizing a slightly
modified interface corresponding to a different data format. Both
examples assume the user is running in a Jupyter Notebook with
an IPython kernel.

Standard Interface

These experiments were conducted with mixtures of propane,
oxygen, and nitrogen [DRW+16]. The CTI file necessary to run
this example can be found in the Supplementary Material of the
work by Dames et al. [DRW+16]. It must be named exactly
species.cti and placed in the current working directory.
Then, the composition of the mixture under consideration must be
added to the initial_state parameter of the ideal_gas()
method:

ideal_gas(
name='gas',
elements=...,
species=...,
reactions='all',
initial_state=state(

temperature=300.0, pressure=OneAtm,
mole_fractions=(

'C3H8:0.0403,O2:0.1008,N2:0.8589')))

Ellipses indicate input that was truncated to save space; the
truncated input is present in the file available with the work of
Dames et al. The initial temperature and pressure are arbitrary,
since those are set based on information stored in the filename
of the experiment, but the mole_fractions must be set to
the appropriate values. The condition in this example is for a
fuel rich mixture, with a target PC of 30 bar. The user creates
the Condition, then conducts a reactive experiment with the
RCM and adds the experiment to the Condition using the
add_experiment() method. This method creates an instance
of class Experiment for each experiment passed in. As each
experiment is processed by UConnRCMPy, the information from
that run is added to the system clipboard for pasting into some
spreadsheet software. In the current version, the information
copied is the time of day of the experiment, the initial pressure, the
initial temperature, the pressure at the EOC, the overall and first
stage ignition delays, an estimate of the EOC temperature, and
some information about the compression ratio of the reactor. This
process is repeated 5 times to ensure repeatable data is obtained.

from uconnrcmpy import Condition
from pathlib import Path
%matplotlib

cond_00_in_02_mm = Condition()
Conduct reactive experiment #1 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1285t-100x-19-Jul-15-1620.txt'))
Conduct reactive experiment #2 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1626.txt'))
Conduct reactive experiment #3 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt'))
Conduct reactive experiment #4 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1640.txt'))
Conduct reactive experiment #5 on the RCM
cond_00_in_02_mm.add_experiment(Path(

'00_in_02_mm_373K-1282t-100x-19-Jul-15-1646.txt'))

This sequence generates one figure showing all of the experiments
together and one figure per experiment comparing the pressure and
the time derivative of the pressure. Matplotlib is used for plotting
[Hun07]. The plots are optional, and are controlled by passing a
boolean keyword argument plotting when the Condition is
initialized. The figures showing each experiment look similar to
Fig. 3, but the non-reactive trace is not plotted and the EOC and
ignition delays are not labeled.

42 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 5: Comparison of the reactive pressure trace, the pressure trace
output to the text file, the pressure trace computed from the volume
trace, and the linear fit to the initial pressure demonstrating the choice
of compression time. The dark blue, green, and red lines follow each
other nearly exactly after the start of compression, so only the red line
is visible. This is the desired result, indicating that the pressure traces
agree.

In general, for a given condition, the user will conduct and
process all of the reactive experiments before conducting any non-
reactive experiments. Then, the user chooses one of the reactive
experiments as the reference experiment for the condition (i.e., the
one whose ignition delay(s) and TC are reported) by inspection of
the data in the spreadsheet. The reference experiment is defined
as the experimental run whose overall ignition delay is closest to
the mean overall ignition delay among the experiments at a given
condition. To select the reference experiment, the user puts the file
name of the reference experiment into a YAML format file called
volume-trace.yaml with the key reacfile. For this case,
the reference experiment is the run that took place at 16:33:
reacfile: >
00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt

Note that the file must be named exactly volume-trace.yaml
and it must be located in the current working directory. Once
the reference reactive experiment is selected, the user runs non-
reactive experiments at the same initial conditions as the refer-
ence experiment. The user adds non-reactive experiments to the
Condition by the same add_experiment() method and
UConnRCMPy automatically determines whether the experiment
is reactive or non-reactive.
Conduct non-reactive experiment #1 on the RCM
cond_00_in_02_mm.add_experiment(Path(
'NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt'))

UConnRCMPy determines that this is a non-reactive experiment
and generates a new figure that compares the current non-
reactive case with the reference reactive case as specified in
volume-trace.yaml. If the user adds a non-reactive exper-
iment before creating the volume-trace.yaml file, or if the
file referenced in the reacfile key is not present in the current
working directory, UConnRCMPy throws a FileNotFound
exception. For this particular example, the pressure traces are
shown in Fig. 3. In this case, the non-reactive pressure agrees very
well with the reactive pressure and no further experiments are
necessary; in principle, any number of non-reactive experiments
can be conducted and added to the figure for comparison. Since

there is good agreement between the non-reactive and reactive
pressure traces, the user adds the non-reactive reference file name
to volume-trace.yaml.
reacfile: >
00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt

nonrfile: >
NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt

Then, the user specifies the rest of the parameters in
volume-trace.yaml, including the compression time and the
end times for the reactive and non-reactive experiments. The reac-
tive end time (reacend) determines the length of the output pres-
sure trace, while the non-reactive end time (nonrend) determines
the length of the volume trace. The length of the volume trace is
also determined by the compression time (comptime), which
should be set to a time such that the starting point is before the
beginning of the compression. All three times should be specified
in milliseconds. comptime is determined by comparison with
the fit to the initial pressure, as shown in Fig. 5. In this case, the
compression has started at approximately t > −28ms. The time
prior to that where the pressure appears to stabilize around the
initial pressure is approximately t =−33ms, giving a compression
time of 33 ms. reacend is typically chosen to be shortly after
the main pressure peak due to ignition, about 80 ms in this case,
and nonrend is typically chosen to be 400 ms.
reacfile: >
00_in_02_mm_373K-1282t-100x-19-Jul-15-1633.txt

nonrfile: >
NR_00_in_02_mm_373K-1278t-100x-19-Jul-15-1652.txt

comptime: 33
nonrend: 400
reacend: 80

This sample represents a complete, minimal example of the
necessary information in the volume-trace.yaml file. In
addition, two optional parameters can also be specified in
volume-trace.yaml. These are offset parameters used to
control the precise point where the switch from the reactive pres-
sure trace to the non-reactive pressure trace occurs in the volume
trace. These parameters may be necessary if the determination of
the EOC does not result in aligned compression strokes for the
reactive and non-reactive experiments, but they are not generally
necessary.

Once the volume-trace.yaml file is completed, the
create_volume_trace() method can be run. Then, the
final step is to conduct the simulations to calculate TC and the
simulated ignition delay. This is done by the user by running the
compare_to_sim() function. This function takes two optional
arguments, run_reactive() and run_nonreactive(),
both of which are booleans. These determine which type of
simulation should be conducted; by default, run_reactive()
is False and run_nonreactive() is True because the
reactive simulations may take substantial time (~5 min). There is
no restriction on combinations of values for the arguments; either
or both may be True or False.
cond_00_in_02_mm.create_volume_trace()
cond_00_in_02_mm.compare_to_sim(

run_reactive=True,
run_nonreactive=True,

)

At this point, the user has completed one experimental condition.
Now, further conditions should be studied, either by changing T0
or the compression ratio of the RCM to reach a different value of
TC for a given PC.

UCONNRCMPY: PYTHON-BASED DATA ANALYSIS FOR RAPID COMPRESSION MACHINES 43

Modified Interface

It is also possible to replace parts of the processing interface by
using the features of Python to overload class methods. Due to
the modular nature of UConnRCMPy, small parts of the interface
can be replaced without sacrificing consistent analysis for the
critical parts of the code, such as computing the ignition delay. For
instance, ongoing work involves processing RCM data collected
by several operators of the RCM. Each user has their own file
naming strategy that must be parsed for information about the ex-
periment. To process this "alternate" data format, two new classes
called AltCondition and AltExperiment are created that
inherit from the Condition and Experiment classes, respec-
tively. The AltCondition class only needs to overload the
add_experiment() method, to create an AltExperiment,
instead of a regular Experiment.
class AltCondition(Condition):

def add_experiment(self, file_name=None):
exp = AltExperiment(file_name)
Omit the plotting code...

Then, the AltExperiment overloads the
parse_file_name() method of the Experiment class to
parse the alternate format. The user must make sure the new
parse_file_name() method returns the expected values as
defined in the docstring for the original parse_file_name()
method, or else overload other methods that consume the file
name information.
class AltExperiment(Experiment):

def parse_file_name(self, file_path):
Parse the file name for information...
return file_name_information

In this way, consistent definitions for important research quantities
can be used, while providing flexibility in the data format and
naming conventions.

Conclusions and Future Work

UConnRCMPy provides a framework to enable consistent analysis
of RCM data. Because it is open source and extensible, UCon-
nRCMPy can help to ensure that RCM data in the community
can be analyzed in a reproducible manner; in addition, it can be
easily modified and used for data in any format. In this sense,
UConnRCMPy can be used more generally to process any RCM
experiments where the ignition delay is the primary output.

Future plans for UConnRCMPy include the development of
a robust test suite to prevent regressions and document correct
usage of the framework, as well as the development of a method to
determine the optimal cutoff frequency in the filtering algorithm.

Acknowledgements

This paper is based on material supported by the National Science
Foundation under Grant No. CBET-1402231.

REFERENCES

[ADF+02] Maureen D Avakian, Barry Dellinger, Heidelore Fiedler,
Brian Gullet, Catherine Koshland, Stellan Marklund, Günter
Oberdörster, Stephen Safe, Adel Sarofim, Kirk R Smith, David
Schwartz, and William A Suk. The origin, fate, and health
effects of combustion by-products: a research framework. En-
vironmental Health Perspectives, 110(11):1155–1162, Novem-
ber 2002. URL: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=1241073&tool=pmcentrez&rendertype=abstract.

[Bra16] Georg Brandl. Overview — Sphinx 1.4.1 documentation, 2016.
URL: http://www.sphinx-doc.org/en/stable/.

[BT58] Ralph Beebe Blackman and John Wilder Tukey. The Measurement
of Power Spectra. Dover, 1958. URL: https://archive.org/details/
TheMeasurementOfPowerSpectra.

[CC10] Steven C. Chapra and Raymond P. Canale. Numerical methods
for engineers. McGraw-Hill Higher Education, Boston, 6th ed
edition, 2010.

[DRW+16] Enoch E. Dames, Andrew S. Rosen, Bryan W. Weber, Connie W.
Gao, Chih-Jen Sung, and William H. Green. A detailed combined
experimental and theoretical study on dimethyl ether/propane
blended oxidation. Combustion and Flame, 168:310–330, June
2016. doi:10.1016/j.combustflame.2016.02.021.

[DSZM12] Apurba Kumar Das, Chih-Jen Sung, Yu Zhang, and Gaurav
Mittal. Ignition delay study of moist hydrogen/oxidizer mix-
tures using a rapid compression machine. International Jour-
nal of Hydrogen Energy, 37(8):6901–6911, April 2012. doi:
10.1016/j.ijhydene.2012.01.111.

[DUS12] Apurba Kumar Das, Mruthunjaya Uddi, and Chih-Jen Sung. Two-
line thermometry and H2O measurement for reactive mixtures
in rapid compression machine near 7.6µm. Combustion and
Flame, 159(12):3493–3501, December 2012. doi:10.1016/
j.combustflame.2012.06.020.

[GMS16] David G. Goodwin, Harry K. Moffat, and Raymond L. Speth.
Cantera: An Object-oriented Software Toolkit for Chemical Ki-
netics, Thermodynamics, and Transport Processes, 2016. URL:
http://www.cantera.org.

[HBG+05] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward.
SUNDIALS: Suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Transactions on Mathematical Software,
31(3):363–396, September 2005. doi:10.1145/1089014.
1089020.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

[JOPosh] Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy:
Open source scientific tools for Python. 2001–. [Online; accessed
2016-05-19]. URL: http://www.scipy.org/.

[LH98] Daeyup Lee and Simone Hochgreb. Rapid Compression Ma-
chines: Heat Transfer and Suppression of Corner Vortex. Com-
bustion and Flame, 114(3-4):531–545, August 1998. doi:
10.1016/S0010-2180(97)00327-1.

[MCSD08] Gaurav Mittal, Marcos Chaos, Chih-Jen Sung, and Frederick L.
Dryer. Dimethyl ether autoignition in a rapid compression
machine: Experiments and chemical kinetic modeling. Fuel Pro-
cessing Technology, 89(12):1244–1254, December 2008. doi:
10.1016/j.fuproc.2008.05.021.

[MS07] Gaurav Mittal and Chih-Jen Sung. A Rapid Compression Ma-
chine for Chemical Kinetics Studies at Elevated Pressures and
Temperatures. Combustion Science and Technology, 179(3):497–
530, 2007. doi:10.1080/00102200600671898.

[Nat16] Reality check on reproducibility. Nature, 533(7604):437–437,
May 2016. doi:10.1038/533437a.

[OSB99] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck.
Discrete-time signal processing. Prentice Hall, Upper Saddle
River, N.J, 2nd ed edition, 1999.

[PG07] Fernando Pérez and Brian E. Granger. IPython: a System for
Interactive Scientific Computing. Computing in Science and
Engineering, 9(3):21–29, May 2007. doi:10.1109/MCSE.
2007.53.

[UDS12] Mruthunjaya Uddi, Apurba Kumar Das, and Chih-Jen Sung.
Temperature measurements in a rapid compression machine using
mid-infrared H2O absorption spectroscopy near 7.6 µm. Applied
Optics, 51(22):5464–5476, August 2012. URL: http://www.ncbi.
nlm.nih.gov/pubmed/22859037.

[US 16] US Energy Information Administration. EIA Monthly En-
ergy Review. Technical Report DOE/EIA-0035(2016/4),
April 2016. URL: http://www.eia.gov/totalenergy/data/monthly/
archive/00351604.pdf.

[vCV11] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
Computing in Science & Engineering, 13(2):22–30, March 2011.
doi:10.1109/MCSE.2011.37.

[Web15] Bryan William Weber. CanSen, June 2015. URL: https://github.
com/bryanwweber/CanSen.

44 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[Web16] Bryan William Weber. UConnRCMPy, May 2016. URL: https:
//github.com/bryanwweber/UConnRCMPy.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 45

Storing Reproducible Results from Computational
Experiments using Scientific Python Packages

Christian Schou Oxvig‡∗, Thomas Arildsen‡, Torben Larsen‡

F

Abstract—Computational methods have become a prime branch of modern
science. Unfortunately, retractions of papers in high-ranked journals due to
erroneous computations as well as a general lack of reproducibility of results
have led to a so-called credibility crisis. The answer from the scientific com-
munity has been an increased focus on implementing reproducible research in
the computational sciences. Researchers and scientists have addressed this
increasingly important problem by proposing best practices as well as making
available tools for aiding in implementing them. We discuss and give an example
of how to implement such best practices using scientific Python packages. Our
focus is on how to store the relevant metadata along with the results of a com-
putational experiment. We propose the use of JSON and the HDF5 database
and detail a reference implementation in the Magni Python package. Further,
we discuss the focuses and purposes of the broad range of available tools
for making scientific computations reproducible. We pinpoint the particular use
cases that we believe are better solved by storing metadata along with results
the same HDF5 database. Storing metadata along with results is important in
implementing reproducible research and it is readily achievable using scientific
Python packages.

Index Terms—Reproducibility, Computational Science, HDF5

Introduction

Exactly how did I produce the computational results stored in
this file? Most data scientists and researchers have probably asked
this question at some point. For one to be able to answer the
question, it is of utmost importance to track the provenance of the
computational results by making the computational experiment
reproducible, i.e. describing the experiment in such detail that it is
possible for others to independently repeat it [LMS12], [Hin14].
Unfortunately, retractions of papers in high-ranked journals due
to erroneous computations [Mil06] as well as a general lack
of reproducibility of computational results [Mer10], with some
studies showing that only around 10% of computational results are
reproducible [BE12], [RGPN+11], have led to a so-call credibility
crisis in the computational sciences.

The answer has been a demand for requiring research to be re-
producible [Pen11]. The scientific community has acknowledged
that many computational experiments have become so complex
that more than a textual presentation in a paper or a technical
report is needed to fully detail it. Enough information to make

* Corresponding author: cso@es.aau.dk
‡ Faculty of Engineering and Science, Department of Electronic Systems,
Aalborg University, 9220 Aalborg, Denmark

Copyright © 2016 Christian Schou Oxvig et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the experiment reproducible must be included with the textual
presentation [RGPN+11], [CG12], [SLP14]. Consequently, repro-
ducibility of computational results have become a requirement for
submission to many high-ranked journals [Edi11], [LMS12].

But how does one make computational experiments repro-
ducible? Several communities have proposed best practices, rules,
and tools to help in making results reproducible, see e.g. [VKV09],
[SNTH13], [SM14], [Dav12], [SLP14]. Still, this is an area
of active research with methods and tools constantly evolving
and maturing. Thus, the adoption of the reproducible research
paradigm in most scientific communities is still ongoing - and
will be for some time. However, a clear description of how the
reproducible research paradigm fits in with customary workflows
in a scientific community may help speed up the adoption of it.
Furthermore, if tools that aid in making results reproducible for
such customary workflows are made available, they may act as an
additional catalyst.

In the present study, we focus on giving guidelines for inte-
grating the reproducible research paradigm in the typical scientific
Python workflow. In particular, we propose an easy to use scheme
for storing metadata along with results in an HDF5 database.
We show that it is possible to use Python to adhere to best
practices for making computational experiments reproducible by
storing metadata as JSON serialized arrays along with the results
in an HDF5 database. A reference implementation of our proposed
solution is part of the open source Magni Python package.

The remainder of this paper is organized as follows. We
first describe our focus and its relation to a more general data
management problem. We then outline the desired workflow for
making scientific Python experiments reproducible and briefly
review the fitness of existing reproducibility aiding tools for this
workflow. This is continued by a description of our proposed
scheme for storing metadata along with results. Following this
specification, we detail a reference implementation of it and give
plenty examples of its use. The paper ends with a more general
discussion of related reproducibility aiding software packages
followed by our conclusions.

The Data Management Problem

Reproducibility of computational results may be considered a part
of a more general problem of data management in a computational
study. In particular, it is closely related to the data management
tasks of documenting and describing data. A typical computational
study involves testing several combinations of various elements,
e.g. input data, hardware platforms, external software libraries,

46 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 1: Illustration of a typical data management description prob-
lem as a layered graph. In this exemplified experiment, several
combinations of input data, hardware platforms, software libraries
(e.g. NumPy), algorithmic/experimental setup (described in a Python
script), and parameter values are tested. The challenging task is to
keep track of both the full set of combinations tested (marked by all
the edges in the graph) as well as the individual simulations (e.g. the
combination of highlighted vertices).

experiment specific code, and model parameter values. Such a
study may be illustrated as a layered graph like the one shown
in figure 1. Each layer corresponds to one of the elements, e.g.
the version of the NumPy library or the set of parameter values.
The edges in the graph mark all the combinations that are tested.
An example of a combination that constitutes a single simulation
or experiment is the set of connected vertices that are highlighted
in the graph in figure 1. In the present study, we focus on the
problem of documenting and describing such a single simulation.
A closely related problem is that of keeping track of all tested
combinations, i.e. the set of all paths through all layers in the graph
in figure 1. This is definitely also an interesting and important
problem. However, once the "single simulation" problem is solved,
it should be straight forward to solve the "all combinations"
problem by appropriately combining the information from all the
single simulations.

Storing Metadata Along With Results

For our treatment of reproducibility of computational results, we
adopt the meaning of reproducibility from [LMS12], [Hin14]. That
is, reproducibility of a study is the ability of others to repeat
the study and obtain the same results using a general description
of the original work. The related term replicability then means
the ability of others to repeat the study and obtain the same
results using the exact same setup (code, hardware, etc.) as in
the original work1. As pointed out in [Hin14], reproducibility
generally requires replicability.

The lack of reproducibility of computational results is often-
times attributed to missing information about critical computa-
tional details such as library versions, parameter values, or precise
descriptions of the exact code that was run [LMS12], [BPG05],
[RGPN+11], [Mer10]. Several studies have given best practices
for how to detail such metadata to make computational results
reproducible, see e.g. [VKV09], [SNTH13], [SM14], [Dav12].
Here we detail the desired workflow for storing such metadata
along with results when using a typical scientific Python workflow
in the computational experiments. That is, we detail how to

document a single experiment as illustrated by the highlighted
vertices in figure 1.

The Scientific Python Workflow

In a typical scientific Python workflow, we define an experiment
in a Python script and run that script using the Python interpreter,
e.g.
$ python my_experiment.py

The content of the my_experiment.py script would typically
have a structure like:
import some_library
import some_other_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == '__main__':
run_my_experiment(...)

This is a particularly generic setup that only requires the availabil-
ity of the Python interpreter and the libraries imported in the script.
We argue that for the best practices for detailing a computational
study to see broad adoption by the scientific Python community,
three elements are of critical importance: Any method or tool for
storing the necessary metadata to make the results reproducible
must

1) be very easy to use and integrate well with existing
scientific Python workflows.

2) be of high quality to be as trustworthy as the other tools
in the scientific Python stack.

3) store the metadata in an open format that is easily
inspected using standard viewers as well as programmat-
ically from Python.

These elements are some of the essentials that have made
Python so popular in the scientific community2. Thus, for storing
the necessary metadata, we seek a high quality solution which
integrates well with the above exemplified workflow. Furthermore,
the metadata must be stored in such a way that is is easy to extract
and inspect when needed.

Existing Tools

Several tools for keeping track of provenance and aiding in
adhering to best practices for reproducible research already ex-
ist, e.g. Sumatra [Dav12], ActivePapers [Hin15], or Madagascar
[Fom15]. Tools like Sumatra, ActivePapers, and Madagascar gen-
erally function as reproducibility frameworks. That is, when used
with Python, they wrap the standard Python interpreter with a
framework that in addition to running a Python script (using the
standard Python interpreter) also captures and stores metadata
detailing the setup used to run the experiment. E.g. when using
Sumatra, one would replace python my_experiment.py
with [Dav12]
$ smt run -e python -m my_experiment.py

1. Some authors (e.g. [SLP14]) swap the meaning of reproducibility and
replicability compared to the convention, we have adopted.

2. See http://cyrille.rossant.net/why-using-python-for-scientific-computing/
for an overview of the main arguments for using Python for scientific
computing.

STORING REPRODUCIBLE RESULTS FROM COMPUTATIONAL EXPERIMENTS USING SCIENTIFIC PYTHON PACKAGES 47

Fig. 2: Illustration of the difference between a full reproducibility
framework (on the left) and an importable Python library (on the
right). The reproducibility framework calls the metadata collector
as well as the Python interpreter which in turn runs the Python
simulation script which e.g. imports NumPy. When using an im-
portable library, the metadata collector is imported in the Python
script alongside with e.g. NumPy.

This idea of wrapping a computational simulation is different from
the usual scientific Python workflow which consists of running a
Python script that imports other packages and modules as needed,
e.g. importing NumPy for numerical computations. This difference
is illustrated in figure 2.

We argue that an importable Python library for aiding in
making results reproducible has several advantages compared to
using a full blown reproducibility framework. A major element in
using any tool for computational experiments is being able to trust
that the tool does what it is expected do. The scientific community
trusts Python and the SciPy stack. For a reproducibility framework
to be adopted by the community, it must build trust as the wrapper
of the Python interpreter, it effectively is. That is, one must trust
that it handles experiment details such as input parameters, library
paths, etc. just as accurately as the Python interpreter would have
done. Furthermore, such a framework must be able to fully replace
the Python interpreter in all existing workflows which uses the
Python interpreter. A traditional imported Python library does not
have these potentially staggering challenges to overcome in order
to see wide adoption. It must only build trust among its users in the
same way as any other scientific library. Furthermore, it would be
easy to incorporate into any existing workflow. Thus, ideally we
seek a solution that allow us to update our my_experiment.py
to have a structure like:

import some_library
import some_other_library
import reproducibility_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == '__main__':
reproducibility_library.store_metadata(...)
run_my_experiment(...)

Interestingly, the authors of the Sumatra package has to some
degree pursued this idea by offering an API for importing the
library as an alternative to using the smt run command line
tool.

Equally important, to how to obtain the results, is how to
inspect the results afterwards. Thus, one may ask: How are the
results and the metadata stored, and how may they be accessed
later on? For example, Sumatra by default stores all metadata in a
SQLite database [Dav12] separate from simulation results (which
may be stored in any format) whereas ActivePapers stores the
metadata along with the results in an HDF5 database [Hin15]. The
idea of storing (or "caching") intermediate results and metadata
along with the final results has also been pursued in another study
[PE09].

We argue that this idea of storing metadata along with results
is an excellent solution. Having everything compiled into one stan-
dardized and open file format helps keep track of all the individual
elements and makes it easy to share the full computational experi-
ment including results and metadata. Preferably, such a file format
should be easy to inspect using a standard viewer on any platform;
just like the Portable Document Format (PDF) has made it easy
to share and inspect textual works across platforms. The HDF5
Hierarchical Data Format [FP10] is a great candidate for such a
file format due to the availability of cross-platform viewers like
HDFView3 and HDFCompass4 as well as its capabilities in terms
of storing large datasets. Furthermore, HDF5 is recognized in the
scientific Python community5 with bindings available through e.g.
PyTables6, h5py7, or Pandas [McK10]. Also, bindings for HDF5
exists in several other major programming languages.

Suggested Library Design

Our above analysis reveals that all elements needed for imple-
menting the reproducible research paradigm in scientific Python
are in fact already available in existing reproducibility aiding
tools: Sumatra may serve as a Python importable library and
the ActivePapers project shows how metadata may be stored
along with results in an HDF5 database. However, no single tool
offers all of these elements for the scientific Python workflow.
Consequently, we propose creating a scientific Python package
that may be imported in existing scientific Python scripts and
may be used to store all relevant metadata for a computational
experiment along with the results of that experiment in an HDF5
database.

Technically, there are various ways to store metadata along
with results in an HDF5 database. The probably most obvious
way is to store the metadata as attributes to HDF5 tables and
arrays containing the results. However, this approach is only
recommended for small metadata (generally < 64KB)8. For larger
metadata it is recommended to use a separate HDF5 array or table
for storing the metadata9. Thus, for the highest flexibility, we
propose to store the metadata as separate HDF5 arrays. This also
allows for separation of specific result arrays or tables and general
metadata. When using separate metadata arrays, a serialization (a
representation) of the metadata must be chosen. For the metadata
to be humanly readable using common HDF viewers, it must be
stored in an easily readable string representation. We suggest using
JSON [ECM13] for serializing the metadata. This makes for a
humanly readable representation. Furthermore, JSON is a standard
format with bindings for most major programming languages10.

3. See https://www.hdfgroup.org/products/java/hdfview/
4. See https://github.com/HDFGroup/hdf-compass
5. See https://www.youtube.com/watch?v=nddj5OA8LJo
6. See http://www.pytables.org/
7. See http://www.h5py.org/

48 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 3: Illustration of the structure of the
magni.reproducibility subpackage of Magni. The main
modules are the data module for acquiring metadata and the io
module for interfacing with an HDF5 database when storing as well
as reading the metadata. A subset of available functions are listed
next to the modules.

In particular, Python bindings are part of the standard library
(introduced in Python 2.6)11. This would effectively make Python
>=2.6 and an HDF5 Python interface the only dependencies of
our proposed reproducibility aiding library. We note, though, that
the choice of JSON is not crucial. Other formats similar to JSON
(e.g. XML12 or YAML13) may be used as well. We do argue,
though, that a humanly readable format should be used such that
the metadata may be inspected using any standard HDF5 viewer.

Magni Reference Implementation

A reference implementation of the above suggested library design
is available in the open source Magni Python package [OPA+14].
In particular, the subpackage magni.reproducibility is
based on this suggested design. Figure 3 gives an overview of the
magni.reproducibility subpackage. Additional resources
for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

In magni.reproducibility, a differentiation is made
between annotations and chases. Annotations are metadata that
describe the setup used for the computation, e.g. the computational
environment, values of input parameters, platform (hardware/OS)
details, and when the computation was done. Chases on the other
hand are metadata describing the specific code that was used in the
computation and how it was called, i.e. they chase the provenance
of the results.

8. See http://docs.h5py.org/en/latest/high/attr.html
9. See https://www.hdfgroup.org/HDF5/doc1.6/UG/13_Attributes.html
10. See http://www.json.org/
11. See https://docs.python.org/2/library/json.html
12. See https://www.w3.org/TR/REC-xml/
13. See http://yaml.org/

Requirements

Magni uses PyTables as its interface to HDF5 databases. Thus,
had magni.reproducibility been a package of its own,
only Python and PyTables would have been requirements for its
use. The full requirements for using magni (as of version 1.5.0)
are14

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)
• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)
• Setuptools16 (Tested on version >= 11.3)

When using the Conda17 package management system for
handling the Python environment used in the computation,
magni.reproducibility may optionally use Conda to cap-
ture details about the Python environment. Thus, we have one
optional dependency

• Conda (Tested on version >= 3.7.0)

Usage Examples

We now give several smaller examples of how to use
magni.reproducibility to implement the best prac-
tices for reproducibility of computational result described
in [VKV09], [SNTH13], [SM14]. An extensive example of
the usage of magni.reproducibility is available at
doi:10.5278/VBN/MISC/MagniRE. This extensive example is
based on a Python script used to simulate the Mandelbrot set18

using the scientific Python workflow described above. An example
of a resulting HDF5 database containing both the Mandelbrot sim-
ulation result and metadata is also included. Finally, the example
includes a Jupyter Notebook showing how to read the metadata
using magni.reproducibility.

A simple example of how to acquire platform metadata using
the data module from magni.reproducibility is
>>> from pprint import pprint
>>> from magni import reproducibility as rep
>>> pprint(rep.data.get_platform_info())
{'libc': '["glibc", "2.2.5"]',
'linux': '["debian", "jessie/sid", ""]',
'mac_os': '["", ["", "", ""], ""]',
'machine': '"x86_64"',
'node': '"eagle1"',
'processor': '"x86_64"',
'python': '"3.5.1"',
'release': '"3.16.0-46-generic"',
'status': 'All OK',
'system': '"Linux"',
'version': '"#62~14.04.1-Ubuntu SMP ~"',
'win32': '["", "", "", ""]'}

When using the typical scientific Python workflow described
above, one may use the functions in the io module from
magni.reproducibility to conveniently store all relevant
metadata, e.g. the create_database(h5file) to automati-
cally create an HDF5 database with a set of standard annotations

14. More details about Python and the Scientific Python Stack are available
at http://python.org and http://scipy.org

15. See http://www.pytables.org/
16. See http://setuptools.readthedocs.io/
17. See http://conda.pydata.org/docs/ as well as https://www.youtube.com/

watch?v=UaIvrDWrIWM
18. See https://en.wikipedia.org/wiki/Mandelbrot_set

STORING REPRODUCIBLE RESULTS FROM COMPUTATIONAL EXPERIMENTS USING SCIENTIFIC PYTHON PACKAGES 49

and chases. The my_experiment.py script would then have a
structure like
import tables
from magni import reproducibility as rep

def run_my_experiment(...):
...

def store_result(h5, result):
...

if __name__ == '__main__':
hdf5_db = 'database.hdf5'
rep.io.create_database(hdf5_db)
result = run_my_experiment(...)
with tables.File(hdf5_db, mode='a') as h5:

store_result(h5, result)

This would create an HDF5 database named database.hdf5
which would hold both the results and all metadata. The
HDF5 database may be inspected using any tool capable
of reading HDF5 files. As an alternative, the io module
from magni.reproducibility also includes convenience
functions for reading the annotations and chases. E.g. to
see the set of standard metadata stored in a database with
create_database(h5file), one could do
>>> from pprint import pprint
>>> import tables
>>> from magni import reproducibility as rep
>>> hdf5_db = 'database.hdf5'
>>> rep.io.create_database(hdf5_db)
>>> with tables.File(hdf5_db) as h5:
... annotations = rep.io.read_annotations(h5)
... chases = rep.io.read_chases(h5)
>>> pprint(list(annotations.keys()))
['magni_config',
'git_revision',
'datetime',
'conda_info',
'magni_info',
'platform_info']
>>> pprint(list(chases.keys()))
['main_file_source',
'stack_trace',
'main_file_name',
'main_source']

Quality Assurance

The Magni Python package is fully documented and comes with
an extensive test suite. It has been developed using best practices
for developing scientific software [WAB+14] and all code has
been reviewed by at least one other person than its author prior to
its inclusion in Magni. All code adheres to the PEP819 style guide
and no function or class has a cyclomatic complexity [McC76],
[WM96] exceeding 10. The source code is under version control
using Git and a continuous integration system based on Travis
CI20 is in use for the git repository. More details about the quality
assurance of magni are given in [OPA+14].

Related Software Packages

Independently of the tool or method used, making results from
scientific computations reproducible is not only for the benefit of
the audience. As pointed out in several studies [Fom15], [CG12],
[VKV09], the author of the results gains as least as much in terms
increasing one’s productivity. Thus, using some method or tool to

19. See https://www.python.org/dev/peps/pep-0008/
20. See https://travis-ci.org/

help make the results reproducible is a win for everyone. In the
present work we have attempted to detail the ideal solution for
how to do this for the typical scientific Python workflow.

A plethora of related alternative tools exist for aiding in
making results reproducible. We have already discussed ActivePa-
pers [Hin15], Sumatra [Dav12], and Madagascar [Fom15] which
are general reproducibility frameworks that allow for wrapping
most tools - not only Python based computations. Such tools are
definitely excellent for some workflows. In particular, they seem
fit for large fixed setups which require keeping track of several
hundred runs that only differ by the selection of parameters21

and for which the time cost of initially setting up the tool is
insignificant compared to the time cost of the entire study. That
is, they are useful in keeping track of the full set of combination
in a large computations study as marked by all the edges in the
layered graph in figure 1. However, as we have argued, they are
less suitable for documenting a single experiment based on the
typical scientific Python workflow. Also these tools tend to be
designed for use on a single computer. Thus, they do not scale
well for big data applications which run on compute clusters.

Another category of related tools are graphical user interface
(GUI) based workflow managing tools like Taverna [OAF+04] or
Vistrail [SFC07]. Such tools seem to be specifically designed for
describing computational workflows in particular fields of research
(typically bioinformatics related fields). It is hard, though, to see
how they can be effectively integrated with the typical scientific
Python workflow. Other much more Python oriented tools are the
Jupyter Notebook22 as well as Dexy23. These tools, however, seem
to have more of a focus on implementing the concept of literate
programming and documentation than reproducibility of results in
general.

Conclusions

We have argued that metadata should be stored along with com-
putational results in an easily readable format in order to make
the results reproducible. When implementing this in a typical
scientific Python workflow, all necessary tools for making the
results reproducible should be available as an importable package.
We suggest storing the metadata as JSON serialized arrays along
with the result in an HDF5 database. A reference implementation
of this design is available in the open source Magni Python
package which we have detailed with several examples of its
use. All of this shows that storing metadata along with results is
important in implementing reproducible research and it is readily
achievable using scientific Python packages.

Acknowledgements

This work was supported in part by the Danish Council for
Independent Research (DFF/FTP) under Project 1335-00278B/12-
134971 and in part by the Danish e-Infrastructure Cooperation
(DeIC) under Project DeIC2013.12.23.

REFERENCES

[BE12] C. Glenn Begley and Lee M. Ellis. Drug development:
Raise standards for preclinical cancer research. Nature,
483(7391):531–533, March 2012. doi:10.1038/483531a.

21. See e.g. https://www.youtube.com/watch?v=1YJr9c-zSng
22. See http://jupyter.org/
23. See http://www.dexy.it/ as well as https://www.youtube.com/watch?v=

u6_qtDJ6ciA / https://www.youtube.com/watch?v=qFd04rA8lp0

50 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[BPG05] Mauro Barni and Fernando Perez-Gonzalez. Pushing Sci-
ence into Signal Processing. IEEE Signal Processing Maga-
zine, 22(4):120–119, July 2005. doi:10.1109/MSP.2005.
1458324.

[CG12] Kingshuk Roy Choudhury and Ray Gibson. Editorial: Re-
producible Research in Medical Imaging. Molecular Imaging
and Biology, 14(4):395–396, June 2012. doi:10.1007/
s11307-012-0569-8.

[Dav12] Andrew P. Davison. Automated Capture of Experiment Context
for Easier Reproducibility in Computational Research. Com-
puting in Science & Engineering, 14(4):48–56, July 2012.
doi:10.1109/MCSE.2012.41.

[ECM13] The JSON Data Interchange Format, October 2013.
[Edi11] Editorial. Devil in the details. Nature, 470(7334):305–306,

February 2011. doi:10.1038/470305b.
[Fom15] Sergey Fomel. Reproducible Research as a Community Effort:

Lessons from the Madagascar Project. Computing in Science
& Engineering, 17(1):20–26, January 2015. doi:10.1109/
MCSE.2014.94.

[FP10] Mike Folk and Elena Pourmal. Balancing Performance and
Preservation Lessons learned with HDF5. In Digital Preser-
vation Interoperability Framework (DPIF) Workshop, Gaithers-
burg, Maryland, USA, March 29 – 31, 2010. doi:10.1145/
2039274.2039285.

[Hin14] Konrad Hinsen. Computational science: shifting the focus from
tools to models. F1000Research, 3(101):1–16, June 2014. doi:
10.12688/f1000research.3978.2.

[Hin15] Konrad Hinsen. ActivePapers: a platform for publishing and
archiving computer-aided research. F1000Research, 3(289):14,
July 2015. doi:10.12688/f1000research.5773.3.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering, 9(3):90–95, May 2007.
doi:10.1109/MCSE.2007.55.

[LMS12] Randall J. LeVeque, Ian M. Mitchell, and Victoria Stodden.
Reproducible Research for Scientific Computing: Tools and
Strategies for Changing the Culture. Computing in Science &
Engineering, 14(4):13–17, July 2012. doi:10.1109/MCSE.
2012.38.

[McC76] Thomas J. McCabe. A Complexity Measure. IEEE Transactions
on Software Engineering, SE-2(4):308–320, December 1976.
doi:10.1109/TSE.1976.233837.

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Proceedings of the 9th Python in Science Conference,
pages 51–56, Austin, Texas, USA, June 28 – July 3, 2010.

[Mer10] Zeeya Merali. Computational science: ...Error ...why scientific
programming does not compute. Nature, 467:775–777, October
2010. doi:10.1038/467775a.

[Mil06] Greg Miller. A Scientist’s Nightmare: Software Problem Leads
to Five Retractions. Science, 314(5807):1856–1857, December
2006. doi:10.1126/science.314.5807.1856.

[OAF+04] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin,
Martin Senger, Mark Greenwood, Tim Carver, Kevin Glover,
Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: a
tool for the composition and enactment of bioinformatics work-
flows. Bioinformatics, 20(17):3045–3054, June 2004. doi:
10.1093/bioinformatics/bth361.

[Oli07] Travis E. Oliphant. Python for Scientific Computing. Computing
in Science & Engineering, 9(3):10–20, May 2007. doi:10.
1109/MCSE.2007.58.

[OPA+14] Christian Schou Oxvig, Patrick Steffen Pedersen, Thomas Arild-
sen, Jan Østergaard, and Torben Larsen. Magni: A Python Pack-
age for Compressive Sampling and Reconstruction of Atomic
Force Microscopy Images. Journal of Open Research Software,
2(1):e29, October 2014. doi:10.5334/jors.bk.

[PE09] Roger D. Peng and Sandrah P. Eckel. Distributed Reproducible
Research Using Cached Computations. Computing in Science
& Engineering, 11(1):28–34, January 2009. doi:10.1109/
MCSE.2009.6.

[Pen11] Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226–1227, December 2011. doi:
10.1126/science.1213847.

[RGPN+11] Markus Rupp, Fulvio Gini, Ana Pérez-Neira, Beatrice Pesquet-
Popescu, Aggelos Pikrakis, Bulent Sankur, Patrick Vandewalle,
and Abdelhak Zoubir. Reproducible research in signal pro-
cessing. EURASIP Journal on Advances in Signal Process-
ing, 93(1):1–2, October 2011. doi:10.1186/1687-6180-
2011-93.

[SFC07] Claudio T. Silva, Juliana Freire, and Steven P. Callahan. Prove-
nance for Visualizations: Reproducibility and Beyond. Com-
puting in Science & Engineering, 9(5):82–89, September 2007.
doi:10.1109/MCSE.2007.106.

[SLP14] Victoria Stodden, Friedrich Leisch, and Roger D. Peng, editors.
Implementing Reproducible Research. Chapman & Hall/CRC
The R Series. CRC Press, 2014.

[SM14] Victoria Stodden and Sheila Miguez. Best Practices for Compu-
tational Science: Software Infrastructure and Environments for
Reproducible and Extensible Research. Journal of Open Re-
search Software, 2(1):1–6, July 2014. doi:10.5334/jors.
ay.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind
Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLoS Computational Biology, 9(10):e1003285, October
2013. doi:10.1371/journal.pcbi.1003285.

[vdWCV11] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
Computing in Science & Engineering, 13(2):22–30, March 2011.
doi:10.1109/MCSE.2011.37.

[VKV09] P. Vandewalle, J. Kovačević, and M. Vetterli. Reproducible
Research in Signal Processing [What, why, and how]. IEEE
Signal Processing Magazine, 26(3):37–47, May 2009. doi:
10.1109/MSP.2009.932122.

[WAB+14] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven H. D. Haddock, Kathryn D.
Huff, Ian M. Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P.
White, and Paul Wilson. Best Practices for Scientific Computing.
PloS Biology, 12(1):e1001745, January 2014. doi:10.1371/
journal.pbio.1001745.

[WM96] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric.
Special Publication 500-235, National Institute of Standards and
Technology (NIST), September 1996.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 51

datreant: persistent, Pythonic trees for heterogeneous
data

David L. Dotson‡†∗, Sean L. Seyler‡, Max Linke§, Richard J. Gowers¶‖, Oliver Beckstein‡

https://youtu.be/enLHDZoch0U

F

Abstract—In science the filesystem often serves as a de facto database, with
directory trees being the zeroth-order scientific data structure. But it can be
tedious and error prone to work directly with the filesystem to retrieve and
store heterogeneous datasets. datreant makes working with directory structures
and files Pythonic with Treants: specially marked directories with distinguishing
characteristics that can be discovered, queried, and filtered. Treants can be
manipulated individually and in aggregate, with mechanisms for granular access
to the directories and files in their trees. Disparate datasets stored in any format
(CSV, HDF5, NetCDF, Feather, etc.) scattered throughout a filesystem can
thus be manipulated as meta-datasets of Treants. datreant is modular and
extensible by design to allow specialized applications to be built on top of it, with
MDSynthesis as an example for working with molecular dynamics simulation
data. http://datreant.org/

Index Terms—data management, science, filesystems

Introduction

In many scientific fields, especially those analyzing experimental
or simulation data, there is an existing ecosystem of specialized
tools and file formats which new tools must work around. Conse-
quently, specialized database systems may be unsuitable for data
management and storage. In these cases the filesystem ends up
serving as a de facto database, with directory trees the zeroth-order
data structure for scientific data. This is particularly true for fields
centered around simulation: simulation systems can vary widely in
size, composition, rules, parameters, and starting conditions. And
with ever-increasing computational power, it is often necessary to
store intermediate results from large amounts of simulation data
so that they may be accessed and explored interactively.

These problems make data management difficult, and ulti-
mately serve as a barrier to answering scientific questions. To
address this, we present datreant, a Pythonic interface to
the filesystem. datreant deals primarily in Treants: specially
marked directories with distinguishing characteristics that can be
discovered, queried, and filtered. Treants can be manipulated indi-
vidually and in aggregate, with mechanisms for granular access

† These authors contributed equally.
* Corresponding author: dldotson@asu.edu
‡ Arizona State University, Tempe, Arizona, USA
§ Max Planck Institut für Biophysik, Frankfurt, Germany
¶ University of Manchester, Manchester, UK
|| University of Edinburgh, Edinburgh, UK

Copyright © 2016 David L. Dotson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

to the directories and files in their trees. By way of Treants,
datreant adds a lightweight abstraction layer to the filesystem,
allowing researchers to focus more on what is stored and less on
where. This greatly reduces the tedium of storing, retrieving, and
operating on datasets of interest, no matter how they are organized.

Treants as filesystem manipulators

The central object of datreant is the Treant. A Treant is a
directory in the filesystem that has been specially marked with a
state file. A Treant is also a Python object. We can create a
Treant with:
>>> import datreant.core as dtr
>>> t = dtr.Treant('maple')
>>> t
<Treant: 'maple'>

This creates a directory maple/ in the filesystem (if it did not
already exist), and places a special state file inside which stores
the Treant’s state. This file also serves as a flagpost indicating that
this is more than just a directory:

> ls maple
Treant.1dcbb3b1-c396-4bc6-975d-3ae1e4c2983a.json

The name of this file includes the type of Treant to which
it corresponds, as well as the uuid of the Treant, its unique
identifier. The state file contains all the information needed to
generate an identical instance of this Treant, so that we can start
a separate Python session and immediately use the same Treant
there:

python session 2
>>> import datreant.core as dtr
>>> t = dtr.Treant('maple')
>>> t
<Treant: 'maple'>

Making a modification to the Treant in one session is imme-
diately reflected by the same Treant in any other session. For
example, a Treant can store any number of descriptive tags to
differentiate it from others. We can add tags in the first Python
session:

python session 1
>>> t.tags.add('syrup', 'plant')
>>> t.tags
<Tags(['plant', 'syrup'])>

And in the other Python session, the same Treant with the same
tags is visible:

52 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

python session 2
>>> t.tags
<Tags(['plant', 'syrup'])>

Internally, advisory locking is done to avoid race conditions,
making a Treant multiprocessing-safe. A Treant can also be
moved, either locally within the same filesystem or to a remote
filesystem, and it will continue to work as expected.

Introspecting a Treant’s Tree

A Treant can be used to introspect and manipulate its filesystem
tree. We can, for example, work with directory structures rather
easily:

>>> data = t['a/place/for/data/']
>>> data
<Tree: 'maple/a/place/for/data/'>

This Tree object points to a path in the Treant’s own tree, but it
need not necessarily exist. We can check this with:

>>> data.exists
False

This behavior is by design for Tree objects (as well as Leaf
objects; see below). We want to be able to work freely with paths
without creating filesystem objects for each, at least until we are
ready.

We can make a Tree exist in the filesystem easily enough:

>>> data.makedirs()

and if we also make another directory, too:

>>> t['a/place/for/text/'].makedirs()
<Tree: 'maple/a/place/for/text/'>

we now have:

>>> t.draw()
maple/
+-- Treant.1dcbb3b1-c396-4bc6-975d-3ae1e4c2983a.json
+-- a/

+-- place/
+-- for/

+-- data/
+-- text/

Accessing paths in this way returns Tree and Leaf objects,
which refer to directories and files, respectively. These paths need
not point to directories or files that actually exist, but they can be
used to create and work with these filesystem elements. It should
be noted that creating a Tree does not create a Treant. Treants
are considered special enough to warrant having a state file with
metadata, and making every directory a Treant would make them
less useful.

We can, for example, easily store a Pandas [McK10]
DataFrame somewhere in the tree for reference later:

>>> import pandas as pd
>>> df = pd.DataFrame(pd.np.random.randn(3, 2),

columns=['A', 'B'])
>>> data = t['a/place/for/data/']
>>> data
<Tree: 'maple/a/place/for/data/'>
>>> df.to_csv(data['random_dataframe.csv'].abspath)

take a look at the contents of `data`
>>> data.draw()
data/
+-- random_dataframe.csv

and we can introspect the file directly:

>>> csv = data['random_dataframe.csv']
>>> csv
<Leaf: 'maple/a/place/for/data/random_dataframe.csv'>

this should look like a CSV file
>>> print(csv.read())
,A,B
0,-0.573730932177663,-0.08857033924376226
1,0.03157276797041359,-0.10977921690694506
2,-0.2080757315892524,0.6825003213837373

Using Treant, Tree, and Leaf objects, we can work with the
filesystem Pythonically without giving much attention to precisely
where these objects live within that filesystem. This becomes
especially powerful when we have many directories/files we want
to work with, possibly in many different places.

Aggregation and splitting on Treant metadata

What makes a Treant distinct from a Tree is its state file. This
file stores metadata that can be used to filter and split Treant
objects when treated in aggregate. It also serves as a flagpost,
making Treant directories discoverable.

If we have many more Treants, perhaps scattered about the
filesystem:

>>> for path in ('an/elm/', 'the/oldest/oak',
... 'the/oldest/tallest/sequoia'):
...
... # make a Treant in filesystem at path
... dtr.Treant(path)

we can gather them up with datreant.core.discover:

>>> b = dtr.discover('.')
>>> b
<Bundle([<Treant: 'oak'>, <Treant: 'sequoia'>,

<Treant: 'maple'>, <Treant: 'elm'>])>

A Bundle is an ordered set of Treant objects. This collection
gives convenient mechanisms for working with Treants as a single
logical unit. For example, it exposes a few basic properties for
directly accessing its member data:

>>> b.relpaths
['the/oldest/oak/',
'the/oldest/tallest/sequoia/',
'maple/',
'an/elm/']

>>> b.names
['oak', 'sequoia', 'maple', 'elm']

A Bundle can be constructed in a variety of ways, most com-
monly using existing Treant instances or paths to Treants in the
filesystem.

We can use a Bundle to subselect Treants in typical ways,
including integer indexing and slicing, fancy indexing, boolean
indexing, and indexing by name. But in addition to these, we can
use metadata features such as tags and categories to filter and
group Treants as desired.

Filtering Treants with tags

Tags are individual strings that describe a Treant. Setting the tags
for each of our Treants separately:

>>> b['maple'].tags = ['syrup', 'furniture', 'plant']
>>> b['sequoia'].tags = ['huge', 'plant']

DATREANT: PERSISTENT, PYTHONIC TREES FOR HETEROGENEOUS DATA 53

>>> b['oak'].tags = ['for building', 'plant', 'building']
>>> b['elm'].tags = ['firewood', 'shady', 'paper',

'plant', 'building']

we can now work with these tags in aggregate:

will only show tags present in *all* members
>>> b.tags
<AggTags(['plant'])>

will show tags present among *any* member
>>> b.tags.any
{'building',
'firewood',
'for building',
'furniture',
'huge',
'paper',
'plant',
'shady',
'syrup'}

and we can filter on them. For example, getting all Treants that are
good for construction work:

gives a boolean index for members with this tag
>>> b.tags['building']
[True, False, False, True]

we can use this to index the Bundle itself
>>> b[b.tags['building']]
<Bundle([<Treant: 'oak'>, <Treant: 'elm'>])>

or getting back Treants that are both good for construction and
used for making furniture by giving tags as a list:

a list of tags serves as an *intersection* query
>>> b[b.tags[['building', 'furniture']]]
<Bundle([])>

which in this case none of them are.
Other tag expressions can be constructed using tuples (for

or/union operations) and sets (for a negated intersection), and
nesting of any of these works as expected:

we can get a *union* by using a tuple
>>> b[b.tags['building', 'furniture']]
<Bundle([<Treant: 'maple'>, <Treant: 'oak'>,

<Treant: 'elm'>])>

we can get a *negated intersection* by using a set
>>> b[b.tags[{'building', 'furniture'}]]
<Bundle([<Treant: 'sequoia'>, <Treant: 'maple'>,

<Treant: 'oak'>, <Treant: 'elm'>])>

Using tag expressions, we can filter to Treants of in-
terest from a Bundle counting many, perhaps hundreds,
of Treants as members. A common workflow is to use
datreant.core.discover to gather up many Treants from
a section of the filesystem, then use tags to extract only those
Treants one actually needs.

Splitting Treants on categories

Categories are key-value pairs that provide another mechanism for
distinguishing Treants. We can add categories to each Treant:

add categories to individual members
>>> b['oak'].categories = {'age': 'adult',

'type': 'deciduous',
'bark': 'mossy'}

>>> b['elm'].categories = {'age': 'young',
'type': 'deciduous',
'bark': 'smooth'}

>>> b['maple'].categories = {'age': 'young',
'type': 'deciduous',
'bark': 'mossy'}

>>> b['sequoia'].categories = {'age': 'old',
'type': 'evergreen',
'bark': 'fibrous',
'home': 'california'}

add value 'tree' to category 'plant'
for all members
>>> b.categories.add({'plant': 'tree'})

and we can access categories for individual Treants:

>>> seq = b['sequoia'][0]
>>> seq.categories
<Categories({'home': 'california',

'age': 'old',
'type': 'evergreen',
'bark': 'fibrous',
'plant': 'tree'})>

The aggregated categories for all members in a Bundle are
accessible via Bundle.categories, which gives a view of
the categories with keys common to every member Treant:

>>> b.categories
<AggCategories({'age': ['adult', 'young',

'young', 'old'],
'type': ['deciduous', 'deciduous',

'deciduous', 'evergreen'],
'bark': ['mossy', 'smooth',

'mossy', 'fibrous'],
'plant': ['tree', 'tree',

'tree', 'tree']})>

Each element of the list associated with a given key
corresponds to the value for each member, in mem-
ber order. Using Bundle.categories is equivalent to
Bundle.categories.all; we can also access categories
present among any member:

>>> b.categories.any
{'age': ['adult', 'young', 'young', 'old'],
'bark': ['mossy', 'smooth', 'mossy', 'fibrous'],
'home': [None, None, None, 'california'],
'type': ['deciduous', 'deciduous',

'deciduous', 'evergreen']}

Members that do not have a given key will have None as the
corresponding value in the list. Accessing values for a list of keys:

>>> b.categories[['age', 'home']]
[['adult', 'young', 'young', 'old'],
[None, None, None, 'california']]

or a set of keys:

>>> b.categories[{'age', 'home'}]
{'age': ['adult', 'young', 'young', 'old'],
'home': [None, None, None, 'california']}

returns, respectively, a list or dictionary of lists of values, where
the list for a given key is in member order. Perhaps the most pow-
erful feature of categories is the groupby method, which, given
a key, can be used to group specific members in a Bundle by
their corresonding category values. If we want to group members
by their 'bark', we can use groupby to obtain a dictionary of
members for each value of 'bark':

>>> b.categories.groupby('bark')
{'fibrous': <Bundle([<Treant: 'sequoia'>])>,
'mossy': <Bundle([<Treant: 'oak'>,

54 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

<Treant: 'maple'>])>,
'smooth': <Bundle([<Treant: 'elm'>])>}

Say we would like to get members grouped by both their 'bark'
and 'home':

>>> b.categories.groupby({'bark', 'home'})
{('fibrous', 'california'):

<Bundle([<Treant: 'sequoia'>])>}

We get only a single member for the pair of keys ('fibrous',
'california') since 'sequoia' is the only Treant having
the 'home' category. Categories are useful as labels to denote
the types of data that a Treant may contain or how the data were
obtained. By leveraging the groupby method, one can extract
Treants by selected categories without having to explicitly access
each member. This feature can be particularly powerful in cases
where many Treants have been created and categorized to handle
incoming data over an extended period of time; one can quickly
gather any data needed without having to think about low-level
details.

Treant modularity with attachable Limbs

Treant objects manipulate their tags and categories using Tags
and Categories objects, respectively. These are examples of
Limb objects: attachable components which serve to extend
the capabilities of a Treant. While Tags and Categories
are attached by default to all Treant objects, custom Limb
subclasses can be defined for additional functionality.

datreant is a namespace package, with the dependency-
light core components included in datreant.core. The de-
pendencies of datreant.core include backports of standard
library modules such as pathlib and scandir, as well as
lightweight modules such as fuzzywuzzy and asciitree.

datreant.core remains lightweight because other pack-
ages in the datreant namespace can have any dependencies
they require. One such package is datreant.data, which
includes a set of convenience Limb objects for storing and
retrieving Pandas and NumPy [vdW11] datasets in HDF5 using
PyTables and h5py internally.

We can attach a Data limb to a Treant with:

>>> import datreant.data
>>> t = dtr.Treant('maple')
>>> t.attach('data')
>>> t.data
<Data([])>

and we can immediately start using it to store e.g. a Pandas
Series:

>>> import numpy as np
>>> sn = pd.Series(np.sin(
... np.linspace(0, 8*np.pi, num=200)))
>>> t.data['sinusoid'] = sn

and we can get it back just as easily:

>>> t.data['sinusoid'].head()
0 0.000000
1 0.125960
2 0.249913
3 0.369885
4 0.483966
dtype: float64

Looking at the directory structure of "maple", we see that the
data was stored in an HDF5 file under a directory corresponding
to the name we stored it with:

>>> t.draw()
maple/
+-- sinusoid/
| +-- pdData.h5
+-- Treant.1dcbb3b1-c396-4bc6-975d-3ae1e4c2983a.json

What’s more, datreant.data also includes a corresponding
AggLimb for Bundle objects, allowing for automatic aggrega-
tion of datasets by name across all member Treant objects. If we
collect and store similar datasets for each member in our Bundle:

>>> b = dtr.discover('.')
>>> b
<Bundle([<Treant: 'oak'>, <Treant: 'sequoia'>,

<Treant: 'maple'>, <Treant: 'elm'>])>

we want to make each dataset a bit different
>>> b.categories['frequency'] = [1, 2, 3, 4]
>>> for mem in b:
... freq = mem.categories['frequency']
... mem.data['sinusoid'] = pd.Series(np.sin(
... freq * np.linspace(0, 8*np.pi, num=200)))

then we can retrieve all of them into a single, multi-index Pandas
Series:

>>> sines = b.data.retrieve('sinusoid', by='name')
>>> sines.groupby(level=0).head()
sequoia 0 0.000000

1 0.125960
2 0.249913
3 0.369885
4 0.483966

oak 0 0.000000
1 0.369885
2 0.687304
3 0.907232
4 0.998474

maple 0 0.000000
1 0.249913
2 0.483966
3 0.687304
4 0.847024

elm 0 0.000000
1 0.483966
2 0.847024
3 0.998474
4 0.900479

dtype: float64

which we can use for aggregated analysis, or perhaps just pretty
plots (Figure 1).

>>> for name, group in sines.groupby(level=0):
... s = group.reset_index(level=0, drop=True)
... s.plot(legend=True, label=name)

The Data limb stores Pandas and NumPy objects in the HDF5
format within a Treant’s own tree. It can also store arbitrary (but
pickleable) Python objects as pickles, making it a flexible interface
for quick data storage and retrieval. However, it ultimately serves
as an example for how Treant and Bundle objects can be
extended to do complex but convenient things.

Using Treants as the basis for dataset access and manipula-
tion with the PyData stack

Although it is possible to extend datreant objects with limbs
to do complex operations on a Treant’s tree, it isn’t necessary

DATREANT: PERSISTENT, PYTHONIC TREES FOR HETEROGENEOUS DATA 55

Fig. 1: Plot of sinusoidal toy datasets aggregated and plotted by
source Treant.

to build specialized interfaces such as these to make use of the
extensive PyData stack. datreant fundamentally serves as a
Pythonic interface to the filesystem, bringing value to datasets and
analysis results by making them easily accessible now and later.
As data structures and file formats change, datreant objects
can always be used in the same way to supplement the way these
tools are used.

Because each Treant is both a Python object and a filesystem
object, they work remarkably well with distributed computation
libraries such as dask.distributed [Roc15] and workflow execution
frameworks such as Fireworks [Jai15]. Treant metadata features
such as tags and categories can be used for automated work-
flows, including backups and remote copies to external compute
resources, making work on datasets less imperative and more
declarative when desired.

Building domain-specific applications on datreant

Built-in datreant.core objects are general-purpose, while
packages like datreant.data provide extensions to these ob-
jects that are more specific. But it is possible, and very useful, for
domain-specific applications to define their own domain-specific
Treant subclasses, with tightly-coupled limbs for domain-
specific needs. Not only do objects such as Bundle work just
fine with Treant subclasses and custom Limb classes; they are
designed explicitly with this need in mind.

The first example of a domain-specific package built around
datreant is MDSynthesis, a module that enables high-level
management and exploration of molecular dynamics simulation
data. MDSynthesis gives a Pythonic interface to molecular dy-
namics trajectories using MDAnalysis [MiA11], giving the ability
to work with the data from many simulations scattered throughout
the filesystem with ease. This package makes it possible to write
analysis code that can work across many varieties of simulation,
but even more importantly, MDSynthesis allows interactive work
with the results from hundreds of simulations at once without
much effort.

Leveraging molecular dynamics data with MDSynthesis

MDSynthesis defines a Treant subclass called a Sim. A Sim
featues special limbs for storing an MDAnalysis Universe
definition and custom atom selections within its state file, allowing

for painless recall of raw simulation data and groups of atoms of
interest.

As an example of effectively using Sims, say we have 50
biased molecular dynamics simulations that sample the confor-
mational change of the ion transport protein NhaA [Lee14] from
the inward-open to outward-open state (Figure 2). Let’s also say
that we are interested in how many hydrogen bonds exist at any
given time between the two domains as they move past each other.
These Sim objects already exist in the filesystem, each having a
Universe definition already set to point to its unique trajectory
file(s).

We can use the MDAnalysis HydrogenBondAnalysis
class to collect the data for each Sim using Bundle.map for pro-
cess parallelism, storing the results using the datreant.data
limb:

import mdsynthesis as mds
import MDAnalysis.analysis.hbonds as hbonds
import pandas as pd
import seaborn as sns

b = mds.discover('NhaA_i2o_transitions')

def get_hbonds(sim):
dimerization = sim.atomselections['dimer']
core = sim.atomselections['core']

hb = hbonds.HydrogenBondAnalysis(
sim.universe, dimerization, core)

hb.run()
hb.generate_table()

sim.data['hbonds'] = pd.DataFrame(hb.table)

process parallelism provided internally
with `multiprocessing`
b.map(get_hbonds, processes=16)

Then we can retrieve the datasets in aggregate using the Bundle
datreant.data limb and visualize the result (Figure 3):

df = b.data.retrieve('hbonds', by='name')

counts = df['distance'].groupby(df.index).count()
counts.index = pd.MultiIndex.from_tuples(

counts.index)
counts.index = counts.index.droplevel(0)

sns.jointplot(counts.index, counts, kind='hexbin')

By making it relatively easy to work with what can often be
many terabytes of simulation data spread over tens or hundreds
of trajectories, MDSynthesis greatly reduces the time it takes to
iterate on new ideas toward answering real biological questions.

Final thoughts

datreant is a young project that started as a domain-specific
package for working with molecular dynamics data, but has
quickly morphed into a powerful, general-purpose tool for man-
aging and manipulating filesystems and the data spread about
them. The dependency-light datreant.core package is pure
Python, BSD-licensed, and openly developed, and the datreant
namespace is designed to support useful extensions to the core
objects. It is the hope of the authors that datreant continues
to grow in a way that benefits the wider scientific community,
smoothing the common pain point of data glut and filesystem
management.

56 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 2: A cartoon rendering of an outward-open model (top) and
an inward-open crystallographic structure (PDB ID: 4AU5 [Lee14])
(bottom) of Escherichia coli NhaA.

0 100 200 300 400 500

time (ps)

0

1

2

3

4

5

6

#
 o

f
h

y
d

ro
g

e
n

 b
o

n
d

s

Fig. 3: The number of hydrogen bonds between the core and dimeriza-
tion domain during a conformational transition between the inward-
open and outward-open state of EcNhaA.

Acknowledgements

DLD was in part supported by a Molecular Imaging Fellowship
from the Department of Physics at Arizona State University. SLS
was supported in part by a Wally Stoelzel Fellowship from the
Department of Physics at Arizona State University. ML was sup-
ported by the Max Planck Society. RG was supported by BBSRC
grant BB/J014478/1. OB was supported in part by grant ACI-
1443054 from the National Science Foundation; computational
resources for OB’s work were in part provided by the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant number ACI-
1053575 (allocation MCB130177 to OB).

REFERENCES

[vdW11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011)

[Roc15] Matthew Rocklin. Dask: Parallel Computation with Blocked algo-
rithms and Task Scheduling, Proceedings of the 14th Python in
Science Conference, 130-136 (2015)

[Jai15] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M.
Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson. FireWorks: a dynamic workflow system designed
for high-throughput applications. Concurrency Computat.: Pract.
Exper., 27: 5037–5059. doi: 10.1002/cpe.3505 (2015)

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56
(2010)

[MiA11] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and O. Beckstein.
MDAnalysis: A toolkit for the analysis of molecular dynamics
simulations, J Comp Chem, 32: 2319-2327. doi: 10.1002/jcc.21787
(2011)

[Lee14] C. Lee, S. Yashiro, D. L. Dotson, P. Uzdavinys, S. Iwata, M. S.
P. Sansom, C. von Ballmoos, O. Beckstein, D. Drew, and A. D.
Cameron. Crystal structure of the sodium-proton antiporter NhaA
dimer and new mechanistic insights, J Gen Physiol, 144:529–544.
doi: 10.1085/jgp.201411219 (2014)

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 57

Comparison of machine learning methods applied to
birdsong element classification

David Nicholson‡∗

F

Abstract—Songbirds provide neuroscience with a model system for under-
standing how the brain learns and produces a motor skill similar to speech.
Much like humans, songbirds learn their vocalizations from social interactions
during a critical period in development. Each bird’s song consists of repeated
elements referred to as “syllables”. To analyze song, scientists label syllables
by hand, but a bird can produce hundreds of songs a day, many more than
can be labeled. Several groups have applied machine learning algorithms to
automate labeling of syllables, but little work has been done comparing these
various algorithms. For example, there are articles that propose using support
vector machines (SVM), K-nearest neighbors (k-NN), and even deep learning
to automate labeling song of the Bengalese Finch (a species whose behavior
has made it the subject of an increasing number of neuroscience studies).
This paper compares algorithms for classifying Bengalese Finch syllables (build-
ing on previous work [https://youtu.be/ghgniK4X_Js]). Using a standard cross-
validation approach, classifiers were trained on syllables from a given bird,
and then classifier accuracy was measured with large hand-labeled testing
datasets for that bird. The results suggest that both k-NN and SVM with a
non-linear kernel achieve higher accuracy than a previously published linear
SVM method. Experiments also demonstrate that the accuracy of linear SVM
is impaired by "intro syllables", a low-amplitude high-noise syllable found in
all Bengalese Finch songs. Testing of machine learning algorithms was car-
ried out using Scikit-learn and Numpy/Scipy via Anaconda. Figures from this
paper in Jupyter notebook form, as well as code and links to data, are here:
https://github.com/NickleDave/ML-comparison-birdsong

Index Terms—machine learning,birdsong,scikit-learn

Introduction

Songbirds as a model system for the study of learned vocalizations

Songbirds provide an excellent model system through which we
can understand how the brain learns and produces motor skills
like speech [FEE2010]. Like humans, songbirds learn to vocalize
during a critical period in development. During that critical period,
they require social interactions, sensory feedback, and practice
to learn their vocalizations, just like humans. The songbird brain
contains a network of areas specialized for learning and producing
song, known as the song system. These brain areas occur only in
songbirds, not in birds that do not learn song (e.g., a pigeon).
At the same time, all bird brains contains most of the major
regions found in the human brain, and the song system sits within
these regions that are conserved across evolution. Because of

* Corresponding author: dnicho4@emory.edu
‡ Emory University, graduate program in Neuroscience, Biology department

Copyright © 2016 David Nicholson. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

these similarities, we can learn about how our own brains work
by studing the songbird brain. For example, studies of songbirds
have contributed greatly to our understanding of the basal ganglia
[DOUPE2005].

Machine-learning methods for labeling elements of song

Analysis of birdsong (for neuroscience or the many other fields
that study this behavior) typically focuses on "syllables" or
"notes", recurring elements in the song. An example song is shown
in 1.

Each individual has a unique song that bears some similarity
to the song of the bird that tutored it, but is not a direct copy. To
analyze song, experimenters label syllables by hand. Typically the
experimenter records one bird at a time while carrying out a be-
havioral experiment. However, each songbird produces thousands
of songs a day, more than can be labeled.

In order to deal with this mountain of data, some labs have
developed automated analyses. One popular approach scores songs
based on similarity of spectrograms, without labeling syllables
[TCHER2000]. Another method uses semi-automated clustering
to label a birds’ syllables, and then measures changes in acoustic
and temporal structure of song over days using a distance metric
[WU2008]. Other approaches make use of standard supervised
learning algorithms to classify syllables, such as Hidden Markov
Models [KOGAN2008]. While code for some of these automated
analyses is freely available, and there are some repositories of
song on-line, to my knowledge almost no work has been done
to compare the different algorithms. Note that the studies in
this paper are concerned with training a classifier on syllables
of one bird’s song to automate labeling of those syllables, not
with training a classifier to distinguish the song of one bird from
another.

The experiments in this paper compare three classifiers applied
to one species, the Bengalese Finch. This species is of interest for
several reasons. Bengalese Finches depend heavily on auditory
feedback throughout life to maintain their vocalizations, much
like humans ([SOBER2009] and references therein). In addition,
their song tends to have relatively easy-to-quantify acoustic fea-
tures (e.g., many of the syllables are "low entropy", having a
pitchy, whistle-like timbre). Several previously-published studies
or open-sourced packages have applied various machine learning
techniques to Bengalese Finch song, including support vector ma-
chines (SVMs) [TACH2014], and k-Nearest Neighbors (k-NNs)
[TROYER2012]. Again, to my knowledge no study has compared
these methods with open source code and openly shared data.
This study compares the accuracy and amount of training data

58 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 1: Spectrogram of Bengalese Finch song. Letters below the time axis, e..g, "i","a","b",..., are labels for syllables, the discrete elements
of song separated by brief silent intervals. Frequency (kHz) on the y axis and time on the x axis.

required for SVMs and k-NNs, since at the time of the experiments
they were the most recently published methods where code was
available. As described in the methods section, for linear SVMs
the same C-language library and the same features were used as in
[TACH2014], and for k-NN a set of features similar to those used
by [TROYER2012] and other songbird researchers was used. The
Sci-Kit Learn library [PEDREGOSA2011] provided a convenient
API to train both k-NN and support vector machines with non-
linear kernels for comparison with the linear SVM results.

Methods

All code used can be found at https://github.com/NickleDave/
ML-comparison-birdsong/. Instructions to repeat the experiments
are in https://github.com/NickleDave/ML-comparison-birdsong/
tree/master/experiment_code. Results and data can be downloaded
from http://www.nicholdav.info/data. That page includes files of
the features used with the machine learning algorithms to train
classifiers, and an example day of raw song files from one
bird presented in this paper. Instructions for how to use the
feature extraction scripts to reproduce the related file of features
from that day of song are in https://github.com/NickleDave/ML-
comparison-birdsong/tree/master/feature_extraction_code.

Data acquisition

Song was recorded from four birds, and two to four days worth
of songs from each bird were labeled by hand, using custom
software written in Labview and Matlab (the Labview program
EvTAF for recording, and associated Matlab code for labeling and
analysis [TUMER2007]). In some cases more than one person
labeled song from a given bird, but everyone that labeled song
referred to an agreed-upon rubric for the labels given to syllables.
Extra attention was given to the labels because the song was used
in behavioral experiments that could have potentially changed
syllable acoustics and sequence. All the song used in this study,
however, was "baseline" song recorded before the behavioral
experiments. Hence I am very confident in this ground truth set.

Raw audio files were bandpass filtered to retain signal between
500 hz and 10 kHz, then smoothed with a Hanning filter. The
smoothed signal was segmented into syllables by finding where
its amplitude crossed a threshold and where the resulting segments
were a minimum duration with a minimum interval between them.
The threshold, minimum segment duration, and minimum interval
between segments were kept constant for all songs from a given
bird except in occassional cases where this method segmented
the syllable incorrectly (e.g. because of background noise in the
recording).

Feature extraction for use with machine learning algorithms

Once syllables were segmented, features were extracted from them
to be used by the machine learning algorithms. Matlab scripts were

used for feature extraction. See https://github.com/NickleDave/
ML-comparison-birdsong/master/feature_extraction_code/ for
this code and for equivalents written in Python using the
Matplotlib [HUNTER2007] and Numpy [VANDERWALT2011]
packages. The Python versions of the code return slightly different
values because of floating point error. I do not expect that using
the Python code would qualitatively change the results, but I did
not test this. Duration and amplitude features were based on the
raw signal; all other features were extracted from spectrograms.

Experiments based on [TACH2014] used the features in
that paper, calculated with the code kindly provided by R.O.
Tachibana.

For the k-Nearest Neighbor experiments, I used a feature set
consisting of: the syllable duration, as well as the duration of
the preceding and following syllables, and the preceding and
following ’silent gaps’ separating the syllables; the Root-Mean-
Square amplitude; the spectral entropy; the ’high-low ratio’ (power
in the 5-10 kHz range / power in the 0-5 kHz range); delta entropy
(entropy at 80% of the syllable’s duration - entropy at 20% of the
syllable’s duration); and delta high-low ratio (again the difference
at 80% and 20% of the syllable’s duration).

Comparison of machine learning algorithms

The goal of comparing algorithms was to determine which could
achieve the highest accuracy with the smallest amount of hand-
labeled training data. The amount of training data took the form of
the number of songs used to train the classifiers. Algorithms were
trained by number of songs instead of number of samples because
it is most natural for an experimenter to hand-label a set number
of songs. This also guaranteed that the frequency of each class
of syllable in the training set approximated its frequency in the
population. Roughly speaking, less common syllables appeared
~10^3 times in the entire training set while more common syl-
lables appeared ~10^4 times. Preliminary experiments comparing
the accuracy of this method to accuracy when the same number
of samples for each class was used did not suggest that there was
any effect of class imbalance.

Each type of classifier was trained with k songs where k
belongs to the set {3,6,9,...27,33,39}. For each k, 5-fold cross
validation was used to estimate the accuracy of every classifier.
Accuracy was measured as average accuracy across all classes
of syllable, because the goal is to achieve the highest accuracy
possible for all classes. For every fold, k songs were chosen at
random from the training set. This training set consisted of one full
day of song, ranging from 100-500 songs depending on the bird.
After a classifier was trained with the samples in the k randomly
chosen songs, its accuracy was determined on a separate testing
set. The testing set consisted of 1-3 additional days of hand-labeled
song; no songs from the training data were used in the testing data.

There were three types of models tested: the linear sup-
port vector machine as described in [TACH2014], the k-Nearest

COMPARISON OF MACHINE LEARNING METHODS APPLIED TO BIRDSONG ELEMENT CLASSIFICATION 59

Neighbors algorithm, and a support vector machine with a radial
basis function as the kernel. Hence, for the 3-song condition, 3
different songs were drawn randomly 5 times, and each time all
3 algorithms were trained with the syllables from those songs,
and lastly the accuracy was calculated. All feature sets were z-
standardized before training.

Comparison of all machine learning algorithms was greatly
facilitated by Scikit-learn [PEDREGOSA2011]. I did use the
Liblinear package [FAN2008] directly, instead of the implemen-
tation in Scikit-learn, to follow as closely as possible the meth-
ods in [TACH2014] (see http://scikit-learn.org/stable/modules/
linear_model.html#liblinear-differences). I interacted with Liblin-
ear through the Python API (https://github.com/ninjin/liblinear/
tree/master/python) compiled for a 64-bit system. The hyperpa-
rameters were those used in [TACH2014]: L2-regularized L2-loss
with the cost parameter fixed at 1. Both k-Nearest Neighbors (k-
NN) and the support vector machine with radial basis function
(SVM-RBF) were implemented via Scikit-learn. For k-NN, I
weighted distances by their inverse because I found empirically
that this improved classification. I did not test other weightings.
For SVM, the RBF hyperparameters ’C’ and ’gamma’ were found
for each set of training samples using grid search.

Results

Both k-NN and SVM with a nonlinear kernel yield higher average
accuracy than linear SVM

The main result of this paper is presented in 2. It shows that the
average accuracy across classes, i.e. song syllables, was higher for
k-NN and for SVM with a non-linear kernel than for linear SVM.
(The non-linear kernel is a radial basis function, so the classifier
will be abbreviated SVM-RBF). The validation curves for k-NN
(blue line) and SVM-RBF (black line) rise more quickly than the
curve for linear SVM (red line), indicating they achieve higher
accuracy with less training data. Also notice that all the curves
reach an asymptote, and that for three of four birds, both k-NN
and SVM-RBF achieve higher accuracy at this asymptote than
linear SVM. For bird 4 (lower right axis), linear SVM eventually
achieved higher accuracy than k-NN, given enough training data,
but never reached the accuracy of the SVM-RBF classifier.

As explained in the Methods section, accuracy was estimated
with cross validation. Briefly: random samples were drawn from
the training data and accuracy was measured on a completely
separate set of testing data. Importantly, the number of samples
in the testing data set was roughly on the order of the number of
syllables that are hand-labeled for a typical songbird behavioral
experiment. (Some previous studies have estimated accuracy for
large data sets by bootstrapping from a smaller set of hand-labeled
testing data.) Note that the comparison uses accuracy averaged
across classes as a metric, because the ideal case would be to have
each type of syllable classified perfectly. Note also that classifiers
were trained with a number of songs instead of number of samples,
because it is typical for a songbird reseacher to label complete
songs instead of labeling e.g., 100 samples or "sixty seconds" of
syllables. Each time a Bengalese Finch sings its song, it may sing
a varying number of syllables. Hence one set of three songs drawn
at random from the training data might have a different number
of samples than another set. This difference in number of training
samples accounts for some of the variance in accuracy scores, but
k-NN and SVM-RBF clearly achieve higher accuracy than linear
SVM in spite of this added variance.

Fig. 2: Validation curves showing accuracy vs. number of songs used
to train classifiers. Y axis: average accuracy across labels, x axis:
number of songs used to train the classifiers. Points are accuracy for
each fold of 5-fold cross validation. Validation curves are mean, and
error bars are standard deviation across five folds. Red line: linear
support vector machine (linear SVM); blue line: k-Nearest Neighbors
(k-NN); black line: support vector machine with radial basis function
as kernel (SVM-RBF). Note that accuracy is average accuracy across
classes, i.e., song syllables.

Fig. 3: Features added that improved k-NN accuracy

It is also important to note that the k-NN classifier used a
distinct set of features from those used in [TACH2014] because
of concerns that the number of dimensions would impair k-
NN accuracy. (In high-dimensional spaces, everything is close to
everything, so the distances used by k-NN to determine nearest
neighbor become uninformative, see [BEYER1999].) Instead, the
k-NN algorithm used a small set of acoustic parameters that are
commonly measured in songbird research, in addition to features
from neighboring syllables that greatly improved the accuracy
of the algorithm. These features from neighboring syllables are
schematized in 3. The SVM-RBF classifier used the exact same
features as the linear SVM. Experiments below address the ques-
tion of whether the differences between classifiers shown in 2 arise
from a difference in features used or a difference in the classifiers
themselves.

60 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 4: Introductory notes are low-amplitude high-noise syllables
that often occur at the start of song Red boxes indicate introductory
notes.

Fig. 5: Accuracy vs. number of songs used to train linear SVM, with
intro syllables removed from training and test sets. Y axis: average
accuracy across labels, x axis: number of songs used to train the linear
SVM. Removing intro syllables greatly increased accuracy for three
of four birds.

Intro syllables impair the accuracy of linear SVMs

The result in 2 was suprising, given the previously reported
accuracy for linear SVMs applied to Bengalese finch song
[TACH2014]. One potential cause for the impaired accuracy of
the linear SVM method is the presence in song of “introductory
notes”, low-amplitude, high-entropy syllables that often occur at
the start of song, hence their name. Examples are shown in 4.
Because these syllables have low amplitude, it can be hard to de-
tect their onset and offset, so the distribution of their duration will
have much more variance than other syllabes. Likewise because
they are high entropy, any feature derived from the spectrum will
also be more variable. For example, measuring the "pitch" of an
intro syllable by finding the peak in its power spectrum would
yield wildly varying values, because there is no consistent peak
to measure across renditions of the syllable. These sources of
variability probably make it harder to separate intro syllables from
other types.

The next experiment determined whether removing intro syl-
lables from the training and test sets would rescue the accuracy
of the linear SVM. For the song of the birds used in this study,
removing intro syllables greatly increased accuracy, as shown in 5.
Note that this result is consistent with the findings of [TACH2014].
In their final set of experiments they found that the syllables most
likely to be misclassified were those at the beginning and end of
song, i.e., intro syllables.

Fig. 6: Accuracy v. number of songs used to train SVM-RBF, k-NN,
and linear SVM, all trained with the same acoustic features Y axis:
average accuracy across labels, x axis: number of songs used to train.

When using the same features to train all models, SVM-RBF still
outperforms k-NN that in turn outperforms linear SVM

The results in 2 showed that k-NN and SVM-RBF can yield
higher average accuracy than linear SVM. However, the feature
set for training the k-NN differed from the feature set for the SVM
classifiers. As described above, a different feature set was used for
k-NN because of concerns that the 536-dimensional feature vector
would yield poor results (see [BEYER1999] for an in-depth study
of how the number of features affects k-NN accuracy).

This leaves unanswered the question of whether differences in
accuracy are due to the features used, or due to the ability of the
algorithms to fit models to the feature space (or some combination
of both). To address this question, the same approach was used to
compare all three algorithms, but this time classifiers were trained
with a set of 20 acoustic features from [TACH2014]. For all 4
birds tested, SVM-RBF acheived higher average accuracy with
less training data than k-NN, and k-NN outperformed linear SVM,
as shown in 6.

All three algorithms were also compared with the feature set
originally used for training k-NN classifiers. Here, the results were
less clear. As shown in 7, for three birds, SVM-RBF performed
about as well as k-NN, and both performed better than linear
SVM. For bird 4, k-NN on average performed better but the
replicates showed high variance in the average accuracy.

Conclusion

There are two clear results from these experiments. First, the
linear SVM method proposed in [TACH2014] is impaired by intro
syllables in the songs of Bengalese Finches. Second, use of the
radial basis function as a kernel can improve SVM performance
when applied to the features in [TACH2014].

These results do not answer the question of how often the
method of [TACH2014] will be impaired by any given bird’s song.
What can be said is that for two of the four birds tested, average
accuracy for linear SVM did not approach 99% until at least 33
songs were used to train the classifier (birds 2 and 3, 2), and for
one bird, average accuracy never went above 97% (bird 1, 2). By
comparison, when training SVM-RBF classifiers with the same

COMPARISON OF MACHINE LEARNING METHODS APPLIED TO BIRDSONG ELEMENT CLASSIFICATION 61

Fig. 7: Accuracy v. number of songs used to train SVM-RBF, k-NN,
and linear SVM, all trained with features originally used for k-NN
Y axis: average accuracy across labels, x axis: number of songs used
to train.

feature set, 6 songs was enough to achieve >99% average accuracy
for 3 of the 4 birds (as shown in 2).

When the feature set is held constant, for all four birds, linear
SVM is always outpeformed by k-NN and SVM-RBF. Again,
it can not be said based on the results how often this would
be the case for any given Bengalese finch’s song. But the large
difference in average accuracy between linear SVM and the other
two methods for the four birds tested here (:ref: fig6 and :ref:
fig7) certainly suggests that in general the other two methods will
outperform linear SVM. Interestingly, the set of twenty acoustic
features developed by [TACH2014] yielded what appears to be a
large difference in accuracy between the three algorithms. This
result shows that instead of using a 536-feature vector with the
linear SVM, one can use the 20 features with SVM-RBF, and
achieve higher accuracy with less training time and data. (Training
time was not measured for each classifier but the experiments in
2 took a week to run while the experiments in 6 took two days to
run. This difference was due mainly to the time required for the
grid search for SVM-RBF hyperparameters.)

It remains to be tested whether any differences in accuracy
translate into meaningful differences in results obtained from
analysis of song. That is to say that linear SVMs trained with
the original [TACH2014] feature set might yield good enough
classifiers to detect some changes in song that experimenters care
about. Data sets from songbird behavioral experiments, not just
from baseline song, should be used to determine whether this is
the case.

There are also other issues to be dealt with to make ma-
chine learning methods practical for birdsong researchers. One
is how well each method can provide an estimate that a given
classification is correct. The libSVM library, for example, can
provide probability estimates using a computationally expensive
5-fold cross-validation. But, because the soft margin in support
vector machine training algorithms allows some misclassifications,
some samples will be misclassified yet still appear to have a
high probability of being correct. As [KOGAN2008] recognized
in their study, it is also important to determine how well all of
these algorithms deal with the presence of sounds that are not part
of song, e.g., calls, wing flaps, etc. Such events are rare enough

that they may be difficult to detect without changes to the training
algorithm, but frequent enough that if misclassified as syllables
they could affect analyses of song.

Taken together, the results here demonstrate the importance of
comparing how different classifiers perform in a given problem
domain. This comparison is an attempt to build upon the previous
studies cited, studies that showed that machine learning methods
can facilitate much more fine-grained analyses of birdsong. The
results here suggest there are still some issues with practical
application of machine learning to birdsong, however. Sharing
code, results, and raw data will help resolve these issues and lead
to better results for the biologists and machine learning scientists
studying birdsong.

Acknowledgements

Thank you to Samuel J. Sober for supporting this work in every
way. I would also like to acknowledge helpful input from Shamim
Nemati, Supreeth Prajwal, Alex Dunlap, and Kyle Srivastava.
Thanks also to all members of the Sober lab, my science family,
especially to Jonah Queen, undisputed champion and reigning
king of syllable labeling.

REFERENCES

[DOUPE2005] Doupe, Allison J., et al. Birdbrains could teach basal
ganglia research a new song. Trends in neurosciences
28.7 (2005): 353-363.

[FEE2010] Fee, Michale S., and Constance Scharff. The songbird
as a model for the generation and learning of complex
sequential behaviors. ILAR journal 51.4 (2010): 362-
377.

[TCHER2000] Tchernichovski, Ofer, et al. A procedure for an au-
tomated measurement of song similarity. Animal Be-
haviour 59.6 (2000): 1167-1176.

[WU2008] Wu, Wei, et al. A statistical method for quantifying
songbird phonology and syntax. Journal of neuro-
science methods 174.1 (2008): 147-154.

[KOGAN2008] Kogan, Joseph A., and Daniel Margoliash. Automated
recognition of bird song elements from continuous
recordings using dynamic time warping and hidden
Markov models: A comparative study. The Journal
of the Acoustical Society of America 103.4 (1998):
2185-2196.

[SOBER2009] Sober, Samuel J., and Michael S. Brainard. Adult
birdsong is actively maintained by error correction.
Nature neuroscience 12.7 (2009): 927-931.

[TACH2014] Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo
Okanoya. Semi-automatic classification of birdsong
elements using a linear support vector machine. PloS
one 9.3 (2014): e92584.

[TROYER2012] http://www.utsa.edu/troyerlab/software.html
[BEYER1999] Beyer, Kevin, et al. When is “nearest neighbor”

meaningful?. Database theory—ICDT’99. Springer
Berlin Heidelberg, 1999. 217-235.

[FAN2008] Fan, Rong-En, et al. LIBLINEAR: A library for large
linear classification. The Journal of Machine Learn-
ing Research 9 (2008): 1871-1874.

[TUMER2007] Tumer, Evren C., and Michael S. Brainard. Per-
formance variability enables adaptive plasticity of
‘crystallized’adult birdsong. Nature 450.7173 (2007):
1240-1244.

[VANDERWALT2011] Van Der Walt, Stefan, S. Chris Colbert, and Gael
Varoquaux. The NumPy array: a structure for effi-
cient numerical computation. Computing in Science
& Engineering 13.2 (2011): 22-30.

[HUNTER2007] Hunter, John D. Matplotlib: A 2D graphics envi-
ronment. Computing in science and engineering 9.3
(2007): 90-95.

[PEDREGOSA2011] Pedregosa, Fabian, et al. Scikit-learn: Machine learn-
ing in Python. The Journal of Machine Learning
Research 12 (2011): 2825-2830.

62 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

MONTE Python for Deep Space Navigation
Jonathon Smith, William Taber, Theodore Drain, Scott Evans, James Evans, Michelle Guevara, William Schulze,

Richard Sunseri, Hsi-Cheng Wu‡∗

https://youtu.be/E3RhKKpm4TM

F

Abstract—The Mission Analysis, Operations, and Navigation Toolkit Environ-
ment (MONTE) is the Jet Propulsion Laboratory’s (JPL) signature astrodynamic
computing platform. It was built to support JPL’s deep space exploration pro-
gram, and has been used to fly robotic spacecraft to Mars, Jupiter, Saturn,
Ceres, and many solar system small bodies. At its core, MONTE consists of low-
level astrodynamic libraries that are written in C++ and presented to the end user
as an importable Python language module. These libraries form the basis on
which Python-language applications are built for specific astrodynamic applica-
tions, such as trajectory design and optimization, orbit determination, flight path
control, and more. The first half of this paper gives context to the MONTE project
by outlining its history, the field of deep space navigation and where MONTE fits
into the current Python landscape. The second half gives an overview of the
main MONTE libraries and provides a narrative example of how it can be used
for astrodynamic analysis. For information on licensing MONTE and getting
a copy visit montepy.jpl.nasa.gov or email mdn_software@jpl.nasa.gov.

Index Terms—astrodynamics, aerospace, orbit, trajectory, JPL, NASA

History

The United States began its reconnaissance of the solar system in
the early 1960s. As NASA developed new technologies to build
and operate robotic probes in deep space, JPL was working out
how to guide those probes to their destinations. In order to fly
spacecraft to Mars or Jupiter, engineers needed a way to model
their trajectories through interplanetary space. This was partly a
problem of astrodynamics, a field of study that mathematically
describes how man-made objects move through space. It was also
a problem of computation because engineers needed a way to
solve these complex astrodynamic equations for real spacecraft.
Beyond modeling the motion of spacecraft, engineers needed a
way to measure the location of spacecraft over time so they could
make informed corrections to their models. They also needed a
way of designing engine burns, or maneuvers, that would nudge a
wayward probe back on course.

These efforts, collectively known as deep space navigation,
quickly became coupled with software and computing. The first
programs JPL wrote to navigate spacecraft were written on punch-
cards and processed through an IBM 7090 mainframe. [Eke05]
Advances in computing technology were eagerly consumed by
navigators, as more storage and faster processing meant the

* Corresponding author: jonathon.j.smith@jpl.nasa.gov
‡ Jet Propulsion Laboratory, California Institute of Technology / NASA

Copyright © 2016 California Institute of Technology. Government sponsorship
acknowledged. This is an open-access article distributed under the terms of
the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author
and source are credited.

models used to fly spacecraft could be made increasingly detailed
and sophisticated.

Starting in 1964, a group of engineers, led by Ted Moyer,
began developing the astrodynamic algorithms and software
that would eventually become the Double Precision Trajectory
and Orbit Determination Program, or DPTRAJ/ODP ([Moy71],
[Moy03]). Over its forty-plus years of active life, JPL engineers
used the DPTRAJ/ODP to navigate the "Golden Age" of deep
space exploration. This included the later Mariner and Pioneer
missions, Viking, Voyager, Magellan, Galileo, Cassini and more.
Also over this time, its base language moved through Fortran IV,
Fortran V, Fortran 77 and Fortran 95 as the computational appetites
of navigators grew ever larger.

By 1998 it was clear that the aging DPTRAJ/ODP needed
to be updated once again. Rather than initiate another refactor,
JPL’s navigation section commissioned a new effort that would
depart from its predecessor in two important ways. First, the new
software would be an object-oriented library, written in C++ and
exposed to the user as a Python-language library. Second, it would
be a general-purpose astrodynamic computing platform, not a
dedicated navigation program like the DPTRAJ/ODP. The goal
was to create a single library that could be used for astrodynamic
research, space mission design, planetary science, etc., in addition
to deep space navigation. This new project was affectionately
named the Mission Analysis, Operations, and Navigation Toolkit
Environment, or MONTE-Python for short.

Throughout the first half of the 2000s, MONTE was care-
fully constructed by reshaping the algorithms under-pinning the
DPTRAJ/ODP into a rigorously tested and well documented
object-oriented software package. In 2007, MONTE had its first
operational assignment navigating NASA’s Phoenix lander to a
successful encoutner with Mars. Since 2012, MONTE has pow-
ered all flight navigation services at JPL, including the Cassini
extended mission, Mars Science Laboratory, MAVEN, GRAIL,
Dawn, Mars Reconnaissance Orbiter, Juno, and more. [Eva16]

Deep Space Navigation

At JPL, the practice of navigating robotic probes in deep space
is broken down into three interrelated disciplines: (1) designing
a reference trajectory which describes the planned flight path of
the spacecraft (mission design), (2) keeping track of the spacecraft
position while the mission is in flight (orbit determination), and (3)
designing maneuvers to bring the spacecraft back to the reference
trajectory when it has strayed (flight path control, Figure 1).

The process of designing a spacecraft reference trajectory
begins at the earliest stages of mission planning. Navigators work

MONTE PYTHON FOR DEEP SPACE NAVIGATION 63

Fig. 1: Illustration of Cassini’s reference trajectory at Saturn. The
mission designers built this trajectory, and the orbit determination
and maneuver design teams keep the spacecraft flying on these orbits
during the mission.

closely with mission science teams to put together a reference
orbit that allows the spacecraft to take all the desired science
measurements. They also work with mission planners and space-
craft system engineers to make sure that the spacecraft is able to
withstand the rigors of its planned trajectory. Through a process
of increasingly detailed iterations, a process which often takes
years, the mission reference trajectory is produced. This reference
trajectory serves as the flight plan for the spacecraft. It will be up
to the orbit determination and flight path control teams to make
sure the spacecraft follows this flight plan when the spacecraft
finally launches.

The job of the orbit determination team is to keep track of
where the spacecraft has been (orbit reconstruction), where it is
currently (orbit determination), and where it will go in the future
(orbit prediction). The spacecraft is always drifting away from its
planned flight path because of small disturbances it encounters in
space. Even the slight pressure of sunlight on the spacecraft can
add up over time and push a mission off course. The trajectory
designers do their best to account for these disturbances when
creating the reference orbit, but there is no accounting for the
randomness and unpredictability of the real world. To further com-
plicate matters, once the spacecraft leaves the launch-pad, it can
no longer be directly observed. Orbit determination analysts must
process various forms of tracking data that are tied mathematically
to the evolution of the spacecraft orbit to determine its position at
any given time.

Once the orbit determination team has a good estimate for
the current location of the spacecraft, the flight path control team
is responsible for evaluating how far the spacecraft has drifted
from the reference trajectory and designing a maneuver to get the
spacecraft back on course. The result of this maneuver design
is a ∆V vector, which stands for delta-velocity or change in
velocity. This ∆V vector represents the direction and magnitude
of the required change in the spacecraft velocity which must be
accomplished to get the spacecraft back on course. Once in hand,
this ∆V vector will be sent to the spacecraft propulsion team, who
will decompose it into thruster firings on the spacecraft. These
will be uplinked to the spacecraft, which will then perform the
maneuver.

After a maneuver has been performed, the cycle repeats.
Perhaps the thrusters were slightly misaligned or the engine cutoff
was a second too late. The orbit determination team must examine
more tracking data to find out. This iterative relationship between

orbit determination and flight path control continues without
pause through the lifetime of a flight mission. The spacecraft is
constantly wandering off, and must be patiently brought back on
course.

MONTE as a Platform

As previously mentioned, MONTE was built to be a general pur-
pose astrodynamic computing platform, not a dedicated navigation
application. It supplies the models and computational algorithms
needed for trajectory design, orbit determination and flight path
control but doesn’t force the end-user into any specific workflow
or interface. As a result, before MONTE can be used on a flight
mission, it must be deployed for that mission. This entails using
MONTE in cooperation with other applications and libraries to
assemble a custom navigation framework.

The process of deploying MONTE for a flight mission can
be quite involved. The effort to build a navigation system for the
Cassini Extended Mission took over two years, and required the
use of many other Python libraries in addition to MONTE. The
resulting navigation framework can not be properly characterized
as MONTE itself. Rather, it is a custom application built using the
MONTE library to perform navigation for that specific mission.

This is important to note because it illustrates the way in which
MONTE is likely to be useful to those outside JPL. Deep space
navigation is (not yet at least) a high-demand field. The majority
of astrodynamic computing occurs in other contexts such as
Earth-centered navigation (weather and communication satellites,
etc), collision avoidance analysis (making sure two spacecraft
don’t collide), cooperative rendezvous (docking a cargo-ship to
the International Space Station) and non-cooperative rendezvous
(capturing a malfunctioning satellite), etc. Much the same way
that MONTE can be configured and deployed for deep space
navigation, it can also be brought to bear on these and other
problems across the aerospace industry.

MONTE provides a solid foundation of core systems that
make it attractive as a general purpose astrodynamic platform.
These include models for trajectories and trajectory queries, co-
ordinate frames and rotations, high-precision time, astrodynamic
event searches, numerical integrators, configurable optimizers,
and many more. By starting with MONTE, a user can focus
on solving the problem at hand, and leave the important-but-
incidental infrastructure to MONTE.

MONTE and the Python Ecosystem

MONTE has a decidedly friendly stance when it comes to working
with other libraries in the Python scientific computing stack. It
makes heavy use of many open-source Python libraries such as
matplotlib and IPython (Jupyter), and reciprocally tries to make
it easy for users of these systems to interface with MONTE.
Many of MONTE’s classes can transform themselves into NumPy
data types --- a common pattern is for MONTE classes to
have a .toArray method which returns a numpy.ndarray.
Additionally, the MONTE team has a history of collaboration
with matplotlib dating all the way back to the early 2000s. They
have contributed code that makes matplotlib able to natively plot
MONTE’s unit and time systems, and have also open-sourced
a custom matplotlib styling-system (github.com/nasa/mplStyle)
developed in house.

The MONTE project started in 1998 at a time when the Python
language was still relatively new. As a result, MONTE has several

64 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

custom systems that are redundant in the current Python landscape.
For instance, MONTE developed an interactive shell similar to
IPython and has several numerical computing classes that would
generally be dispatched to NumPy in a brand new project.

Historical quirks aside, MONTE considers itself a member
of the Python scientific programming community and aims to
integrate as seamlessly as possible with other Python libraries.
It can be embedded in custom GUI applications, run on a back-
end server, executed in parallel across a cluster of nodes, and
pretty much anything else you would expect of a dynamic, well
constructed Python library.

Library Overview

Most of the functionality of MONTE is encapsulated in the
Monte and mpy libraries. Monte is written in C++ and wrapped
in Python. It is presented to the end user as a normal, importable
Python-language module. The mpy module is written entirely in
Python and contains higher level applications built using Monte
and other Python libraries.

Convention is to import the main Monte library as M.
Throughout this paper, if a class is referred to with the prefix
M., it means this class belongs to the main MONTE library (e.g.
M.TrajLeg, M.Gm, etc). The following example shows a simple
script using the Monte and mpy libraries to get the state of the
Cassini spacecraft with respect to Saturn at the time of its Saturn
Orbit Insertion (SOI) burn.12

import Monte as M
import mpy.io.data as defaultData

Set up a project BOA database, and populate it
with astrodynamic data from default data
boa = defaultData.load(["time", "body", "frame",
"ephem/planet/de405"])

Load the Saturn satellite ephemeris and Cassini
trajectory into our BOA database
boa.load("saturn_satellites.boa")
boa.load("cassini_trajectory.boa")

Define time of SOI
soiTime = M.Epoch("01-JUL-2004 02:48:00 UTC")

Get the trajectory manager from the BOA database
traj = M.TrajSetBoa.read(boa)

Request the state of Cassini at SOI from the
trajectory manager in a Saturn-centered Earth
Mean Orbit of 2000 coordinate frame
casAtSoi = traj.state(soiTime, "Cassini", "Saturn",
"EMO2000")

Several of MONTE’s core systems --- the basic astrodynamic
scaffolding that supports its more advanced functionality --- are
used in the above example. These are explained in a short tour of
MONTE below.

BOA

The Binary Object Archive (BOA) is MONTE’s primary data
management system. Most MONTE classes that define concrete
objects (for instance, M.Gm which defines the standard gravita-
tional parameter for a natural body or M.FiniteBurn which

1. All MONTE code in this paper is current as of the v121 delivery.
2. Saturn Orbit Insertion was a spacecraft maneuver that occurred as Cassini

approached Saturn. It changed the course of the spacecraft so that instead of
flying past Saturn, it captured into orbit around the planet.

defines a spacecraft burn) are stored in BOA, and accessed by
MONTE’s astrodynamic functions from BOA.

BOA is based on the binary XDR data format, which allows
data to be written-to and read-from binary on different operating
systems and using different transport layers (e.g. you can read and
write locally to your hard disk, or over a network connection).

The role that BOA plays in MONTE can perhaps be best
understood as "defining the universe" on which MONTE’s astro-
dynamic tools operate. In our example, we populated our "model
universe" (e.g. our BOA database) with time systems, natural body
data, a planetary ephemeris, the Cassini spacecraft trajectory, etc.
We then asked MONTE’s trajectory manager (an astrodynamic
tool) to examine this particular universe and return the state of
Cassini with respect to Saturn.

Default Data

A standard MONTE installation comes with a collection of prede-
fined, publicly available astrodynamic datasets (the "default data
depot"). These can be accessed and loaded into a BOA database
via MONTE’s default data loader (mpy.io.data) and serve to
help an analyst get a "model universe" up and running quickly.

Time and Units

In the astrodynamic community there are multiple time systems
used to describe the dynamics of a spacecraft and to specify
the time of an observation. While necessary, multiple systems
for specifying time can add considerable complexity to software.
In MONTE, time is encapsulated in the M.Epoch class, which
supports time definition in the TDB, TT, TAI, GPS, UTC, and UT1
systems. This class handles the problem of transforming times
between different frames thereby allowing the user to specify
times in the most convenient form for their application.

MONTE’s unit system supports the notions of time, length,
mass, and angle. It has implemented operator overloading to allow
unit arithmetic, e.g. dividing a unit length by a unit time results in
unit velocity. Most functions that accept unit-quantities also check
their inputs for correctness, so supplying a unit length to a function
that expects unit time will raise an exception.

Trajectories

MONTE models spacecraft and natural body trajectories in a
number of underlying formats; most of the differences involve
how many data points along the trajectory are stored, and how to
interpolate between these points. In addition, MONTE provides
conversion routines which allow some external trajectory formats
to be read and written (including NAIF "bsp" files and interna-
tional "oem" files).

The M.TrajSet class is MONTE’s trajectory manager, and
is responsible for coordinating state requests between all of the
trajectories loaded into a given BOA database. It has access to the
coordinate frame system (described in the next section) allowing
it to make coordinate frame rotations when doing state queries. In
fact, most coordinate frame rotations in MONTE are accomplished
by simply requesting a state from M.TrajSet in the desired
frame.

The general steps for building and using trajectories in
MONTE are illustrated in Figure 2.

Coordinate Frames

The MONTE trajectory and coordinate frame systems are very
analogous and have a tight integration that enables powerful state

MONTE PYTHON FOR DEEP SPACE NAVIGATION 65

Fig. 2: Dataflow through MONTE’s trajectory system

Fig. 3: Cooperation between MONTE’s trajectory and coordinate
frame systems

requests. Figure 3 illustrates these similarities and how the two
systems are integrated.

MONTE models coordinate frames in a number of underlying
formats and provides conversion routines which allow some ex-
ternal coordinate frame formats to be read and written (including
NAIF "ck" files).

Event Finding

MONTE allows a user to search through astrodynamic relation-
ships in a given BOA database in pursuit of particular events.
For instance, the M.AltitudeEvent class allows a user to
search for when a spacecraft is within a certain altitude range
from another body.

Numerical Integration

MONTE provides a framework for numerically integrating space-
craft and natural body trajectories, subject to a set of force models
such as gravity, solar radiation pressure, atmospheric drag, etc.
The resulting trajectory has the Cartesian position and velocity of
the body over time, and optionally the partial derivatives of state
parameters with respect to parameters in the force models. A walk-
through of setting up MONTE’s numerical integration system for
a simple gravitational propagation is shown in Figure 4.

In addition to trajectories, MONTE also allows numerical
integration of mass (for instance due to burning of propellant),
coordinate frames (rigid body dynamics), time (relativistic time
transformations) and user-defined ordinary differential equations.

Fig. 4: Overview of MONTE’s numerical integration system.

Parameters and Partial Derivatives

MONTE’s parameter system supports the calculation of partial
derivatives for astrodynamic variables, which can then be used
in optimization and estimation. Every variable that belongs to
the parameter system is responsible for not only calculating its
value, but also its partial derivative with respect to any other
parameters. These partial derivatives are contained in a special set
of classes that employ operator overloading to correctly combine
partial derivatives under various mathematical operations. [Smi16]

Example: Exploring bodies in motion

Generally, MONTE is scripted or assembled into custom appli-
cations that solve complex end-user problems. However, it is also
useful as an off-the-cuff tool to explore astrodynamic relationships
as we will see in the narrated example below.

For this example, we will explore the Voyager 2 trajectory.
We will identify the time and distance of the Uranus planetary
encounter, and also find the time periods where Voyager 2 was in
line with the sun. Along the way we will highlight various aspects
of MONTE’s core systems. Also, if our exploration happens to
turn up anything interesting (it will), we will take some time to
investigate what we find.

Voyager 2 Trajectory

We begin by specifying the model of the solar system during
Voyager’s mission. This is done by creating a BOA database
and loading the default data sets for planetary ephemerides (the
trajectories of all the planets in the solar system), coordinate
frames, and body parameters like mass and shape. We will also
load in our Voyager 2 trajectory.3

3. JPL hosts two excellent websites for accessing trajectory data for natural
solar system bodies and deep-space probes. The Horizons website (http:
//ssd.jpl.nasa.gov/horizons.cgi) is maintained by JPL’s Solar System Dynamics
group and has an expansive and powerful webapp for getting ephemerides
in a variety of formats. The Navigation and Ancillary Data Facility (NAIF)
at JPL hosts the navigation section of NASA’s Planetary Database System.
At its website (http://naif.jpl.nasa.gov/naif/data.html), you will find a host
of downloadable binary navigation files, which can be used with the SPICE
toolkit, and of course, with MONTE.

For the following examples, we will be using the Voyager 2 space-
craft trajectory, which can be downloaded at http://naif.jpl.nasa.gov/pub/
naif/VOYAGER/kernels/spk/. The file name at the time of this writing is
"voyager_2.ST+1992_m05208u.merged.bsp", which we will shorten to just
"voyager2.bsp" for ease of use.

66 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

In [1]: import Monte as M
In [2]: import mpy.io.data as defaultData
In [3]: boa = M.BoaLoad()
In [4]: defaultData.loadInto(boa,

...: ["ephem/planet/de405", "frame", "body"])
In [5]: boa.load("voyager2.bsp")

The trajectories of Voyager and the natural bodies of the solar
system are coordinated by the trajectory manager (M.TrajSet)
that is supplied by BOA we just created. We can retrieve the
trajectory manager using its BOA accessor M.TrajSetBoa.
Every object that resides in BOA has an accessor (often named
M.ClassNameBoa) that allows it to be read to and from the
database. Once in hand, we can list all the trajectories that are on
the BOA using the M.TrajSet.getAll method.
In [6]: traj = M.TrajSetBoa.read(boa)
In [7]: traj.getAll()
Out[7]: ['Mercury', 'Mercury Barycenter',

'Venus', 'Venus Barycenter',
'Earth', 'Earth Barycenter', 'Moon',
'Mars', 'Mars Barycenter',
'Jupiter Barycenter', 'Saturn Barycenter',
'Uranus Barycenter', 'Neptune Barycenter',
'Pluto Barycenter', 'Sun'
'Solar System Barycenter', 'Voyager 2']

The list of bodies returned by M.TrajSet.getAll confirms
that we have successfully loaded our solar system and spacecraft.
We continue our analysis by checking the span of the Voyager
2 trajectory, e.g. the interval over which we have data, using
the M.TrajSet.totalInterval method. Note that if the
trajectory has been updated at the NAIF PDS website, the exact
span you get may be different than what is listed below.
In [8]: traj.totalInterval("Voyager 2")
Out[8]:
TimeInterval(

['20-AUG-1977 15:32:32.1830 ET',
'05-JAN-2021 00:00:00.0000 ET'],

)

The Voyager 2 trajectory starts just after launch in 1977, extends
through the present, and has predictions out into the future. We
can use the trajectory manager to request states at any time in this
window. For instance, we can find the distance of Voyager 2 from
Earth right now. The M.Epoch.now static method returns the
current time and this can be passed to the trajectory manager to
request the state of Voyager 2 with respect to Earth.
In [11]: currentTime = M.Epoch.now()
In [12]: vygrTwoNow = traj.state(currentTime,

...: "Voyager 2", "Earth", "EME2000")
In [13]: vygrTwoNow
Out[13]:
State (km, km/sec)
'Earth' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.358633010242671e+09 -7.411125552099214e+09

-1.302731854689579e+10
Vel: -2.415141211951430e+01 2.640692963340520e+00

-1.128801136174438e+01

We used the M.TrajSet.state method to perform our query,
which required us to specify the time, target body, reference body,
and coordinate frame for the return state. Because M.TrajSet
has a global view of all the trajectories in our BOA, we can request
states with respect to any body for which we have a trajectory, for
instance Venus or Neptune.
In [14]: vygrTwoNowVenus = traj.state(currentTime,

...: "Voyager 2", "Venus", "EME2000")
In [15]: vygrTwoNowVenus
Out[15]:

State (km, km/sec)
'Venus' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.216416788778397e+09 -7.523453172910529e+09

-1.306899257275581e+10
Vel: -4.457126033807687e+00 -3.509301445530399e+01

-2.760459587874612e+01

In [17]: vygrTwoNowNeptune = traj.state(currentTime,
...: "Voyager 2", "Neptune Barycenter", "EME2000")

In [18]: vygrTwoNowNeptune
Out[18]:
State (km, km/sec)
'Neptune Barycenter' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 2.423407540346480e+08 -5.860459060720786e+09

-1.229435420991246e+10
Vel: 2.036299646730726e+00 -8.760646249684767e+00

-1.606470435709401e+01

The M.TrajSet.state method returns an M.State object.
M.State captures the relative position, velocity and acceleration
(or some subset) of one body with respect to another at a given
time. It has a number of methods that help with extracting and
transforming the information it contains. For instance, we can find
the distance from Earth to Voyager 2 like this.

In [26]: vygrTwoPoskm = vygrTwoNow.posMag()
In [27]: vygrTwoPoskm
Out[27]: 1.560876331389678e+10 * km

In [28]: vygrTwoPoskm.convert('AU')
Out[28]: 104.33813824888766

When reading states from a trajectory you are often interested
in making repeated calls for the same body and center but at
different times. M.TrajSet works fine for this application, but
if the target and center bodies don’t change on repeated calls,
some optimizations can be made for better performance. The
M.TrajQuery class is provided for this use case, and can be
thought of as simply a special case of M.TrajSet where the
body and center are fixed for every call.

In [29]: vygrTwoQuery = M.TrajQuery(boa,
...: "Voyager 2", "Earth", "EME2000")

In [31]: vygrTwoQuery.state(currentTime)
Out[31]:
State (km, km/sec)
'Earth' -> 'Voyager 2' in 'EME2000'
at '06-JUN-2014 19:58:35.1356 TAI'
Pos: 4.358633010242671e+09 -7.411125552099214e+09

-1.302731854689579e+10
Vel: -2.415141211951430e+01 2.640692963340520e+00

-1.128801136174438e+01

This can be useful when you are sampling states from a trajectory,
for instance, to create a plot of an orbit.

Uranus Encounter

We said earlier that M.TrajSet and M.CoordSet, in their
roles as manager classes, have a global view of the trajectory and
coordinate systems. This high-level perspective allows them to
work with the relationships between different bodies and frames,
a capability we have so far used to get relative states between
bodies. However, there are certain specific relationships between
bodies and frames that can be of particular interest to an analyst.
For instance, identifying the time at which two bodies achieve
their closest approach (periapse) and the magnitude of that mini-
mum distance can be an important astrodynamic metric. MONTE
provides tools for searching through various relationship-spaces
and identifying some of these key events. The M.EventSpec

MONTE PYTHON FOR DEEP SPACE NAVIGATION 67

set of classes allow us to define a particular event type then search
through the requisite relationships to identify specific occurrences.
The M.Event class is used to report the relevant data associated
with an occurrence.

Continuing the example, we will use M.ApsisEvent (which
is a specific type of M.EventSpec) to find the precise time and
distance of Voyager 2’s closest approach with Uranus.
In [6]: vygrTwoUranusQuery = M.TrajQuery(boa,

...: "Voyager 2", "Uranus Barycenter", "EME2000")
In [7]: apsisSearch = M.ApsisEvent(vygrTwoUranusQuery,

...: "PERIAPSIS")

M.ApsisEvent takes as its first argument an M.TrajQuery
object that is configured to return the state of our target body
with respect to the desired center (in this case, Voyager 2 with
respect to Uranus). The second argument specifies what type of
apsis we are looking for; this can be "PERIAPSIS", "APOAPSIS",
or the catch-all "ANY". Once the event type is defined, the
M.ApsisEvent.search method can be called to perform the
search and locate the apses. To call this method we need to provide
a time interval to search over and a search step size.
In [14]: searchInterval = M.TimeInterval(

...: "01-JAN-1986 ET", "01-JAN-1987 ET")
In [15]: stepSize = 60 * sec
In [16]: foundEvents = apsisSearch.search(

...: searchInterval, stepSize)

The result of the search, which we have saved in the variable
foundEvents, is an M.EventSet container class. This con-
tainer has all the events found matching our specification in the
search window. M.EventSet has a number of useful methods
for sorting, filtering and returning events. In this case there should
only be one event returned since there was only one closest
approach of Voyager 2 to Uranus. We can read out this event
by indexing into the M.EventSet.
In [17]: foundEvents.size()
Out[17]: 1

In [18]: uranusPeriapse = foundEvents[0]
In [19]: uranusPeriapse
Out[19]:
Event:
Spec : Periapsis Uranus Barycenter to Voyager 2
Type : Periapsis
Epoch: 24-JAN-1986 17:59:45.6473 ET
Value: 1.071300446056250e+05 * km

Another relationship which can play a significant role in deep
space missions is the angular offset between the Earth-Sun line
and Earth-Spacecraft line (often referred to as the Sun-Earth-Probe
(SEP) angle). At low SEP values, the spacecraft appears very close
to the Sun from the vantage of Earth, requiring radio transmissions
from Earth to pass through the near-solar environment before
reaching the spacecraft. Flight projects avoid critical mission
operations during these times because the highly-charged solar
atmosphere can interfere with radio signals.

We can set up an event search to find periods of low-SEP for
Voyager 2, from mission start through the end of our trajectory
data, using the M.AngleEvent event specification class.
In [20]: sepSearch = M.AngleEvent(boa, "Sun", "Earth"

...: "Voyager 2", 12 *deg, "BELOW")
In [23]: searchWindow = traj.totalInterval("Voyager 2")
In [25]: foundEvents = sepSearch.search(searchWindow,

...: 1 *hour)

We constructed our M.AngleEvent by defining the Sun-Earth-
Probe angle using the Sun for body one, the Earth as the vertex,

and Voyager 2 as body two. Twelve degrees was set as the
threshhold defining conjunction, and the "BELOW" qualifier was
used to instruct the search to return times when the SEP angle was
below this threshold.

The search again returned an M.EventSet, which we can
use to get information about the number of events found and the
maximum / minumum times Voyager 2 spent in conjunction.

In [26]: foundEvents.size()
Out[26]: 15

In [52]: foundEvents.maxInterval()
Out[52]:
Event:
. . .
Type : Angle below 1.200000000000000e+01 * deg
Begin: 28-JUN-1978 07:34:09.7021 ET
End : 03-AUG-1978 05:22:28.3997 ET
Value: 1.199999999999977e+01 * deg

In [53]: foundEvents.minInterval()
Out[53]:
Event:
. . .
Type : Angle below 1.200000000000000e+01 * deg
Begin: 31-DEC-1992 09:35:21.3322 ET
End : 07-JAN-1993 21:30:07.6066 ET
Value: 1.199999999999999e+01 * deg

We can loop through all the events found in our search using
Python iterator syntax, and print out the time periods of each found
low-SEP region.

In [56]: for event in foundEvents:
...: print event.interval()
...:

TimeInterval(
['28-JUN-1978 07:34:09.7021 ET',
'03-AUG-1978 05:22:28.3997 ET'],

)
TimeInterval(

['29-JUL-1979 03:25:57.3664 ET',
'31-AUG-1979 14:35:53.2033 ET'],

)

. . .

TimeInterval(
['26-DEC-1991 13:45:23.6951 ET',
'12-JAN-1992 23:46:40.4029 ET'],

)
TimeInterval(

['31-DEC-1992 09:35:21.3322 ET',
'07-JAN-1993 21:30:07.6066 ET'],

)

As we can see, low-SEP periods occur on a near-yearly basis. This
makes sense because as the Earth makes a complete revolution
around the Sun, there is bound to be a period of time when the
Sun falls in the line-of-sight of Voyager 2. Curiously though, the
last low-SEP region found was in the winter of 1992. After this
time, the Sun no longer obscures the Earth’s view of Voyager
2 at all! Evidently, Voyager 2s trajectory changed in a way that
disrupted this the annual low-SEP viewing geometry dynamic.

If Voyager 2 were to somehow leave the plane of the solar-
system, the Earth would have a constant unobstructed view of the
spacecraft permanently. We can investigate this theory by looking
at the distance of Voyager 2 from the solar system ecliptic plane.
We do this by setting up a trajectory query to return the state of
Voyager 2 with respect to the Sun in EMO2000 coordinates (the
EMO2000 coordinate frame measures Z with respect to the solar
system plane). The Z-component of the position vector will then

68 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 5: Distance in kilometers of Voyager 2 from the solar system
ecliptic plane.

yield the offset from the ecliptic plane. We will plot this distance
over the course of the Voyager 2 mission to see how this distance
evolves.
In [63]: eclipticQuery = M.TrajQuery(boa,

...: "Voyager 2", "Sun", "EMO2000")
In [64]: searchWindow
Out[64]:
TimeInterval(

['20-AUG-1977 15:32:32.1830 ET',
'05-JAN-2021 00:00:00.0000 ET'],

)

In [65]: sampleTimes = M.Epoch.range(
...: '21-AUG-1977 ET', '04-JAN-2021 ET', 1 *day)

In [66]: z = []
In [67]: for time in sampleTimes:

...: state = eclipticQuery.state(time)

...: z.append(state.pos()[2])

...:
In [68]: import mpylab
In [69]: fig, ax = mpylab.subplots()
In [70]: ax.plot(sampleTimes, z)
In [71]: ax.set_xlabel("Date")
In [72]: ax.set_ylabel(

...: "Distance from Ecliptic Plane (Km)")

The generated plot is shown in Figure 5.
It appears that something happened in 1989 to cause Voyager 2

to depart from the ecliptic plane. A quick glance at the Wikipedia
page for Voyager 2 confirms this, and reveals the cause of this
departure.

Voyager 2’s closest approach to Neptune occurred
on August 25, 1989 ... Since the plane of the orbit of
Triton is tilted significantly with respect to the plane of
the ecliptic, through mid-course corrections, Voyager 2
was directed into a path several thousand miles over the
north pole of Neptune ... The net and final effect on the
trajectory of Voyager 2 was to bend its trajectory south
below the plane of the ecliptic by about 30 degrees.

Conclusion

MONTE is one of the most powerful astrodynamic computing
libraries in the world. It has been extensively tested and verified
by flying actual spacecraft to destinations in the solar system.
It is a compelling platform for anyone doing aerospace related

computation, especially for those who love working with the
Python language.

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

REFERENCES

[Moy71] T. Moyer, Mathematical Formulation of the Double-Precision Or-
bit Determination Program (DPODP), TR 32-1527 Jet Propulsion
Laboratory, Pasadena 1971.

[Moy03] T. Moyer, Formulation for Observed and Computed Values of Deep
Space Network Data Types for Navigation, John-Wiley & Sons, Inc.
Hoboken, Jew Jersey, 2003.

[Eke05] J. Ekelund, History of the ODP at JPL, Internal Document, Jet
Propulsion Laboratory, Pasadena 2005.

[Smi16] J. Smith, Distributed Parameter System for Optimization and Fil-
tering in Astrodynamic Software, 26th AAS/AIAA Spaceflight Me-
chanics Meeting 2016 proceedings, Napa, CA.

[Eva16] S. Evans, MONTE: The Next Generation of Mission Design & Nav-
igation Software, The 6th International Conference on Astrodynam-
ics Tools and Techniques (ICATT) proceedings 2016, Darmstadt,
Germany.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 69

The Climate Modelling Toolkit

Joy Merwin Monteiro‡∗, Rodrigo Caballero‡

F

Abstract—The Climate Modelling Toolkit (CliMT) is a Python-based software
component toolkit providing a flexible problem-solving environment for climate
science problems. It aims to simplify the development of models of complexity
’appropriate’ to the scientific question at hand. This aim is achieved by providing
Python-level access to components commonly used in climate models (such
as radiative transfer models and dynamical cores) and using the expressive
data structures available in Python to access and combine these components.
This paper describes the motivation behind developing CliMT, and serves as an
introduction to interested users and developers.

Index Terms—Climate Modelling, Hierarchical Models

Introduction

Climate models are numerical representations of the climate
system consisting of ocean, land and atmosphere. They have
become an important aspect of climate science as they provide
a virtual laboratory in which to perform experiments and gain a
deeper understanding of the climate system. Climate models can
be conceived as a combination of two distinct parts: One, called
the "dynamics", is code which numerically integrates the equations
of motions of a fluid. The other, called the "physics" is code
which approximates various processes considered important for
the evolution of the atmospheric/oceanic fluid, including radiation,
moist convection and turbulence. Some of these processes, such
as convection and turbulence should ideally simulated by the
dynamics, but the coarse resolution of typical climate models
and limitations of computational resources lead to their being
approximated as physics components.

In an influential essay, Isaac Held made the case for studying
the climate system using a hierarchy of models, in a manner
similar to the hierarchy of model organisms used by evolution-
ary biologists [Hel05]. The essay argued that such a hierarchy
would not only help in our understanding of the climate system,
but would also help in interpreting results obtained from more
complex models and even aid in improving them. A qualitative
description of the climate model ecosystem is shown in Fig. 1. On
the dynamics axis, they range from models which represent the
atmosphere as a single vertical column to a full turbulent, three
dimensional flow. On the physics axis, they range from models
which represent radiation or turbulence using ten lines of code to
those whose representation of the physics run into thousands of
lines.

* Corresponding author: joy.merwin@gmail.com
‡ MISU, Stockholm University

Copyright © 2016 Joy Merwin Monteiro et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Over the past few decades, efforts have been made to develop
such a hierarchy of models (a significant fraction of which has
been, not surprisingly, by Isaac’s students and collaborators) which
have had a positive impact on our understanding of the climate sys-
tem and the general circulation of the atmosphere [HK81], [HS94],
[NZ00], [Sch04], [FHZG06], [MFCE07], [CPM08], [MPFC09].
Note that we restrict our focus here only on numerical models of
the climate system, excluding many influential theoretical models
such as [HH80] and models of phenomena such as the Madden-
Julian Oscillation (MJO) or tropical cyclones.

However, the scale of these efforts has not kept pace with
the increasing complexity of full scale general circulation mod-
els (GCMs) which are on the threshold of cloud-scale (~1 km
horizontal resolution) simulations of the entire atmosphere. One
of the primary reasons, we believe, is that significant effort is
required to build models which represent even the basic fea-
tures of the atmospheric general circulation. Existing frameworks
to develop such models like the Flexible Modelling System
(FMS, http://www.gfdl.noaa.gov/fms) and the MIT-
gcm (http://mitgcm.org/) are typically written in Fortran
and the effort to set up a model beyond those already provided
as examples can, in our experience, be quite discouraging for new
users who lack a strong background in Fortran and programming.

In this paper we introduce the Climate Modelling Toolkit
(CliMT, pronounced "Klimt"), which attempts to reduce this
barrier to developing simplified models of the atmosphere. It is
similar in spirit to the above mentioned frameworks, with the
following distinctions:

• Configuration and execution of models is much simpler
and done in the same script, making repeated simulations
less error prone

• New components can be added with minimal infrastructure
code requirements, and does not require recompilation of
the entire codebase

• Object-oriented design makes program flow both intuitive
and less prone to error

• Allows for incremental development: proof of concept de-
velopment in pure Python and production code in another
language (Cython, C, Fortran)

CliMT is currently not capable of parallel execution, and
thus is mainly useful for 1 and 2-dimensional climate models.
Despite these limitations, CliMT is used by around 10 research
groups around the world (based on user queries/feedback) for
research [CPM08], [CH13], [RBSB10] and pedagogy [Pie10]. In
the following sections, we describe the basic building blocks of
CliMT, their usage, and how new components can be added. We
end with a roadmap towards version 1.0 of CliMT, which should

70 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Physical Process Components
Convection Zhang-McFarlane

Emanuel
Emanuel hard adjustment
Simplified Betts-Miller

Dynamics Axisymmetric dynamics
Two column dynamics

Ocean Slab Ocean
Radiation Community Atmosphere Model (CAM) 3

CCM 3
Chou
Grey Gas
Rapid Radiative Transfer Model (RRTM)

Insolation
Absorption by ozone

Turbulence CCM3
Simple (diffusive)

Thermodynamics routines for calculating thermodynamic quantities

TABLE 1: Components available currently in CliMT.

see CliMT working as a fully parallel, moist GCM capable of
simulating a realistic climate.

Fig. 1: A qualitative depiction of the climate model hierarchy. The
complexity of the dynamics and the physics models increases along the
direction of the arrows. This is merely an indicative representation,
and is not meant to be exhaustive.

CliMT: best of both worlds

CliMT combines the elegance and clarity of the Python language
with the efficiency of Fortran libraries. Users interact with CliMT
in a pythonic way, using high-level data structures like dictionaries
and lists, and the numerical computations are done by optimised
(and tested) Fortran code extracted from state-of-the-art climate
models. Currently, f2py is used to convert Fortran code to a
library that can be imported into Python. Table 1 lists the physical
processes that can be currently simulated using CliMT and the
options available to represent each physical process.

The initialization of the components and the execution of the
resulting model is handled in the same script, which makes the
parameters and assumptions underlying the model explicit. This
makes interpreting the results of the simulation easier. Given that
model initialization, execution and data analysis can be performed

from within a single IPython notebook, this makes model results
and the resulting scientific results reproducible as well. CliMT also
enables users to study the effects of changing physical parameter-
izations and dynamical cores on the simulated climate, something
that is difficult to do in other idealised modelling frameworks.

Architecture

CliMT, in a broad sense, is a library which enables numerical
representations of different processes in the climate system to
be linked together in an intuitive manner. While it provides a
leapfrog integrator (a second order method for numerical integra-
tion common to many climate models) to step the model forward
in time, it does not provide routines to calculate gradients or
spectral coefficients. All components in CliMT are either written
from scratch or extracted from larger climate models (especially
radiative transfer models). There is no facility to update the
underlying Fortran/C code itself if the original code is updated.
It is assumed that each component will implement any numerical
methods that it requires. While this may lead to some code
duplication, it allows for a loose coupling between the various
components. This allows development of new components without
recompilation of the entire codebase.

When a component is instantiated, CliMT queries the com-
ponent to find out which variables the component affects. For
instance, a convection component will affect the specific humidity
and the temperature variables. It creates a Numpy array of the
appropriate dimensions for each such variable. If multiple com-
ponents affect the same variable, only one such array is created.
During execution, it collects the time tendency* terms from each
component (in the form of a Numpy array), sums them together
and uses the resulting cumulative tendency to step the model
forward in time. Currently, it is assumed that all components share
a common grid, i.e, all arrays representing tendency terms have the
same shape, and represent the same location in three dimensional
space. As is commonly the case in climate models, the spatial
coordinates are in latitude-longitude-pressure space, and CliMT
does a sanity check to ensure that all components have the same
spatial representation (i.e, tendency arrays expected from each
component has the same shape).

To summarize, each component (encapsulated in the
Component class) provides time tendency terms to the main
execution loop, and the model is stepped forward in time by inte-
grating these tendencies using the leapfrog integrator. Optionally,
the model state is displayed using a wrapper over matplotlib
and written to disk using the netCDF4 library. Since the model
state variables are Numpy arrays, they can be easily accessed
by external Python libraries for online processing or any other
purpose.

Combining multiple Component objects is made possible
using the Federation class. Combining two or more desired
Component objects in a Federation results in a climate
model of appropriate complexity.

The Component and Federation classes are the interface
between the end-user and CliMT, with all other classes being used
internally by these two classes.

*. A time tendency term at time t1 is the incremental value of a variable to
be added to obtain that variable’s value at time t2 , where t2 is the time instant
succeeding t1.

THE CLIMATE MODELLING TOOLKIT 71

Component

A Component class is the fundamental abstraction in CliMT. It
encapsulates the behavior of a component that takes certain inputs
and provides certain tendencies as output. Each Component
object has (among others) the following members which are
specified by the developer:

• Prognostic
• Diagnostic
• Fixed
• FromExtension
• ToExtension

These members are lists whose elements are one of
many predefined field names (available in the State
class) relevant to climate science applications. For example,
if Component.Prognostic = ['U', 'V', 'theta'],
then the component represents a model which can forecast the
future state of the wind along longitude, wind along latitude and
the potential temperature, respectively. The Diagnostic list
contains those fields which the component calculates using the
prognostic fields, and the Fixed list contains those fields which
are left unchanged by the component. The ToExtension list in-
dicates which fields are required by the component to forecast the
future state, and the FromExtension list indicates which fields
are returned by the component. Typically, the FromExtension
list contains the name of fields with an Inc suffix, indicating
that the component returns increments only, which are to be
stepped forward in time. The term Extension refers to the
compiled Fortran/C library which does the actual computation.
Each Component also keeps track of the time step dt taken
during each integration (normally decided by stability constraints),
and the time elapsed from the beginning of the integration.

Component has two main methods: compute and step.
The compute method calls the compiled Fortran/C code
and retrieves the increments and diagnostic fields and stores
them internally. compute takes an optional boolean argument
ForcedCompute. If ForcedCompute is true, then the ten-
dency terms are always calculated. If it is false (the default),
then the tendencies are calculated only if the elapsed time is at
least dt greater than the previous time at which the tendencies
were calculated. Such behavior is required when combining two
components which operate on very different time scales, such as
convection (time scale of hours) and radiation (time scale of days).
compute is also invoked by simply calling the object.

The step method steps the component forward in time by
taking the increments calculated in compute and passing them
on to the leapfrog integrator (available in the infrastructure code,
not in each individual component) to get future values of the
fields. step internally calls compute, so the user needs only
to call step. step accepts two optional arguments Inc and
RunLength. Inc which is a dictionary whose keys are some
or all of the elements in ToExtension, and the corresponding
values are additional tendency terms calculated outside the com-
ponent. These increments are added to the internally computed
tendency terms before calling the integrator. Runlength decides
how many seconds forward in time the component is stepped
forward. If RunLength is a positive integer, then the component
is stepped forward in time RunLength * dt seconds. If it is
a positive floating point number, then the component is stepped
foward in time RunLength seconds.

All parameters required by any Component are passed as a
dictionary during object instantiation. This includes initial values
of the fields integrated by the Component. If no initial values
are supplied, the fields are initialized as zeroed NumPy arrays of
the appropriate shape. An example which uses the CAM radiative
transfer model to compute the radiative tendencies is shown below
(also available in the source code itself):
import numpy as np
import climt

#--- instantiate radiation module
r = climt.radiation(scheme='cam3')

#--- initialise T,q
Surface temperature
Ts = 273.15 + 30.
Stratospheric temp
Tst = 273.15 - 80.
Surface pressure
ps = 1000.
Equispaced pressure levels
p = (np.arange(r.nlev)+ 0.5)/r.nlev * ps
Return moist adiabat with 70% rel hum
(T,q) = climt.thermodyn.moistadiabat(p, Ts, Tst, 1.)

Set values for cloud fraction and
#cloud liquid water path
cldf = q*0.
clwp = q*0.
cldf[len(cldf)/3] = 0.5
clwp[len(cldf)/3] = 100.

#--- compute radiative fluxes and heating rates
r(p=p, ps=ps, T=T, Ts=Ts, q=q, cldf=cldf, clwp=clwp)

In the above code, the computed outputs can be accessed by
treating r as a dictionary: the shortwave flux at the top of the
atmosphere is available at r['SwToa'], for example.

Federation

Federation is a subclass of Component which is instantiated
by providing two or more Component objects as arguments. It
provides the same interface as Component, and is the abstraction
of a climate model with multiple interacting components. On
instantiation, Federation does a few sanity checks to ensure
consistency of dimensions between its member Components. As
in Component, integrating the Federation forward in time
is simply achieved by calling step. An example which computes
the radiative convective equilibrium in a column of the atmosphere
is given below:
import climt
import numpy as np

Some code initialising kwargs
...

-- Instantiate components and federation

#Radiation is called only once every
#50 timesteps, since it is a slow process.
rad = climt.radiation(

UpdateFreq=kwargs['dt']*50,
scheme='cam3')

#Convection consumes the instability
#produced by radiation
con = climt.convection(

scheme='emanuel')

turbulence facilitates the exchange
of water vapour and momentum between

72 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

the ocean and the atmospheric column
dif = climt.turbulence()

#Ocean provides a source of water vapour
oce = climt.ocean()

#Instantiate the federation
fed = climt.federation(dif, rad, oce,

con, **kwargs)

Main timestepping loop
for i in range(1000):

The following code adds a uniform
1 K/day cooling rate to
the internally-computed tendencies
dT= np.array([[-1./86400.*kwargs['dt']*

2.*np.ones(rad.nlev)]]).transpose()

fed.step(Inc={'T':dT})

Fig. 2: The displayed output from a one dimensional (vertical)
radiative-convective simulation on day 150. The fields are updated
in real time during the simulation. The panels display (clockwise
from top left): Temperature, Potential Temperature, radiative heating
and specific humidity respectively. The y axis is height measured in
pressure and has units of millibar (100 Pascals = 1 millibar). As
expected from theory and observations, the temperature decreases
almost linearly in the lower levels of the column.

Here, the radiative code has an UpdateFreq value that is 50
times the actual timestep of the federation. As mentioned before,
this feature facilitates coupling of components whose charac-
teristic time scales are very different from each other without
increasing the computational load during the simulation. Notice
also the external tendency term dT passed on to fed in the step
method. The output fields are again accessed by treating fed as
a dictionary. Figure 2 shows the typical output from a CliMT
radiative-convective simulation; Display and I/O is discussed in
the next section.

Software Layout and Documentation

CliMT maintains the infrastructure code and the actual com-
ponent code in separate folders. The src directory con-
tains the component code whereas lib/climt contains the
infrastructure code. The main infrastructure code resides in

{component,federation,state,grid}.py. The vari-
ous physical processes are accessible from appropriately named
files in lib/climt (e.g, convection.py). These files im-
plement the Component class and act as an interface to the
underlying Fortran code. Note that there is no restriction on
the language in which extensions are written. All the physical
variables that CliMT recognises are listed in state.py. While
all files themselves have detailed inline documentation, there is
currently no automated system in place to build a module reference
based on these comments. Querying an object in an IPython envi-
ronment is currently the best way of accessing the documentation,
as demonstrated in Fig. 3. Addition of a new module would require
copying the extension code to src/, adding a reference to it in
the appropriate physical process file (e.g, a new dynamical core
would be included in dynamics.py), and adding a reference in
setup.py to enable building and installation.

Fig. 3: Accessing documentation for the dynamics class in an IPython
prompt.

Monitoring fields and I/O

CliMT also provides for real time display (monitoring) of the
simulated fields. Currently, up to four fields can be moni-
tored. Monitoring is activated by providing an additional argu-
ment during component instantiation called MonitorFields.
MonitorFields is a list of up to four fields that are part of
the simulation. If the field is three dimensional, the zonal average
(average along longitude) is displayed. The frequency at which the
display is refreshed is decided by the MonitorFreq argument.

CliMT can read intial conditions from the file whose name is
specified in the RestartFile argument. The output is written
to the file whose name is specified in the OutputFile argument.
If RestartFile and OutputFile are the same, then the
data is appended to OutputFile. The last time slice stored in
RestartFile is used to initialize the model. If some fields are
missing in RestartFile, they are initialized to default (zero)
values.

The fields written to the output file are specified in the
OutputFields argument. If OutputFields is not specified,
all fields are written to file. OutputFreq is an optional argument

THE CLIMATE MODELLING TOOLKIT 73

which specifies the time between writing data to file. If it is not
specified, the output is stored once every model day.

Developing new Components

CliMT requires a single point of entry into the Fortran/C code
to be provided by each Component: the driver method. The
driver method takes as input NumPy arrays representing the
fields required to calculate the tendency terms. The order in which
the fields are input is represented by the ToExtension list in
the Component. The output of the driver is a list of NumPy
arrays ordered in the same way as the FromExtension list.
The translation between NumPy arrays and the Fortran code is cur-
rently done automatically by f2py generated code. The Fortran/C
extension module itself is stored in Component.Extension
and an optional name is provided in Component.Name.
Component.Required is a list of those fields which are
essential for the component to calculate tendencies. These vari-
ables along with Prognostic, Diagnostic and Fixed lists
(which were previously discussed) enable CliMT to interface with
a new component.

We note that CliMT expects the tendency terms to be pre-
multiplied by dt, i.e, the units of the fields returned by driver
is expected to be the same as the units of the prognostic fields.
The integrator does not multiply the tendency terms by dt, as is
normally the case.

Current Development: towards CliMT 1.0

The space occupied by CliMT in the climate model hierarchy is
shown in Fig. 4. It is currently capable of simulating relatively
simple (1 and 2 dimensional) dynamics and quite sophisticated
physical processes. Moving forward, we hope fulfill the vision
of using CliMT as a full fledged moist idealized GCM. As a
first step, we have integrated a dynamical core adapted from the
Global Forecast System (GFS). Together with this, we have added
a new Held-Suarez module which provides the Held-Suarez
forcing terms for a 3-d atmosphere. A working example of the
benchmark is now available from a development fork (available
at https://github.com/JoyMonteiro/CliMT/lib/
examples). Figure 5 shows the mean wind along longitudes
("zonal" wind) simulated by the model. It shows most of
the important aspects of the mean circulation in the earth’s
atmosphere: strong westerly jet streams around 30 degrees N/S
and easterly winds near the surface and the top of the atmosphere
in the tropics.

Many changes were incorporated enroute this integration. The
dynamical core is the first component of CliMT that interfaces
with the Fortran library using Cython and the ISO_C_Binding
module introduced in Fortran 2003. This will be used as a template
to eventually move all components to a Cython interface: f2py
does not seem to be actively developed anymore, and currently
cannot interface with code that includes compound data structures,
like the FMS dynamical cores. Therefore, we expect the Cython-
ISO_C_Binding combination to enable CliMT to use a wider
range of libraries.

A new feature in CliMT 1.0 will be to allow components to
use an internal integrator and not the default leapfrog available in
CliMT. This is useful since components such as the 3-D dynamical
core already include non-trivial implementations of numerical
integrators which will have to be reimplemented in CliMT to
ensure stable integrations. Moreover, it is unlikely that atmosphere

Fig. 4: A look at the current capability and future directions for CliMT
development in context of the model hierarchy

Fig. 5: The mean wind along longitudes in the Held-Suarez simula-
tion. The mean is over 1000 days and over all longitudes (a "zonal"
mean). The y-axis has units of millibar (= 100 Pa). It compares well
with the simulated winds in [HS94] (see Fig. 2 in their paper)

and ocean models use similar numerical algorithms. Since the
focus of CliMT is on the infrastructure and not the numerics,
this feature enables rapid addition of new components into CliMT
without substantially changing its basic structure. This feature and
other enhancements will be described in detail in a forthcoming
paper accompanying the release of CliMT 1.0.

Next, we intend to interface the dynamical core with the grey
gas radiation module to enable CliMT to generate a realistic
general circulation without using the Held-Suarez forcing. Issues
we intend to address in the future include:

• scalability by making CliMT MPI and/or OpenMP-aware
• More systematic testing architecture
• A full user manual and IPython notebook examples

With these additions, we hope CliMT will be the framework
of choice for a wide audience, from undergraduates to scientists
to explore questions in climate science.

Acknowledgements

This work is supported by funding from the Swedish e-Science
Research Centre (http://www.e-science.se/).

74 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

REFERENCES

[CH13] R. Caballero and M. Huber. State-dependent climate sensitivity
in past warm climates and its implications for future climate
projections. Proceedings of the National Academy of Sciences,
110(35):14162–14167, August 2013.

[CPM08] R. Caballero, R. T. Pierrehumbert, and J. L. Mitchell. Axisym-
metric, nearly inviscid circulations in non-condensing radiative-
convective atmospheres. Quarterly Journal of the Royal Meteoro-
logical Society, 134(634):1269–1285, July 2008.

[FHZG06] D. M. W. Frierson, I. M. Held, and P. Zurita-Gotor. A Gray-
Radiation Aquaplanet Moist GCM. Part I: Static Stability and
Eddy Scale. Journal of the Atmospheric Sciences, 63(10):2548–
2566, October 2006.

[Hel05] I. M. Held. The Gap between Simulation and Understanding
in Climate Modeling. Bulletin of the American Meteorological
Society, 86(11):1609–1614, November 2005.

[HH80] I. M. Held and A. Y. Hou. Nonlinear Axially Symmetric Circula-
tions in a Nearly Inviscid Atmosphere. Journal of the Atmospheric
Sciences, 37(3):515–533, March 1980.

[HK81] B. J. Hoskins and D. J. Karoly. The steady linear response of a
spherical atmosphere to thermal and orographic forcing. Journal
of the Atmospheric Sciences, 38(6):1179–1196, 1981.

[HS94] I. M. Held and M. J. Suarez. A Proposal for the Intercomparison of
the Dynamical Cores of Atmospheric General Circulation Models.
75(10):1825–1830, October 1994.

[MFCE07] J. Marshall, D. Ferreira, J-M. Campin, and D. Enderton. Mean
Climate and Variability of the Atmosphere and Ocean on an
Aquaplanet. Journal of the Atmospheric Sciences, 64(12):4270–
4286, December 2007.

[MPFC09] J. L. Mitchell, R. T. Pierrehumbert, D. M.W. Frierson, and R. Ca-
ballero. The impact of methane thermodynamics on seasonal
convection and circulation in a model Titan atmosphere. Icarus,
203(1):250–264, September 2009.

[NZ00] J. D. Neelin and N. Zeng. A Quasi-Equilibrium Tropical Circu-
lation Model-Formulation. Journal of the atmospheric sciences,
57(11):1741–1766, 2000.

[Pie10] R. T. Pierrehumbert. Principles of planetary climate. Cambridge
University Press, 2010.

[RBSB10] M. T. Rosing, D. K. Bird, N. H. Sleep, and C. J. Bjerrum. No
climate paradox under the faint early Sun. Nature, 464(7289):744–
747, April 2010.

[Sch04] T. Schneider. The Tropopause and the Thermal Stratification in
the Extratropics of a Dry Atmosphere. Journal of the Atmospheric
Sciences, 61(12):1317–1340, June 2004.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 75

Tell Me Something I Don’t Know: Analyzing OkCupid
Profiles

Juan Shishido‡∗, Jaya Narasimhan¶†, Matar Haller§†

https://youtu.be/dtgmMj8W298

F

Abstract—In this paper, we present an analysis of 59,000 OkCupid user
profiles that examines online self-presentation by combining natural language
processing (NLP) with machine learning. We analyze word usage patterns
by self-reported sex and drug usage status. In doing so, we review standard
NLP techniques, cover several ways to represent text data, and explain topic
modeling. We find that individuals in particular demographic groups self-present
in consistent ways. Our results also suggest that users may unintentionally
reveal demographic attributes in their online profiles.

Index Terms—natural language processing, machine learning, supervised
learning, unsupervised learning, topic modeling, okcupid, online dating

Introduction

Online dating has become a common and acceptable way of
finding mates. In the United States, 41 percent of adults know
someone who uses online dating, 29 percent know someone who
has met a partner this way, and 59 percent believe online dating
is a good way to meet people [Pew16]. In 2015, online dating
sites or mobile dating apps were used by 27 percent of 18-24 year
olds, 22 percent of 25-34 year olds, 21 percent of 35-44 year olds,
13 percent of 45-54 year olds, and 12 percent of 55-64 year olds
[Pew16]. Relative to 2013, usage across every age group, except
25-34 year olds, increased. Given the popularity of online dating,
the way that people self-present online has broad implications for
the relationships they pursue.

Previous studies suggest that the free-text portion of online dat-
ing profiles is an important factor (after photographs) for assessing
attractiveness [Fio08]. The principle of homophily posits that
people tend to associate and bond with individuals who are similar
to themselves and that this strongly structures social networks,
most prominently by race and ethnicity [McP01]. Perhaps not
surprisingly, research suggests that homophily extends to online
dating, with people seeking mates similar to themselves [Fio05].
However, it remains unclear whether people within particular
demographic groups, such as sex or ethnicity, self-present in
similar ways when searching for a mate online.

* Corresponding author: juanshishido@berkeley.edu
‡ School of Information, University of California, Berkeley
† These authors contributed equally.
¶ Department of Electrical Engineering and Computer Science, University of
California, Berkeley
§ Helen Wills Neuroscience Institute, University of California, Berkeley

Copyright © 2016 Juan Shishido et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

In this paper, we analyze demographic trends in online self-
presentation. Specifically, we focus on whether people signal de-
mographic characteristics through the way they present themselves
online. We extend previous natural language processing analyses
of online dating [Nag09] by using a much larger sample1 and
by combining NLP with supervised and unsupervised machine
learning. We leverage multiple approaches including clustering
and topic modeling as well as feature selection and modeling
strategies. By exploring the relationships between free-text self-
descriptions and demographics, we discover that we can predict
users’ demographic makeup and also find some unexpected in-
sights into unintentional signaling of demographic characteristics.

Code and data for this work are available in our okcupid
GitHub repository2. A Jupyter notebook with the analysis results
is also available3.

Data

Description

Profile information4 was available for 59,946 OkCupid users that
were members as of 06/26/2012, lived within 25 miles of San
Francisco, had been active in the previous year, and had at least
one photo in their profile [Wet15]. The data set contained free-
text responses to 10 essay prompts as well as the following
user characteristics: age, body type, diet, drinking status, drug
usage status, education level, ethnicity, height, income, job type,
location, number of children, sexual orientation, attitude toward
pets, religion, sex, astrological sign, smoking status, number of
language spoken, and relationship status.

This public5 data set was selected for its diverse set of
essay prompts and availability of detailed user characteristics,
which enabled us to examine the connection between online self-
presentation and demographics. This data set has previously been
used to demonstrate the basics of text analysis as well as how to fit
a simple logistic regression model to predict sex using only height

1. [Nag09]’s uses a sample of 1,000 individuals.
2. https://github.com/juanshishido/okcupid.
3. https://github.com/juanshishido/okcupid/blob/master/OkNLP-

paper.ipynb
4. https://github.com/rudeboybert/JSE_OkCupid. Our original data source

was Everett Wetchler’s okcupid repository (https://github.com/everett-
wetchler/okcupid). However, after commit 0d62e62, in which the data was
"fully anonimized" to exclude essays, we switched to Kim’s repository. Kim
uses the original Wetchler data.

76 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[Kim15]. The present study extends previous work by analyzing
additional features and by introducing novel analyses.

Preprocessing

Line break characters, URLs, and HTML tags were removed
from the essay text. Multiple periods, dashes, and white spaces
were replaced by single instances, and all text was converted to
lowercase. Essays were segmented, first into sentences and then
into individual terms, using spaCy’s [Hon16]6 default tokenizer,
which is well suited for online communication as it maintains
emoticons as discrete tokens. This allowed us to differentiate
between the syntactic way that special characters are traditionally
used and the meaning that’s conveyed when they are used in
particular combinations. Punctuation was removed after the text
was tokenized7. Finally, users who wrote less than five words for
a given essay were removed from the analysis.

In order to reduce the number of categories, we combined drug
usage status levels. Specifically, users who responded "sometimes"
or "often" were grouped into a "yes" category. Individuals who
answered "never" were assigned to the "no" group and we created
an "unknown" category for users who did not answer.

Methods

Term Frequency-Inverse Document Frequency

Machine learning tasks require numerical inputs. There are several
ways to represent text as numerical feature vectors. Features
typically correspond to distinct tokens or to sequences of adjacent
tokens. A token is a series of characters, such as a word, that is
treated as a distinct unit [Bir10].

One way to represent a corpus, or collection of text documents,
is as a matrix of token counts. This weights terms by their absolute
frequencies. Often, highly-weighted terms, such as "a" or "the,"
are not informative, so token counts are weighted using term
frequency-inverse document frequency (tf-idf).

Tf-idf is the product of the term frequency and the inverse
document frequency. The term frequency refers to the relative fre-
quency of term t in document d. The inverse document frequency
is the log of the total number of documents N to the number of
documents that contain term t.

Log-Odds-Ratio

One metric for comparing word usage across groups is to calculate
the log-odds-ratio. The odds for word w in the usage of group g
are defined as Oiw = fiw

(1− fiw)
where fiw is the frequency count of

word w normalized by total count of words used by group i. If
a word is used only by one group, its log-odds-ratio is infinite.
Therefore, a constant is added to each frequency when calculating
the odds. The log of the ratio of the adjusted odds between groups
can then be used to compare word usage across groups.

Non-negative Matrix Factorization

For document clustering, the document corpus is projected onto
a k-dimensional semantic space, with each axis corresponding
to a particular topic and each document being represented as

5. As authorized by OkCupid president and co-founder Christian Rudder
[Kim15].

6. We used version 0.101.0. GitHub, 10 May 2016. https://github.com/
spacy-io/spaCy/releases/tag/0.101.0.

7. Punctuation is needed for the sentence tokenizer and sentences are
important for the part-of-speech tagging.

a linear combination of those topics [Xu_03]. Methods such as
latent semantic indexing require the derived latent semantic space
to be orthogonal, so this class of methods does not work well
when corpus topics overlap, as is often the case. Conversely, non-
negative matrix factorization (NMF) does not require the latent
semantic space to be orthogonal, and therefore is able to find
directions for related or overlapping topics.

NMF was applied to each essay of interest using scikit-learn
[Ped11]8, which uses the coordinate descent solver. NMF utilizes
document frequency counts, so the tf-idf matrix for unigrams,
bigrams, and trigrams was calculated, while limiting tokens to
those appearing in at least 0.5 percent of the documents. NMF was
calculated with k dimensions, which factorized the tf-idf matrix
into two matrices, W and H. The dimensions were n_samples
x k and k x n_features for W and H, respectively. Group
descriptions were given by top-ranked terms in the columns of
H. Document membership weights were given by the rows of W .
The maximum value in each row of W determined essay group
membership.

Permutation Testing

Permutation tests provide an exact sampling distribution of a
test statistic under the null hypothesis [Ger12] by computing the
test statistic for every manner by which labels can be associated
with the observed data. In practice, permutations are rarely ever
completely enumerated. Instead, the sampling distribution is ap-
proximated by randomly shuffling the labels P times.

The likelihood of the observed test statistic is determined as
the proportion of times that the absolute value of the permuted
test statistics are greater than or equal to the absolute value of
the observed test statistic. This is the p-value for a two-tailed
hypothesis. Permutation-based methods can be used to compare
two samples or to assess the performance of classifiers [Oja10].

There are several advantages to using randomization to make
inferences as opposed to parametric methods. Permutation tests
do not assume normality, do not require large samples, and "can
be applied to all sorts of outcomes, including counts, durations, or
ranks" [Ger12].

Approach

Our analyses focused on two demographic dimensions — sex and
drug usage — and on two essays — "My self summary" and
"Favorite books, movies, shows, music, food." These essays were
selected because they were answered by most users. "The most
private thing I am willing to admit" prompt, for example, was
ignored by 32 percent of users.

We began by exploring the lexical features of the text as a
way to determine whether there were differences in writing styles
by demographic group. We considered essay length, the use of
profanity and slang terms, and part-of-speech usage.

Essay length was determined based on the tokenized essays. A
list of profane words was obtained from the "Comprehensive Perl
Archive Network" website. Slang terms include words such as
"dough," which refers to money, and acronyms like "LOL." These
terms come from the Wiktionary Category:Slang page9. Note that
there is overlap between the profane and slang lists.

8. We used version 0.17.1. GitHub, 18 Feb 2016. https://github.com/scikit-
learn/scikit-learn/releases/tag/0.17.1-1. This is particularly important for NMF
as the coordinate descent solver is the default as of 0.17.0. Using the deprecated
projected gradient solver will lead to different results.

9. https://simple.wiktionary.org/wiki/Category:Slang.

TELL ME SOMETHING I DON’T KNOW: ANALYZING OKCUPID PROFILES 77

Each token in the corpus was associated with a lexical category
using spaCy’s part-of-speech tagger. spaCy supports 19 coarse-
grained tags10 that expand upon Petrov, Das, and McDonald’s
universal part-of-speech tagset [Pet11].

Differences in lexical features by demographic were analyzed
using permutation testing. We first compared average essay length
by sex. Next, we examined whether the proportion of females
using profanity was different than the proportion of males using
such terms. The same was done for slang words. Finally, we
compared the average proportion of adjectives, nouns, and verbs
and identified the most distinctive terms in each lexical category
by sex using the smoothed log-odds-ratio, which accounts for
variance.

We also analyzed text semantics by transforming the corpus
into a tf-idf matrix using spaCy’s default tokenizer. We chose
to include unigrams, bigrams, and trigrams11. Stop words12 and
terms that appeared in less than 0.5 percent of documents were
removed. Stemming, the process of removing word affixes, was
not performed. This resulted in a vocabulary size of 2,058 for the
self-summaries essay and 2,898 for the favorites essay.

Non-negative matrix factorization was used to identify la-
tent structure in the text. This structure represented "topics" or
"clusters" which were described by particular tokens. In order
to determine whether particular demographic groups were more
likely to write about certain topics, the relative distribution of
users over topics was plotted. In cases where we were able to
create superordinate groupings from NMF topics — for example,
by combining semantically similar clusters — we used the log-
odds-ratio to find their distinctive tokens.

Based on our findings, we decided to fit a logistic regression
model to predict drug usage status.

Results

In this section, we describe our lexical- and semantic-based
findings.

We first compared lexical-based characteristics on the self-
summary text by sex. Our sample included 21,321 females and
31,637 males13. On average, females wrote significantly longer
essays than males (150 terms compared to 139, p < 0.001).

Next, we compared the proportion of users who utilized
profanity and slang. Profanity was rarely used in the self-summary
essay. Overall, only 6 percent of users included profane terms in
their self-descriptions. The difference by sex was not statistically
significant (5.8% of females versus 6.1% of males, p = 0.14).

Not surprisingly, slang was much more prevalent than profan-
ity. 56 percent of users used some form of slang in their self-
summary essays and females used slang at a significantly lower
rate than males (54% versus 57%, p < 0.001).

To compare part-of-speech usage, we first associated part-of-
speech tags with every token in the self-summary corpus. This
resulted in counts by user and part-of-speech. Each user’s counts
were then normalized by the user’s essay length to account for

10. https://spacy.io/docs#token-postags.
11. Unigrams are single tokens. Bigrams refer to two adjacent and trigrams

to three adjacent tokens.
12. Stop words are words that appear with very high frequency, such as

"the" or "to."
13. The difference between the number of users in the data set and the

number of users in the analysis is due to the fact that we drop users that write
less than five tokens for a particular essay.

Part-of-Speech Female Male

Adjectives ** 10.61% 10.16%
Nouns ** 18.65% 18.86%
Verbs 18.28% 18.27%

TABLE 1: Proportion of part-of-speech terms used, by sex. Asterisks
(**) denote statistically significant differences at the 0.001 level.

Part-of-Speech Female Male

Adjectives independent sweet my
sassy silly happy warm
favorite girly fabulous

nice cool its that few inter-
esting martial most mascu-
line more

Nouns girl family who yoga men
gal heels love dancing
friends

guy computer engineer
guitar sports software
women video technology
geek

Verbs love am laugh laugh-
ing dancing adore loving
dance appreciate being

m was play playing laid ’ll
working hit moved been

TABLE 2: The 10 most-distinctive adjective, noun, and verb tokens ,
by sex.

essay length differences between users. Of the 19 possible part-
of-speech tags, we focused on adjectives, nouns, and verbs. The
proportions of part-of-speech terms used is shown in Table 1.

Females used significantly more adjectives than males, while
males used significantly more nouns than females (p < 0.001 for
both). There was no difference in verb usage between the sexes (p
= 0.91).

In addition to part-of-speech usage, we explored specific terms
associated with parts-of-speech that were distinctive to a particular
sex. We did this using the log-odds-ratio. Table 2 summarizes this,
below.

Distinctly-female adjectives are mostly descriptive. Males, on
the other hand, use more quantity-based and demonstrative adjec-
tives. For nouns, females focus on relationship- and experience-
based terms while males write about work, sports, and technology.
(Note that m corresponds to the contracted form of "am" when
"Im" (no apostrophe) is tokenized and that 'll is the contracted
form of "will" in terms such as "I’ll.")

NMF was then used to provide insight into the underlying
topics that users chose to use to describe themselves. Selecting
the number of NMF components (topics to which users are clus-
tered) is an arbitrary and iterative process. For the self-summary
essay, we chose 25 components, which resulted in a diverse, but
manageable, set of topics.

Several expected themes emerged. Many users chose to high-
light personality traits, for example "humor" or "easy-going,"
while others focused on describing the types of activities they
enjoyed. Hiking, traveling, and cooking were popular choices.
Others chose to mention what kind of interaction they were
seeking, whether that was a long-term relationship, a friendship,
or sex. Topics and the highest weighted tokens for each are
summarized in Table 3. Note that topic names were hand-labeled.

In order to determine whether there were differences in the
topics that OkCupid users chose to write about in their self-
summaries, we plotted the distribution over topics by demographic
split. This allowed us to identify if specific topics were distinct to

78 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Topic Tokens

meet & greet meet new people, looking meet new, love meeting
new, new friends, enjoy meeting, interesting people,
want meet, ’m new, people love, experiences

the city san francisco, moved san francisco, city, living san
francisco, just moved san, native, san diego, grew,
originally, recently

enthusiastic love travel, love laugh, love outdoors, love love,
laugh, dance, love cook, especially, life love, love life

straight talk know, just, want, ask, message, just ask, really, talk,
write, questions

about me ’m pretty, ’m really, ’m looking, ’m just, say ’m, think
’m, ’m good, ’m trying, nerd, ’m working

novelty new things, trying new, trying new things, new places,
learning new things, exploring, restaurants, things
love, love trying, different

seeking ’m looking, guy, relationship, looking meet, share,
woman, nice, just looking, man, partner

carefree easy going, ’m easy going, easy going guy, pretty
easy going, laid, love going, enjoy going, simple,
friendly, likes

casual guy, lol, chill, nice, old, pretty, alot, laid, kinda,
wanna

enjoy like, ’d like, things like, really like, n’t like, feel like,
stuff, like people, like going, watch

transplant moved, sf, years ago, school, east coast, city, just
moved, college, went, california

nots n’t, ca n’t, does n’t, really, wo n’t, n’t like, n’t know,
n’t really, did n’t, probably

moments spend time, good time, lot, free time, spending time,
lot time, spend lot, time friends, time ’m, working

personality humor, good sense humor, good time, good con-
versation, sarcastic, love good, dry, good company,
appreciate, listener

amusing fun loving, ’m fun, having fun, outgoing, guy, girl,
adventurous, like fun, looking fun, spontaneous

review let ’s, think, way, self, right, thing, say, little, profile,
summary

region bay area, moved bay area, bay area native, grew,
living, ’m bay area, east bay, raised bay area, east,
originally

career-focused work hard, play hard, hard working, progress, harder,
job, try, love work, company, busy

locals born, raised, born raised, california, raised bay area,
college, school, sf, berkeley, oakland

unconstrained open minded, creative, honest, relationship, adventur-
ous, curious, passionate, intelligent, heart, indepen-
dent

active enjoy, friends, family, hiking, watching, outdoors,
traveling, hanging, cooking, sports

creative music, art, live, movies, live music, play, food, games,
dancing, books

carpe diem live, world, fullest, enjoy life, experiences, passion-
ate, love life, moment, living life, life short

cheerful person, people, make, laugh, think, funny, kind,
happy, honest, smile

jet setter ’ve, lived, years, world, traveled, year, spent, coun-
tries, different, europe

TABLE 3: Self-summary topics and associated terms.

Fig. 1: Self-summary distribution over topics

particular demographic groups.
Figure 1 shows the distribution over topics by sex for the self-

summary essay. The highest proportion of users, of either sex,
were in the "about me" topic. This is not surprising given the
essay prompt. For most topics, females and males were mostly
evenly distributed. For example, the proportion of females who
emphasized their careers or travel or other topics was similar to
the proportion of males who did the same. One exception was
with the "enthusiastic" topic, to which females belonged at almost
twice the rate of males. Users in this group used modifiers such as,
"love," "really," and "absolutely" regardless of the activities they
were describing.

We further examined online self-presentation by considering
the other available essays in the OkCupid data set. Previous
psychology research suggests that a person’s preferred music
styles are tied to their personalities [Col15], and it is possible
that this extends to other media, such as books or movies. We next
analyzed the "Favorite books, movies, shows, music, food" essay.

As with the self-summaries, we removed users who wrote less
than 5 tokens for this essay (11,836 such cases). Note that because
the favorites text is less expository and more list-like, we did not
perform a lexical-based analysis. Instead, we used NMF to identify
topics (or genres). Like with the self-summaries, we chose 25
topics. Table 4 lists the topics and a selection of their highest
weighted tokens.

The topics for this essay were less distinctive than the topics
for the self-summaries. In some cases, genres (or media) over-
lapped. For example, the "TV-comedies-0" group included "The
Walking Dead," which is a drama. There was also overlap between
groups. Still, we decided to keep 25 components. The granularity
these topics provided was used for further analyses. We created
superordinate groupings from the topics from which we extracted
distinctive tokens for particular demographic groups, showing the
approach’s flexibility. Figure 2 shows the distribution over topics,
by sex.

The most popular topics, for both females and males, were
"TV-hits" and "music-rock," with about 16 percent of each sex
writing about shows or artists in those groups. We found more
separation between the sexes in the favorites essay than we
did with the self-summaries. As with the self-summary essay,

TELL ME SOMETHING I DON’T KNOW: ANALYZING OKCUPID PROFILES 79

Topic Tokens

like like, music like, movies like, really like, stuff, food
like, things, like music, books like, like movies

TV-hits mad men, arrested development, breaking bad, 30
rock, tv, parks, sunny, wire, dexter, office

enthusiastic love food, love music, love movies, love love, cook,
love good, eat, food, love read, books love

favorite-0 favorite, favorite food, favorite movies, favorite
books, favorite music, favorite movie, favorite book,
favorite shows, favorite tv, time favorite

genres-movies sci fi, action, comedy, horror, fantasy, movies, drama,
romantic, classic, adventure

genres-music hip hop, rock, r&b, jazz, reggae, rap, pop, country,
classic, old

misc-0 fan, reading, food ’m, right, ’m big, really, currently,
music ’m, just, open

TV-comedies-0 big bang theory, met mother, big lebowski, friends,
house, office, community, walking dead, new girl,
bones

genres-food italian, thai, mexican, food, indian, chinese, japanese,
sushi, french, vietnamese

nots ca n’t, watch, n’t really, does, n’t like, does n’t, think,
eat, n’t watch tv, n’t read

teen harry potter, hunger games, twilight, dragon tattoo,
pride prejudice, harry met sally, disney, vampire,
trilogy, lady gaga

everything books, movies, food, music, shows, country, dance,
action, lots, horror

movies-drama-
0

eternal sunshine, spotless mind, litte miss sunshine,
amelie, garden state, lost, life, beautiful, lost transla-
tion, beauty

time periods 80, let, good, 90, life, just, 70, world, time, man
avid read lot, time, watch, listen, recently, lately, love read,

watch lot, favorites, just read
misc-1 list, just, long, ask, way, goes, things, try, favorites,

far
music-rock david, black, john, tom, radiohead, bob, brothers,

beatles, black keys, bowie
movies-sci-fi star, lord, wars, rings, star trek, trilogy, series, matrix,

princess, bride
TV-comedies-1 modern family, family guy, office, south park, met

mother, glee, simpsons, american dad, 30 rock, col-
bert

movies-drama-
1

fight club, shawshank redemption, pulp fiction, fear
loathing, peppers, red hot, vegas, american, catcher
rye, big lebowski

kinds kinds music, love kinds, kinds food, kinds movies,
listen, different, country, foods, comedy, action

favorite-1 favorite book, favorite movie, food, music, good, fav,
book read, reading, great, best

novelty enjoy, new, types, trying, reading, things, foods, types
music, films, different

TV-drama game thrones, ender ’s game, walking dead, true
blood, series, currently, hunger games, dexter, song
ice, boardwalk empire

genres-books fiction, non fiction, science fiction, fiction books, read
non fiction, historical fiction, films, books, documen-
taries, biographies

TABLE 4: Favorites topics and associated terms.

Fig. 2: Favorites distribution over topics, by sex

the enthusiastic group was distinctly female. A distinctly male
category included films such as "Fight Club" and "The Shawshank
Redemption" and musicians such as the Red Hot Chili Peppers.

We created superordinate groupings by combining clusters.
There were four groups related to movies. In order to extract
demographic-distinctive tokens, we used the smoothed log-odds-
ratio which accounts for variance as described by Monroe, Co-
laresi, and Quinn [Mon09]. The top movies for females were Harry
Potter, Pride & Prejudice, and Hunger Games while males favored
Star Wars, The Matrix, and Fight Club. The "movies-sci-fi" and
"movies-drama-1" groups, whose highest weighted tokens referred
to the male-favored movies, had a higher proportion of males than
females. Similarly, the "teen" group, which which corresponded to
female-favored movies, had a higher proportion of females. This
reflects the terms found by the log-odds-ratio.

Figure 3 shows the distribution over topics by drug usage.
In this demographic category, users self-identified as drug users
or non-drug users. To this, we added a third level for users who
declined the state their drug usage status. There were 6,859 drug
users, 29,402 non-drug users, and 11,849 users who did not state
their drug usage status ("unknown").

There was more intra-cluster variation in the distribution of
users across topics than for the demographic split by sex. Inter-
estingly, the distribution across topics of users for whom we had
no drug usage information — those in the "unknown" category
— tended to track the distribution of self-identified drug users. In
other words, the proportion of drugs users and unknown users in
most topics was similar. This was especially true in cases where
difference in proportions of drug users and non-drug users was
large. This unexpected finding may suggest that individuals who
did not respond to the drug usage question abstained in order to
avoid admitting they did use drugs.

Although we were unable to test this hypothesis directly due
to lack of the true drug-usage status for these users, the manner
by which free-text writing styles may unintentionally disclose
demographic attributes is an intriguing avenue for research. We
used a predictive modeling approach to attempt to gain insights
into this question. Specifically, we trained a logistic regression
model on a binary outcome, using only drug users and non-

80 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 3: Favorites distribution over topics, by drug usage status

drug users. We used tf-idf weights on unigrams, bigrams, and
trigrams as in the previous analyses. We also balanced the classes
by randomly sampling 6,859 accounts from the non-drug user
population. The data was split into training (80%) and test (20%)
sets in order to assess model accuracy. We then predicted class
labels on the group of unknown drug usage status.

Our initial model, which used only the "Favorites" essay text,
accurately predicted 68.0 percent of drug users. When applied
to the unknown users upon which the model was not trained,
the model predicted that 55 percent of the unknown users were
drug users and that 45 percent were not. When we examined the
proportion of predicted user by NMF cluster, however, we found
intriguing patterns. In the "music-rock" group — the group with
the largest disparity between users and non-users — 84 percent
of unknowns were classified as drug users. In contrast, only 25
percent of the unknowns in the "TV-comedies-0" group were
classified as such. While this cluster included "The Big Lebowski,"
which is identified as a "stoner film" [She13], it also features "The
Big Bang Theory," "How I Met Your Mother," "NCIS," "New
Girl," and "Seinfeld," which we would argue are decidedly not
drug-related.

These results prompted us examine if we could predict drug
usage status based on text alone. For this, we combined the text
of all 10 essays and dropped the 2,496 users who used less than
five tokens in the full-text. As before, we randomly sampled from
the non-users in order to balance the classes and split the data into
training and test sets.

The full-text model accuracy increased to 72.7 percent. We
used the feature weights to find the 25 most-predictive drug-usage
terms. These are listed below, with the odds ratio14 shown in
parentheses.

sex (68.96), shit (45.51), music (20.95),
weed (18.46), party (15.54), beer (14.18),
dubstep (13.86), fuck (12.28), drinking (11.48),
smoking (11.39), partying (10.59), chill (9.45),
hair (8.84), park (8.09), fucking (7.93), dj (7.9),
burning (7.78), electronic (7.05), drunk (6.67),

14. Logistic regression coefficient estimates are given as log-odds-ratios.
The odds-ratios, which say how much a one unit increase affects the odds of
being a drug user, are calculated by exponentiating.

ass (6.36), reggae (6.18), robbins (5.81),
dude (5.74), smoke (5.68), cat (5.5)

Drug users in this data set reference drinking, smoking, partying,
and music more than non-users and also use particular profane
terms.

Conclusion and Future Work

The current study extended previous NLP analyses of online
dating profiles. The scope of this work was larger than previous
studies, both because of the size of the data set and because of the
novel combination of NLP with both supervised and unsupervised
machine learning techniques, such as logistic regression and NMF.
To our knowledge, there is currently no study that combines
these techniques to identify unintentional cues in online self-
presentation or uses them to predict demographics from free-
text self descriptions. The idea that people may unintentionally
be providing information about themselves in the way that they
answer questions online is an intriguing avenue for future research
and can also be extended to deception online.

This work serves as an initial exploration for analyzing self-
presentation in the context of online dating. Given the availability
of other demographic characteristics, such as ethnicity and educa-
tion level, future work will focus on describing the ways in which
other demographic groups tend to describe themselves. We would
also like to explore recent advancements in language modeling
techniques, such as word embeddings. Most importantly, future
work will involve exploring methods to help us better identify
deception. If the data ever becomes available, we would like to
explore how the way that people choose to self-present affects the
interactions they have.

Acknowledgements

This work began as a final project for the Applied Natural
Language Processing course at the School of Information at the
University of California, Berkeley. We would like to thank Marti
Hearst for her guidance in the "right" way to do NLP and in
pushing us to explore new and exciting data sets. We would also
like to thank David Bamman for fruitful discussions on NLP and
ideas for permutation testing. We would especially like to thank
our reviewers, in particular David Lippa. His comments were
invaluable for helping us organize our thoughts and analyses.

REFERENCES

[Bir10] Bird, S., Klein, E., & Loper, E. (2009). Natural language processing
with Python. "O’Reilly Media, Inc.".

[Col15] Collingwood, J. (2015). Preferred Music Style Is Tied to Personality.
Psych Central. Retrieved on June 22, 2016, from http://psychcentral.
com/lib/preferred-music-style-is-tied-to-personality/

[Fio05] Fiore, A. T., & Donath, J. S. (2005, April). Homophily in online dat-
ing: when do you like someone like yourself?. In CHI’05 Extended
Abstracts on Human Factors in Computing Systems (pp. 1371-1374).
ACM.

[Fio08] Fiore, A. T., Taylor, L. S., Mendelsohn, G. A., & Hearst, M.
(2008, April). Assessing attractiveness in online dating profiles.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 797-806). ACM.

[Ger12] Gerber, A. S., & Green, D. P. (2012). Field experiments: Design,
analysis, and interpretation. WW Norton.

[Hon16] Honnibal, M (2016). spaCy. [Computer software]. https://spacy.io/.
[Kim15] Kim, A. Y., & Escobedo-Land, A. (2015). OkCupid Data for In-

troductory Statistics and Data Science Courses. Journal of Statistics
Education, 23(2), n2.

TELL ME SOMETHING I DON’T KNOW: ANALYZING OKCUPID PROFILES 81

[McP01] McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a
feather: Homophily in social networks. Annual review of sociology,
415-444.

[Mon09] Monroe, B. L., Colaresi, M. P., & Quinn, K. M. (2008).
Fightin’words: Lexical feature selection and evaluation for identi-
fying the content of political conflict. Political Analysis, 16(4), 372-
403.

[Nag09] Nagarajan, M., & Hearst, M. A. (2009, March). An Examination of
Language Use in Online Dating Profiles. In ICWSM.

[Oja10] Ojala, M., & Garriga, G. C. (2010). Permutation tests for study-
ing classifier performance. Journal of Machine Learning Research,
11(Jun), 1833-1863.

[Ped11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
& Vanderplas, J. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12(Oct), 2825-2830.

[Pet11] Petrov, S., Das, D., & McDonald, R. (2011). A universal part-of-
speech tagset. arXiv preprint arXiv:1104.2086.

[Pew16] Smith, Aaron, & Anderson, Monica (2016). 5 Facts About Online
Dating. Retrieved from http://www.pewresearch.org/fact-tank/2016/
02/29/5-facts-about-online-dating/.

[She13] Sheffield, Rob (2013). 10 Best Stoner Movies of All Time. Rolling
Stones. Retrieved on June 23, 2016, from http://www.rollingstone.
com/movies/lists/the-greatest-stoner-movies-of-all-time-20130606

[Wet15] Everett Wetchler, okcupid, (2015), GitHub repository, https://github.
com/everett-wetchler/okcupid.git

[Xu_03] Xu, W., Liu, X., & Gong, Y. (2003, July). Document clustering
based on non-negative matrix factorization. In Proceedings of the
26th annual international ACM SIGIR conference on Research and
development in informaion retrieval (pp. 267-273). ACM.

82 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

PyTeCK: a Python-based automatic testing package
for chemical kinetic models

Kyle E. Niemeyer‡∗

https://youtu.be/Ke3Ip25C4pY

F

Abstract—Combustion simulations require detailed chemical kinetic models to
predict fuel oxidation, heat release, and pollutant emissions. These models are
typically validated using qualitative rather than quantitative comparisons with
limited sets of experimental data. This work introduces PyTeCK, an open-source
Python-based package for automatic testing of chemical kinetic models. Given a
model of interest, PyTeCK automatically parses experimental datasets encoded
in a YAML format, validates the self-consistency of each dataset, and performs
simulations for each experimental data point. It then reports a quantitative metric
of the model’s performance, based on the discrepancy between experimental
and simulated values and weighted by experimental variance. The initial version
of PyTeCK supports shock tube and rapid compression machine experiments
that measure autoignition delay.

Index Terms—combustion, chemical kinetics, model validation

Introduction

Combustion simulations require chemical kinetic models to pre-
dict fuel oxidation, heat release, and pollutant emissions. These
models are typically validated using qualitative, rather than quan-
titative, comparisons with limited sets of experimental data. Fur-
thermore, while a plethora of published data exist for quantities of
interest such as autoignition delay and laminar flame speed, most
are not available in a standardized machine-readable format. Such
data is commonly offered in poorly documented, nonstandard CSV
files and Excel spreadsheets, or even contained in PDF tables or
figures.

This work aims to support quantitative validation of kinetic
models by:

1. Encouraging the use of a human- and machine-
readable format to encode experimental data for com-
bustion.

2. Offering an efficient, automated software package,
PyTeCK, that quantitatively evaluates the performance
of chemical kinetics models based on available experi-
mental data.

Fundamental combustion experiments typically study the be-
havior of fuels in idealized configurations at conditions relevant
to applications in transporation, aerospace, or power generation.

* Corresponding author: Kyle.Niemeyer@oregonstate.edu
‡ School of Mechanical, Industrial, and Manufacturing Engineering, Oregon
State University

Copyright © 2016 Kyle E. Niemeyer. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

These produce useful data for validating chemical kinetic mod-
els, which in turn can support simulations of more complex
applications such as internal combustion or gas turbine engines.
The autoignition delay of a fuel/oxidizer mixture represents the
time required for the mixture to ignite (i.e., experience a rapid
increase in temperature and corresponding consumption of fuel
and oxidizer) after arriving at a specified initial state. Autoignition
occurs in practical applications such as knock in spark-ignition en-
gines or ignition in compression-ignition and gas turbine engines,
and so ignition delay measurements provide useful validation
measures for models aimed at capturing such phenomena. Other
combustion experimental measurements—such as extinction in
perfectly stirred reactors, species profiles in jet-stirred reactors,
and laminar flame speeds—also provide useful information about
fuel combustion characteristics, but these are not considered in
this paper.

Ignition delay times are typically measured with two cate-
gories of experiments: shock tubes and rapid compression ma-
chines. In shock tubes, a diaphragm separates high-pressure gases
from a lower-pressure mixture of fuel and oxidizer. Rupturing
the diaphragm propagates a (compressive) shock wave into the
fuel/oxidizer mixture, quickly increasing the temperature and
pressure and leading to autoignition after a time delay. Chaos
and Dryer [Chaos2010], and more recently Hanson and Davidson
[Hanson2014], discuss shock tubes in more detail. In contrast,
rapid compression machines, reviewed by Sung and Curran
[Sung2014], emulate a single compression stroke in an internal
combustion engine; the compression of a piston raises the tem-
perature and pressure of a fuel/oxidizer mixture in a short period
of time, after which ignition occurs. Shock tubes and rapid com-
pression machines offer complementary approaches to measuring
ignition delay times. Shock tubes can investigate a wide range
of temperatures (600–2500 K) [Hanson2014], although problems
with pre-ignition pressure rise occur at higher pressures and
temperatures below around 1100 K [Petersen2009], [Chaos2010],
while rapid compression machines can reach low-to-intermediate
temperatures (600–1100 K) [Sung2014].

In this paper, I propose a data format for capturing results
from experimental measurements of autoignition delay times. This
paper also describes the components of PyTeCK (Python-based
testing of chemical kinetic models), a software package that
quantifies the performance of a chemical kinetic model in repro-
ducing experimental ignition delays. This includes discussion of
the experimental data parser, simulation framework, and solution
post-processing. The paper also explains the theoretical basis for

PYTECK: A PYTHON-BASED AUTOMATIC TESTING PACKAGE FOR CHEMICAL KINETIC MODELS 83

the models of shock tubes and rapid compression machines.

Implementation of PyTeCK

PyTeCK is packaged as a standard Python package using setup-
tools, and consists of three primary modules:

1. parse_files contains functions to read
the YAML-encoded experimental data file using the
PyYAML module. Smaller functions comprise this pro-
cess to enable easier unit testing.

2. simulation contains the Simulation class
and relevant functions for initiating, setting up, and
running cases, and then processing the results.

3. eval_model uses the previous two mod-
ules to set up simulations based on experimental
data, and then runs simulations in parallel using the
multiprocessing module.

The next three sections explain the implementation of
each primary module. PyTeCK also includes the module
detect_peaks, based on the work of Duarte [Duarte2015], for
detecting peaks in targeted quantities (e.g., pressure, temperature)
to determine the ignition delay time. Supporting modules in
PyTeCK include exceptions for raising exceptions while read-
ing YAML files, utils that initializes a single Pint-based unit
registry [Grecco2016], and validation that provides quantity
validation functions.

PyTeCK relies on well-established scientific Python soft-
ware tools. These include NumPy [vanderWalt2011] for large
array manipulation, SciPy [Jones2001] for interpolation, Pint
[Grecco2016] for interpreting and converting between units,
PyTables [Alted2002] for HDF5 file manipulation, Cantera
[Goodwin2016] for chemical kinetics, and pytest [Krekel2016]
for unit testing. Travis-CI [Travis2016] also provides continuous
integration testing.

PyTeCK is available under an open-source MIT license via
a GitHub repository [Niemeyer2016b]. It can be installed using
setuptools by downloading the source code files and execut-
ing python setup.py install. More mature versions of
PyTeCK will be distributed on PyPI (Python Package Index).

Parsing ChemKED files

The PyTeCK module parse_files parses experimental data
encoded in the ChemKED (chemical kinetics experimental data)
format proposed by this paper. ChemKED builds on XML-based
ReSpecTh of Varga et al. [Varga2015a], [Varga2015b]—which in
turn builds on the PrIMe data format [Frenklach2007], [You2012],
[PrIMe2016]—but is written in YAML instead of XML. While
XML is a powerful markup language, YAML offers a number
of advantages: parsers and libraries exist for most programming
langauges, it supports multiple data types and arrays. YAML files
are also intended for data and more readable by humans, which
allows easier composition and could encourage adoption.

The code block below shows a complete example of an
autoignition dataset for an hydrogen/oxygen/argon (H2/O2/Ar)
mixture, taken from Figure 12 (right) of Chaumeix et al.
[Chaumeix2007]:

file-author:

name: Kyle E Niemeyer
ORCID: 0000-0003-4425-7097

file-version: (1, 0)

reference:
doi: 10.1016/j.ijhydene.2007.04.008
authors:

- name: N. Chaumeix
ORCID:

- name: S. Pichon
ORCID:

- name: F. Lafosse
ORCID:

- name: C.-E. Paillard
ORCID:

journal: International Journal of Hydrogen Energy
year: 2007
volume: 32
pages: 2216-2226
detail: Fig. 12., right, open diamond

experiment-type: Ignition delay
apparatus:

kind: shock tube
institution: CNRS-ICARE
facility: stainless steel shock tube

common-properties:
pressure: &pres

value: 220
units: kilopascal

composition: &comp
- species: H2
InChI: 1S/H2/h1H
mole-fraction: 0.00444

- species: O2
InChI: 1S/O2/c1-2
mole-fraction: 0.00566

- species: Ar
InChI: 1S/Ar
mole-fraction: 0.9899

ignition-type: &ign
target: pressure
type: d/dt max

datapoints:
- temperature:

value: 1164.48
units: kelvin

ignition-delay:
value: 471.54
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1164.97
units: kelvin

ignition-delay:
value: 448.03
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1264.2
units: kelvin

ignition-delay:
value: 291.57
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1332.57
units: kelvin

ignition-delay:
value: 205.93
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

- temperature:
value: 1519.18

84 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

units: kelvin
ignition-delay:

value: 88.11
units: us

pressure: *pres
composition: *comp
ignition-type: *ign

This example contains all the information needed to evaluate the
performance of a chemical kinetic model with five data points. The
file also includes metadata about the file itself, as well as reference
information. While these elements, including file-author,
file-version, and the entries in reference, are not re-
quired by PyTeCK, a valid ChemKED file should include this in-
formation for completeness. The elements necessary for PyTeCK
include the type of experiment given by experiment-type
(currently limited to Ignition delay), the kind of appa-
ratus used to measure ignition delay (shock tube or rapid
compression machine), and then a list of experimental
datapoints given as associative arrays with necessary in-
formation. Mandatory elements of each entry in“datapoints“
include the initial temperature, pressure, and mixture
composition, as well as the experimental ignition-delay
and ignition-type (means by which PyTeCk detects ignition,
discussed in more detail later). All quantities provided include a
magnitude and units, which Pint [Grecco2016] interprets. Since
many experimental datasets hold certain properties constant (e.g.,
composition, pressure) while varying a single quantity (e.g.,
temperature), a common-properties element can describe
properties common to all datapoints, using an arbitrary an-
chor label (e.g., &pres above for the constant pressure). Each
data point then refers to the common property with a reference
(*pres). However, every data point should still contain the
complete information needed to reproduce its conditions; the
common-properties element is used for convenience.

Modeling ignition in shock tubes or RCMs may require more
elements to capture effects not accounted for by the simplest
models. Under certain conditions that lead to longer ignition delay
times, shock tubes can exhibit pressure rise before ignition. This
is typically expressed in the literature with a constant pressure rise
rate at a fraction of the initial pressure (with units of inverse time),
and ChemKED files encode this as an item in the associative array
describing an experimental data point:

pressure-rise:
value: 0.10
units: 1/ms

Later versions of PyTeCK will support specifying a pressure-time
history directly, although these are not commonly published in the
shock tube literature.

Simulations of RCM experiments commonly provide a
volume-time history to capture nonideal pre- and post-ignition
heat losses, as well as effects due to the compression stroke.
This data can be provided with experimental datapoints in
ChemKED as a list of lists, with the column index and units
identified:

volume-history:
time:

units: s
column: 0

volume:
units: cm3
column: 1

values:
- [0.00E+000, 5.47669375000E+002]
- [1.00E-003, 5.46608789894E+002]

The PyTeCK tests directory [Niemeyer2016b] contains more
examples of ChemKED files for shock tube and RCM experi-
ments.

The function parse_files.read_experiment() takes
a ChemKED-format file as input, and returns a dictionary with the
necessary information to perform simulations of the experimental
data points. The parse_files.get_experiment_kind()
and parse_files.get_datapoints() functions perform
important checking of input information for consistency and valid-
ity of quantities via the validation module. For example, after
detecting the specified initial temperature, get_datapoints()
checks the correct dimensionality of units and range of magnitude
(in this case, that the units are consistent with Kelvin and that the
magnitude is greater than zero),

validation.validate_gt('temperature',
case['temperature'],
0. * units.kelvin
)

where the validation.validate_gt() func-
tion—borrowed heavily from Huff and Wang’s PyRK [Huff2015],
[Huff2015b]—is

def validate_gt(value_name, value, low_lim):
"""Raise error if value not greater than lower
limit or wrong type.

Parameters

value_name : str

Name of value being tested
value : int, float, numpy.ndarray, pint.Quantity

Value to be tested
low_lim : type(value)

``value`` must be greater than this limit

Returns

value : type(value)

The original value

"""
try:

if not validate_num(value_name, value) > low_lim:
msg = (value_name + ' must be greater than ' +

str(low_lim) + '.\n'
'Value provided was: ' + str(value)
)

RuntimeError used to avoid being caught by
Pint comparison error. Pint should really
raise TypeError (or something) rather than
ValueError.
raise RuntimeError(msg)

else:
return value

except ValueError:
if isinstance(value, units.Quantity):

msg = ('\n' + value_name +
' given with units, when variable '
'should be dimensionless.'
)

raise pint.DimensionalityError(value.units,
None,
extra_msg=msg
)

else:
msg = ('\n' + value_name +

' not given in units. Correct '

PYTECK: A PYTHON-BASED AUTOMATIC TESTING PACKAGE FOR CHEMICAL KINETIC MODELS 85

'units share dimensionality with: ' +
str(low_lim.units)
)

raise pint.DimensionalityError(None,
low_lim.units,
extra_msg=msg
)

except pint.DimensionalityError:
msg = ('\n' + value_name +

' given in incompatible units. Correct '
'units share dimensionality with: ' +
str(low_lim.units)
)

raise pint.DimensionalityError(value.units,
low_lim.units,
extra_msg=msg
)

except:
raise

The read_experiment() function also checks that neces-
sary parameters are present, and also for consistency between
input parameters based on the particular experiment type being
modeled. For example, an input ChemKED file describing a
shock tube experiment cannot include compression-time or
volume-history elements.

After parsing and checking the simulation parameters, the
parse_files.create_simulations() function creates a
list of Simulation objects.

Autoignition simulation procedure

Once parse_files.create_simulations() initializes
a list of Simulation objects, the member function
setup_case() prepares each object to perform a simulation
by initiating the governing equations that model shock tubes and
rapid compression machines. These equations are briefly described
next.

A composition state vector Φ defines the thermochemical state
of a general chemical kinetic system:

Φ =
{

T,Y1,Y2, . . . ,YNsp

}
,

where T is the temperature, Yi is the mass fraction of the ith
species, and Nsp is the number of species represented by the
chemical kinetic model. A system of ordinary differential equa-
tions advances this thermochemical state when modeling both
experimental types, derived from conservation of mass and energy:

dΦ
dt

=

{
dT
dt

,
dY1

dt
,

dY2

dt
, . . . ,

dYNsp

dt

}
. (1)

The derivative terms in Equation (1) come from the conservation
of energy

dT
dt

=
−1
cv

(
Nsp

∑
i=1

ei
dYi

dt
+ p

dv
dt

)
(2)

and conservation of mass
dYi

dt
=

1
ρ

Wiω̇i i = 1, . . . ,Nsp , (3)

where cv is the mass-averaged constant-volume specific heat of
the mixture, ei is the internal energy of the jth species in mass
units, v is the specific volume of the mixture, and ω̇i is the overall
molar production rate of the ith species.

PyTeCK relies on Cantera [Goodwin2016] for handling most
chemical kinetics calculations. Cantera is an open-source software
library that provides tools for solving problems related to chemical

kinetics, thermodynamics, and transport processes. The core of
Cantera is written in C++, but it provides interfaces for Python and
Matlab. PyTeCK uses a Cantera [Goodwin2016] ReactorNet
object to solve the system given by Equation (1), by connecting
IdealGasReactor and Reservoir objects separated by a
Wall. The Wall may or may not be moving, depending on
whether the modeled system has varying or constant volume,
respectively.

The simplest way to model both shock tubes and RCM
experiments is by assuming an adiabatic, constant-volume process.
In this case, I simplify Equation (2) by assuming dv

dt = 0, and the
Wall is initialized with velocity=0:

self.wall = ct.Wall(self.reac, env, A=1.0, velocity=0)

This approach does not account for either preignition pressure
rise observed in some shock tube experiments [Chaos2010],
[Hanson2014] or heat loss in RCMs [Sung2014]. RCM volume
histories are typically provided directly, but publications describ-
ing shock tube experiments with observed preignition pressure
rise usually instead give a constant pressure-rise rate dP

dt . This
is incorporated into Equation (2) by determining an associated
preignition pressure history p(t):

p(t) = p0 +
∫ tend

0

d p
dt

dt , (4)

where p0 is the initial pressure and tend the time interval
of interest (typically the ignition delay time). The function
simulation.sample_rising_pressure() actually con-
structs this pressure history, which is then used to construct a
volume history v(t) assuming isentropic compression:

v(t) = v0
ρ0

ρ(t)

∣∣∣∣
s0

, (5)

where v0 is the initial volume, ρ is the density, ρ0 is the initial
density, and s0 is the specific entropy of the initial mixture.

The varying volume of the system is handled by assigning the
velocity attribute of the ReactorNet’s ’Wall to one of two
classes: VolumeProfile when volume history is provided

self.wall = ct.Wall(
self.reac, env, A=1.0,
velocity=VolumeProfile(self.properties)
)

and PressureRiseProfile when pressure-rise value is spec-
ified

self.wall = ct.Wall(
self.reac, env, A=1.0,
velocity=PressureRiseProfile(

mechanism_filename, initial_temp,
initial_pres, reactants,
self.properties['pressure-rise'].magnitude,
self.time_end
)

)

PyTeCK needs more details about the chemical kinetic model
and initial conditions to initialize the PressureRiseProfile
object, and specifically to construct the discrete volume-
time history via Equations (4) and (5) using the
simulation.create_volume_history() function.
Objects of both classes contain the derivative of volume dv/dt,
which PyTeCK obtains by numerically differentiating the volume
history via simulation.first_derivative(). This

86 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

function uses numpy.gradient() to calculate second-order
central differences at interior points and second-order one-sided
differences (either forward or backward) at the edge points. When
called, the VolumeProfile or PressureRiseProfile
object returns the derivative of volume at the specified time
(i.e., the velocity of the Wall), using numpy.interp() to
interpolate as needed.

After each setup_case() prepares a Simulation object,
the run_case() member function actually runs each simulation.
PyTeCK prepares and runs each simulation independently to allow
the use of multiprocessing workers to perform these steps
in parallel (if desired), as described in the next section. When
running a simulation, PyTeCK creates an HDF5 file and opens
it as a PyTables [Alted2002] table, then performs integration
steps until it reaches the desired end time (set as 100 times the
experimental ignition delay). At every timestep, run_case()
saves the time and information about the current thermochemical
state (temperature, pressure, volume, and species mass fractions)
to the HDF5 table. The Cantera ReactorNet.step() function
performs a single integration step, selecting an appropriate time-
step size based on estimated integration error. Internally, step()
uses the CVODE implicit integrator [Cohen1996], part of the
SUNDIALS suite [Hindmarsh2005], to advance the state of the
IdealGasReactor contained by the ReactorNet.

Finally, a call to the process_results() member func-
tion determines the autoignition delay by opening the saved simu-
lation results. The method by which it detects ignition depends on
the target and type specified in the input ChemKED file. Target
quantities include pressure, temperature, and mass fractions of
commonly used species such as the OH and CH radicals (as well as
their excited equivalents OH* and CH*). process_results()
detects ignition by finding the location of either the maximum
value of the target quantity (e.g., type: max) or the maximum
value of the derivative of the quantity (e.g., type: d/dt max):

Analysis for ignition depends on type specified
if self.ignition_type == 'd/dt max':
Evaluate derivative
target = first_derivative(time, target)

Get indices of peaks
ind = detect_peaks(target)

Fall back on derivative if max value doesn't work.
if len(ind) == 0 and self.ignition_type == 'max':

target = first_derivative(time, target)
ind = detect_peaks(target)

Get index of largest peak
(overall ignition delay)
max_ind = ind[np.argmax(target[ind])]

add units to time
time *= units.second

Will need to subtract compression time for RCM
time_comp = 0.0
if 'compression-time' in self.properties:

time_comp = self.properties['compression-time']

ign_delays = time[
ind[np.where((time[ind[ind <= max_ind]] -
time_comp) > 0)]
] - time_comp

Overall ignition delay

if len(ign_delays) > 0:

ign_delay = ign_delays[-1]
else:

ign_delay = 0.0 * units.second
self.properties[

'simulated ignition delay'
] = ign_delay

using the detect_peaks.detect_peaks() function
[Duarte2015].

Evaluation of model performance

The approach used by PyTeCK to report performance of a
chemical kinetic model is adapted from the work of Olm et
al. [Olm2014], [Olm2015], and briefly discussed by Niemeyer
[Niemeyer2016].

The function eval_model.evaluate_model() controls
the overall evaluation procedure, given the required and optional
parameters:

• model_name: a string with the name of the Cantera-
format chemical kinetic model file (e.g., CTI file)

• spec_keys_file: a string with the name of a YAML
file identifying important species

• dataset_file: a string with the name of a file listing
the ChemKED files to be used, which gives the filenames
in a newline delimited list

• model_path: a string with the directory containing
model_name. This is optional; the default is 'models'

• results_path: a string with the directory for placing
results files. This is optional; the default is 'results'

• model_variant_file: a string with the name of a
YAML file identifying ranges of conditions for variants of
the kinetic model. This is optional; the default is None

• num_threads: an integer with the number of CPU
threads to use to perform simulations in parallel. This is
optional; the default is the maximum number of available
threads minus one

A few of these parameters require greater explanation. The
chemical kinetic model, also referred to as "chemical reaction
mechanism", needs to be provided in Cantera’s CTI file (CanTera
Input file) format [Goodwin2016]. This file contains a description
of the elements, species (including names, molecular composi-
tion, and thermodynamic property data), and reactions (including
reversibility, stoichiometry, Arrhenius rate parameters, third-body
species efficiencies, and pressure dependence). Although the use
of the CTI format in the literature has increased recently, of-
ten models are instead available in the older Chemkin format
[Kee1996]. Such files can be converted using the Cantera-provided
utility ck2cti.

PyTeCK needs the species key YAML file
spec_keys_file because different chemical kinetic models
internally use different names for species. PyTeCK interprets
these names to set the initial mixture composition, and potentially
identify a species target to detect ignition. This file contains
entries (for multiple model files, if desired) of the form:

model_name:

H2: "H2"
O2: "O2"
Ar: "AR"

where the key indicates the internal PyTeCK species name and
the value is the name used by the model. In this case, the

PYTECK: A PYTHON-BASED AUTOMATIC TESTING PACKAGE FOR CHEMICAL KINETIC MODELS 87

necessary species names are consistent with the names used
internally by PyTeCK, other than the capitalization of argon
(AR). Names will likely differ for other kinetic models; for
example, internally nC7H16 represents the species n-heptane,
while other models may use C7H16, C7H16-1, or NXC7H16, for
example. PyTeCK’s internal naming convention for key species
is given by the SPEC_KEY and SPEC_KEY_REV dictionar-
ies in the utils module, and can be obtained by calling
utils.print_species_names(). For correct results the
species name keys given in the spec_keys_file file only need
to match names of species in the ChemKED files.

The model_variant_file YAML file is needed in cer-
tain (uncommon) cases where the chemical kinetic model needs
manual changes to apply to different ranges of conditions (such as
pressure or bath gas). In other words, different versions of the CTI
file need to be created for accurate performance under different
conditions. This file may contain entries of the form:

model_name:

bath gases:
N2: "_N2"
Ar: "_Ar"

pressures:
1: "_1atm.cti"
9: "_9atm.cti"
15: "_15atm.cti"
50: "_50atm.cti"
100: "_100atm.cti"

where the keys are extensions added to model_name, in order
of bath gases and then pressures, and the values represent
the extensions to the base filename given by model_name. For
models that need such variants, all combinations need to be present
in the model_path directory. As an example, the kinetic model
of Haas et al. [Haas2009] for mixtures of n-heptane, isooctane, and
toluene, which I term Princeton-2009, has certain reactions
that require rate parameters to be changed manually for different
bath gases and pressure ranges. For a case with nitrogen as the
bath gas and at pressures around 9 atm, the resulting file name
would be Princeton-2009_N2_9atm.cti.

To determine the performance of a given model,
evaluate_model() parses the ChemKED file(s),
then sets up and runs simulations as described. A
multiprocessing.Pool can perform simulations in
parallel if multiple CPU threads are available, creating
simulation_worker objects for each case. Then,
process_results() calculates the simulated ignition
delays.

PyTeCK reports the overall performance of a model by the
average error function over all the experimental datasets:

E =
1
N

N

∑
i=1

Ei (6)

where N is the number of datasets and Ei is the error function for a
particular dataset. A lower E value indicates that the model better
matches the experimental data. The error function for a dataset
Ei is the average squared difference of the ignition delay times
divided by the variance of the experimental data:

Ei =
1
Ni

Ni

∑
j=1

(
logτexp

i j − logτsim
i j

σ(logτexp
i j)

)2

, (7)

where Ni is the number of data points in dataset i, τi j is the
jth ignition delay value in the ith dataset, σ is the experimental

variance, log indicates the natural logarithm (rather than base-10),
and the superscripts "exp" and "sim" represent experimental and
simulated results, respectively.

The experimental variance σ serves as a weighting factor for
datasets based on the estimated uncertainty of results. This term
reduces the contribution to E of a dataset with high variance, from
discrepancies between model predictions and experimental data,
compared to datasets with lower variance. Ideally, publications
describing experimental results would provide uncertainty values
for ignition delay results, but these are difficult to estimate for
shock tube and rapid compression machines and thus not com-
monly reported. Thus, for now, PyTeCK estimates all variance
values.

PyTeCK estimates the variance with the
eval_model.estimate_std_dev() function, by first
fitting a scipy.interpolate.UnivariateSpline() of
order three (or less, if the fit fails) to the natural logarithm of
ignition delay values for a given dataset (where results mainly
vary with a single variable, such as temperature), and then
calculating the standard deviation of the differences between the
fit and experimental data via numpy.std(). PyTeCK sets 0.1
as a lower bound for the uncertainty in ignition delay time, based
on the precedent set by Olm et al. [Olm2014], [Olm2015].

After calculating the error associated with a dataset us-
ing Equation (7) and the overall error metric for a model
using Equation (6), evaluate_model() saves the perfor-
mance results to a YAML file and returns the associated
dictionary if evaluate_model() was called programmat-
ically. If the --print command line option was given,
or the print_results option set to True when calling
evaluate_model(), then the results are also printed to screen.

Example Usage

This section provides an example of using PyTeCK to compare
the performance of 12 chemical kinetic models for hydrogen oxi-
dation [Niemeyer2016c] using a collection of experimental shock
tube ignition delay data [Niemeyer2016d]. 54 data sets from 14
publications comprise this collection, with a total of 786 ignition
data points. Both the set of models and ChemKED experimental
data set are available openly via the respective references.

After installing PyTeCK [Niemeyer2016b], and placing
the model and experimental data files in appropriate locations
(h2-models and h2-files, in this example), each model can
be evaluated by executing a command similar to PyTeCK -m
GRI30-1999.cti -k h2-model-species-keys.yaml
-d h2-data-list.txt -dp h2-files -mp
h2-models, with the appropriate model name inserted in
place of GRI30-1999.cti.

Figure 1 compares the performances of the 12 hydrogen
models, showing both the average error function E as well as
the standard deviation of Ei values across data sets. Lower error
function values indicate better agreement with experimental data.
While the actual values are not important for the current example,
generally both the average and variation of error function decrease
with publication year of the models---indicating an overall im-
provment of model fidelity with time. Although this example only
considers subsets of both the models and experimental data of Olm
et al.’s study [Olm2014], the results generally agree.

88 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

G
R

I3
0
-1

9
9
9

O
C

o
n
a
ir

e
-2

0
0
4

Z
se

ly
-2

0
0
5

K
o
n
n
o
v
-2

0
0
8

R
a
sm

u
ss

e
n
-2

0
0
8

H
o
n
g
-2

0
1
1

B
u
rk

e
-2

0
1
2

K
e
ro

m
n
e
s-

2
0
1
3

C
R

E
C

K
-2

0
1
4

U
C

S
D

-2
0
1
4

E
LT

E
-2

0
1
5

Li
-2

0
1
5

0

50

100

150

200

250

300
E
rr

o
r

fu
n
ct

io
n
s

Fig. 1: Average error functions, with standard deviations, for the
12 models of hydrogen oxidation. Models are arranged in order of
publication, going from the oldest to the newest.

Conclusions and Future Work

PyTeCK provides an open, Python-based framework for rigor-
ously quantifying the performance of chemical kinetic models
using experimental autoignition data generated from shock tube
and rapid compression machine experiments. It can be used to
compare models for describing the combustion of a given fuel
and identify areas for improvement. Along with the software
framework, this paper describes a new YAML-based data standard,
ChemKED, that encodes experimental results in a human- and
machine-readable manner.

Immediate plans for PyTeCK include better documentation
generated by Sphinx [Brandl2016] and hosted on Read The Docs.
Longer term plans for PyTeCK include extending support for other
experimental types, including laminar flames and flow reactors,
building in visualization of results, and creating an open database
of ChemKED files for experimental data.

Acknowledgments

I thank Bryan Weber of the University of Connecticut for helpful
discussions on the ChemKED format and an early review of this
paper. I also thank Matt McCormick, Erik Tollerud, and Katy Huff
for their helpful review comments.

Appendix

The following code snippet can be used to reproduce Fig. 1 using
the produced by PyTeCK following the instructions given in the
Example Usage section.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
from matplotlib.backends.backend_pdf import PdfPages
import brewer2mpl
import yaml

names = ['GRI30-1999', 'OConaire-2004', 'Zsely-2005',
'Konnov-2008', 'Rasmussen-2008', 'Hong-2011',
'Burke-2012', 'Keromnes-2013', 'CRECK-2014',
'UCSD-2014', 'ELTE-2015', 'Li-2015'
]

ind = np.arange(len(names))

error_funcs = []
error_stds = []
for name in names:
with open(name + '-results.yaml', 'r') as f:

results = yaml.load(f)
error_func = results['average error function']
std_dev = results['error function '

'standard deviation']
error_funcs.append(error_func)
error_stds.append(std_dev)

colors for boxes
box_colors = brewer2mpl.get_map('Set3',

'qualitative',
len(names)
).mpl_colors

fig, ax = plt.subplots()
yerr = [np.zeros(len(names)), error_stds]
ax.bar(ind, error_funcs, align='center',

color=box_colors, linewidth=0,
yerr=yerr, error_kw=dict(ecolor='g',
lw=2, capsize=0)
)

fmt = ScalarFormatter(useOffset=False)
ax.xaxis.set_major_formatter(fmt)

ax.set_ylabel('Error functions')
ax.set_xticks(ind)
ax.set_xticklabels(names, rotation='vertical')
ax.set_xlim([-0.5, ind[-1] + 0.5])
plt.subplots_adjust(bottom=0.25)

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.grid(axis = 'y', color ='white', linestyle='-')

plt.show()

REFERENCES

[Alted2002] F. Alted, I. Vilata, and others. "PyTables: Hierarchical
Datasets in Python," 2002–. http://www.pytables.org/

[Brandl2016] G. Brandl and others. "Sphinx: Python documentation
generator," version 1.4.2, 2016. http://sphinx-doc.org/

[Chaos2010] M. Chaos, F. L. Dryer. "Chemical-kinetic modeling of
ignition delay: Considerations in interpreting shock tube
data," Int. J. Chem. Kinet., 42:143–50, 2010. https://dx.doi.
org/10.1002/kin.20471

[Chaumeix2007] N. Chaumeix, S. Pichon, F. Lafosse, and C.-E. Paillard.
"Role of chemical kinetics on the detonation properties
of hydrogen/natural gas/air mixtures," Int. J. Hydrogen
Energy, 32:2216–2226, 2007. https://dx.doi.org/10.1016/j.
ijhydene.2007.04.008

[Cohen1996] S. D. Cohen and A. C. Hindmarsh. "CVODE, A
Stiff/Nonstiff ODE Solver in C," Comput. Phys.,
10:138–143, 1996. http://dx.doi.org/10.1063/1.4822377

[Duarte2015] M. Duarte. "Notes on Scientific Computing for Biome-
chanics and Motor Control," GitHub repository, 2015.
https://GitHub.com/demotu/BMC

[Frenklach2007] M. Frenklach. "Transforming data into knowl-
edge—Process Informatics for combustion chem-
istry," Proc. Combust. Inst., 31:125–140, 2007.
https://dx.doi.org/10.1016/j.proci.2006.08.121

[Goodwin2016] D. G. Goodwin, H. K. Moffat, and R L. Speth. "Cantera:
An object-oriented software toolkit for chemical kinetics,
thermodynamics, and transport processes," Version 2.2.1,
2016. http://www.cantera.org

[Grecco2016] H. E. Grecco. Pint version 0.7.2, GitHub repository, 2016.
https://GitHub.com/hgrecco/pint

PYTECK: A PYTHON-BASED AUTOMATIC TESTING PACKAGE FOR CHEMICAL KINETIC MODELS 89

[Haas2009] F. M. Haas, M. Chaos, F. L. Dryer. "Low and interme-
diate temperature oxidation of ethanol and ethanol–PRF
blends: An experimental and modeling study," Combust.
Flame, 156:2346–2350, 2009. http://dx.doi.org/10.1016/j.
combustflame.2009.08.012

[Hanson2014] R. K. Hanson, D. F. Davidson. "Recent advances in laser
absorption and shock tube methods for studies of com-
bustion chemistry," Prog. Energy. Comb. Sci., 44:103–14,
2014. http://dx.doi.org/10.1016/j.pecs.2014.05.001

[Hindmarsh2005] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R.
Serban, D. E. Shumaker, and C. S. Woodward. "SUNDI-
ALS: Suite of nonlinear and differential/algebraic equation
solvers," ACM Trans. Math. Software., 31:363–396, 2005.
http://dx.doi.org/10.1145/1089014.1089020

[Huff2015] K. Huff and X. Wang. PyRK v0.2, Figshare, Feb 2015.
http://dx.doi.org/10.6084/m9.figshare.2009058

[Huff2015b] K. Huff. "PyRK: A Python Package For Nuclear Reactor
Kinetics," Proceedings of the 14th Python in Science Con-
ference, 87–93, 2015. Editors: K. Huff and J. Bergstra.

[Jones2001] E. Jones, T. Oliphant, P. Peterson, et al. "SciPy: Open
source scientific tools for Python," 2001–. http://www.
scipy.org/

[Kee1996] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller.
"CHEMKIN-III: A FORTRAN chemical kinetics package
for the analysis of gas-phase chemical and plasma kinet-
ics," Sandia National Laboratories Report SAND96-8216,
May 1996. http://dx.doi.org/10.2172/481621

[Krekel2016] H. Krekel. pytest version 2.9.1, GitHub repository, 2016.
https://github.com/pytest-dev/pytest/

[Niemeyer2016] K. E. Niemeyer. "An autoignition performance comparison
of chemical kinetics models for n-heptane," Spring 2016
Meeting of the Western States Section of the Combustion
Institute, Seattle, WA, USA. 21–22 March 2016. https://dx.
doi.org/10.6084/m9.figshare.3120724

[Niemeyer2016b] K. E. Niemeyer. PyTeCK version 0.1.0, Zenodo, 2016.
https://dx.doi.org/10.5281/zenodo.57565

[Niemeyer2016c] K. E. Niemeyer. "Selected hydrogen chemical kinetic
models," figshare, 2016. https://dx.doi.org/10.6084/m9.
figshare.3482906.v1

[Niemeyer2016d] K. E. Niemeyer. "Hydrogen shock tube ignition
dataset," figshare, 2016. https://dx.doi.org/10.6084/m9.
figshare.3482918.v1

[Olm2014] C. Olm, I. G. Zsely, R. Pálvölgyi, T. Varga, T. Nagy, H.
J, Curran, and T. Turányi. "Comparison of the performance
of several recent hydrogen combustion mechanisms," Com-
bust. Flame 161:2219–34, 2014. http://dx.doi.org/10.1016/
j.combustflame.2014.03.006

[Olm2015] C. Olm, I. G. Zsely, T. Varga, H. J. Curran, and
T. Turányi. "Comparison of the performance of sev-
eral recent syngas combustion mechanisms," Combust.
Flame 162:1793–812, 2015. http://dx.doi.org/10.1016/j.
combustflame.2014.12.001

[Petersen2009] E. L. Petersen, M. Lamnaouer, J. de Vries, H. J. Curran,
J. M. Simmie, M. Fikri, et al. "Discrepancies between
shock tube and rapid compression machine ignition at low
temperatures and high pressures," Shock Waves, 1:739–44,
2009. http://dx.doi.org/10.1007/978-3-540-85168-4_119

[PrIMe2016] "Process Informatics Model," http://primekinetics.org. Ac-
cessed: 29-05-2016.

[Sung2014] C. J. Sung, H. J. Curran, "Using rapid compression ma-
chines for chemical kinetics studies," Prog. Energy Comb.
Sci., 44:1–18, 2014. http://dx.doi.org/10.1016/j.pecs.2014.
04.001

[Travis2016] Travis-CI. "travis-ci/travis-api," GitHub repository. Ac-
cessed: 30-May-2016. https://github.com/travis-ci/travis-
api

[vanderWalt2011] S. van der Walt, S. C. Colbert, and G. Varoquaux. "The
NumPy Array: A Structure for Efficient Numerical Com-
putation," Comput. Sci. Eng., 13:22–30, 2011. https://dx.
doi.org/10.1109/MCSE.2011.37

[Varga2015a] T. Varga, T. Turányi, E. Czinki, T. Furtenbacher, and A. G.
Császár. "ReSpecTh: a joint reaction kinetics, spectroscopy,
and thermochemistry information system," Proceedings of
the 7th European Combustion Meeting, Budapest, Hun-
gary. 30 March–2 April 2015. http://www.ecm2015.hu/
papers/P1-04.pdf

[Varga2015b] T. Varga. "ReSpecTh Kinetics Data Format Specification
v1.0," 25 March 2015. http://respecth.hu/

[You2012] X. You, A. Packard, M. Frenklach. "Process Informatics
Tools for Predictive Modeling: Hydrogen Combustion,"
Int. J. Chem. Kinet., 44:101–116, 2012. https://dx.doi.org/
10.1002/kin.20627

90 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Linting science prose and the science of prose linting

Michael D. Pacer‡∗, Jordan W. Suchow‡

https://youtu.be/S55EFUOu4O0

F

Abstract—The craft of writing is hard despite the abundance of thoughtful
advice available in usage guides and other sources. This is partly a problem of
medium: amassing advice is not enough to improve writing. Writing would thus
benefit if our collective knowledge about best practices in writing were extracted
and transformed into a medium that makes the knowledge more accessible to
authors.

We built Proselint, a Python-based linter for English prose that identifies
violations of style and usage guidelines. Proselint is open-source software
released under the BSD license and is compatible with Pythons 2 and 3. It
runs as a command-line utility or as a text-editor plugin. Proselint’s modules
address redundancy, jargon, illogic, clichés, unidiomatic vocabulary, sexism,
inconsistency, misuse of symbols, malapropisms, oxymorons, security gaffes,
hedging, apologizing, and pretension. Furthermore, Proselint is extensible, en-
abling creation of domain-specific modules and implementation of house style
guides.

Proselint can be seen as both a language tool for scientists and a tool for
language science. On the one hand, Proselint can help scientists communicate
their ideas to each other and to the public by improving their writing. On the
other hand, scientists can use Proselint to measure language usage, to provide
style- and usage-based features for tasks such as authorship identification, and
to explore the factors that make a linter useful (e.g., a low false discovery rate).

Index Terms—linters, writing tools, copyediting

The problem

Writing is hard even for the best writers, and it’s not for lack
of good advice — a tremendous amount of knowledge about
the craft is strewn across usage guides, dictionaries, technical
manuals, essays, pamphlets, websites, and the hearts and minds
of great authors and editors. Consider Garner’s Modern English
Usage, an authoritative usage guide with 11,000 entries covering
a broad range of advice that can help writers produce clear and
idiomatic prose [Gar16]. Or consider the Federal Plain Language
Guidelines, a guide created by employees of the U.S. federal
government to promote writing that is clear, concise, and well-
organized [Pla11]. Professional conferences such as the annual
meeting of the American Copy Editors Society are dedicated to
sharing knowledge about editing prose. And within the academy,
organizations such as the American Psychological Association
publish manuals whose guidance on style has been adopted as
a standard [Ass94].

* Corresponding author: mpacer@berkeley.edu
‡ University of California, Berkeley

Copyright © 2016 Michael D. Pacer et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Advice on writing touches upon everything from superficial
conventions to the deepest reflections of our society and its
attitudes. For example, advice concerning the preferred forms of
words such as connote (vs. connotate) may help to prune needless
variants in spelling, but is unlikely to affect the reader’s under-
standing of the text and its author. In contrast, advice concerning
needlessly gendered language (woman scientist, policeman) helps
to eliminate terms that may perpetuate social inequality [MS01],
[Phi04].

Amassing a pile of advice is not enough to make writing better.
This is because advice, though it may be principled, thoughtful,
and worth following, is hard to apply in new settings once it has
been learned [AI00]. Thus even if an author could absorb all the
knowledge contained in extant sources of advice on writing, the
author would still face the problem of recalling and systematically
applying that knowledge during the acts of writing and editing.
Furthermore, developing a new habit (linguistic or otherwise) is
slow, costly, and effortful [FH10], causing errors to appear even if
the author knows the rules.

Today, an author who wishes to improve a piece of writing by
applying the collective wisdom of experts must rely on indirect
means. Publishers often use a division of labor in which dedicated
staff copyedit a piece to their satisfaction. For example, The
New Yorker employs an editing team of fact checkers, editors,
grammarians, and others [Nor]. Individuals often uses software-
based tools such as spelling and grammar checkers that mark
unrecognized words and purported violations of grammatical rules
[HJM+82], [CM83], [Ver00], [Nab03], [Mił10], [PRR12].

Neither approach fully solves the problem of successful adop-
tion of best practices in writing. Few people have the resources
needed to outsource editing to external staff. Furthermore, doing
so inevitably introduces a delay because copy editors must read
the text carefully and are normally unavailable during the act
of writing. By the time an editor’s notes are received, then, an
opportunity to strengthen the writer’s craft has passed. Time-
sensitivity exacerbates this problem because delays introduced by
the editing process may diminish the communication’s value. In
contrast, software-based tools for writing are automated and rela-
tively fast, but are typically incomplete, imprecise, or inaccessible
(see Proselint’s approach).

The solution

To solve this problem, we built Proselint, a real-time linter for
English prose. A linter is a computer program that, like a spell
checker, scans through a document and analyzes it, identifying
problems with its syntax or style [Joh77]. Proselint identifies vio-
lations of expert-endorsed style and usage guidelines1 and gently

LINTING SCIENCE PROSE AND THE SCIENCE OF PROSE LINTING 91

alerts the writer of those violations as they are committed, an
ideal opportunity to elicit long-term changes in behavior [FS57].
In doing so, Proselint gives voice to the experts while teaching at
a speed and scale unreachable by humans.

Proselint is open-source software released under the BSD li-
cense and compatible with Pythons 2 and 3. It runs as a command-
line utility or editor plugin for Sublime Text, Atom, Emacs, vim,
etc. It outputs advice in JSON and the standard linting format
(SLF), promoting integration with external services [Was90] and
providing human-readable output. Proselint includes modules on
a variety of usage problems, including redundancy, jargon, illogic,
clichés, sexism, misspelling, inconsistency, misuse of symbols,
malapropisms, oxymorons, security gaffes, hedging, apologizing,
pretension, and more (see Tables 1 and 2 for a fuller listing).

Proselint is both a language tool for scientists and a tool
for language science. On the one hand, it can help scientists
communicate their ideas to each other and to the public by
improving their writing. On the other hand, scientists can use
Proselint to study language and linting.

A language tool for scientists

Scientists use the written word to communicate to each other
and to the public. Proselint improves writing across a number
of dimensions relevant to science communication, including con-
sistency in terminology & typography, concision, and elimination
of redundancy. For example, Proselint detects the letter x used
in place of the multiplication symbol × (e.g., 1440 x 900),
misspecified p values resulting from data-analysis software that
truncates small numbers (e.g., p = 0.00), and colloquialisms that
obscure the mechanisms of science-based technology (e.g., "lie
detector test" for the polygraph machine, which measures arousal,
not lying per se).

A tool for language science

Linguistics is largely descriptivist, tending to describe language as
it is used rather than prescribe how it ought to be used [Gar16].
Errors are considered mostly in the context of language learning
(especially children’s) because those errors reveal the structure
of the language-learning mechanism (see, e.g., overregularization
by young English speakers [MPU+92]). Though linting prose is
implicitly prescriptivist because its detection of norm violations
presupposes the existence of norms [Gar16], even so, language
science can benefit from Proselint’s advice without making norma-
tive claims. Linguists can use Proselint to detect patterns in usage
and style in corpora of written text, to identify authors by their
usage, and to enrich standard Natural Language Processing (NLP)
techniques with features beyond word frequencies and syntactic
structures [BKL09].

The advice

Proselint is built around advice derived from works by Bryan
Garner, David Foster Wallace, Chuck Palahniuk, Steve Pinker,
Mary Norris, Mark Twain, Elmore Leonard, George Orwell,
Matthew Butterick, William Strunk, E.B. White, Philip Corbett,

1. Proselint differs from a spell-checker in that its recommendations do not
specifically counter spelling errors, but rather errors of style and usage. The two
occasionally overlap, e.g. in the malapropism "attacking your voracity", where
it is not that "voracity" is a spelling error per se but that the appropriate word
is its phonetic neighbor "veracity". Compare this to "attacking your verqcity",
almost certainly a typo.

Ernest Gowers, and the editorial staff of the world’s finest literary
magazines and newspapers, among others.2

Our standard for including a new rule is that it should be
accompanied by a citation to a recognized expert on language
usage who has defined the rule clearly. Though we have no explicit
criteria for what makes a citation appropriate, in practice we have
given greater weight to works from well-established publishers
and those widely cited as reliable sources of advice. The choice of
which rules to implement is ultimately a question of feasibility of
implementation, utility, and preference. Our guiding preference
is to make Proselint widely useful by default. In the case of
unresolved conflicts between advice from multiple sources, our
default is to exclude all forms of the advice because we find it
unreasonable to hold users to a higher standard than we hold the
experts, at least one of whom supports the user’s choice. Because
we aim for excellent defaults without hampering customization,
Proselint can be extended by adding new rules or filtered by
excluding existing rules through a configuration file.

Tables 1 and 2 list much of the advice that Proselint currently
implements. That advice is organized into modules.

Rule modules

Proselint’s rules are organized into modules that reflect the
structure of usage guides [Gar16]. For example, the terms
module encourages expressive vocabulary by flagging use of
unidiomatic and generic terms. The module has submodules
for categories of terms found as entries in usage guides. The
submodule terms.venery pertains to venery terms, which
arose from hunting tradition and describe groups of animals of
a particular species — a pride of lions or an unkindness of ravens.
Similarly, the submodule terms.denizen_labels pertains
to demonyms, which are used to describe people from a particular
place — New Yorkers (New York), Mancunians (Manchester), or
Novocastrians (Newcastle).

Organizing rules into modules is useful for two reasons. First,
it allows for a logical grouping of similar rules, which often
require similar computational machinery to implement. Second,
it allows users to include and exclude rules at a higher level of
abstraction than the individual word or phrase.

Converting a rule to code: rule templates

Suppose a developer wanted to implement the following entry
from Garner’s Modern English Usage as a rule in Proselint:

decimate. Originally this word meant “to kill one in
every ten,” but this etymological sense, because it’s
so uncommon, has been abandoned except in histori-
cal contexts. Now decimate generally means “to cause
great loss of life; to destroy a large part of.” ... In
fact, though, the word might justifiably be considered
a SKUNKED TERM. Whether you stick to the original
one-in-ten meaning or use the extended sense, the word
is infected with ambiguity. And some of your readers
will probably be puzzled or bothered. [Gar16]

In general, a rule’s implementation need only be a function
that takes in a string of text, applies logic identifying whether the
rule has been violated, and then returns a value identifying the
violation in the correct format. Weak requirements and Python’s

2. Proselint has not been endorsed by these individuals; we have merely
implemented their words in code.

92 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

ID Description

airlinese.misc Avoiding jargon of the airline industry
annotations.misc Catching annotations left in the text
archaism.misc Avoiding archaic forms
cliches.misc Avoiding clichés
consistency.spacing Consistent sentence spacing
consistency.spelling Consistent spelling
corporate_speak.misc Avoiding corporate buzzwords
cursing.filth Avoiding cursing
cursing.nfl Avoiding words banned by the NFL
dates_times.am_pm Using the right form for time
dates_times.dates Stylish formatting of dates
hedging.misc Not hedging
hyperbole.misc Not being hyperbolic
jargon.misc Avoiding miscellaneous jargon
lexical_illusions.misc Avoiding lexical illusions
links.broken Linking only to existing sites
malapropisms.misc Avoiding common malapropisms
misc.apologizing Being confident
misc.back_formations Avoiding needless backformations
misc.bureaucratese Avoiding bureaucratese
misc.but Avoiding starting a par. with "But..."
misc.capitalization Capitalizing correctly
misc.chatspeak Avoiding lolling and other chatspeak
misc.commercialese Avoiding commerical jargon
misc.currency Avoiding redundant currency symbols
misc.debased Avoiding debased language
misc.false_plurals Avoiding false plurals
misc.illogic Avoiding illogical forms
misc.inferior_superior Superior to, not than
misc.latin Avoiding overuse of Latin phrases
misc.many_a Many a singular
misc.metaconcepts Avoiding overuse of metaconcepts
misc.narcisissm Talking about the subject, not its study
misc.phrasal_adjectives Hyphenating phrasal adjectives
misc.preferred_forms Miscellaneous preferred forms

TABLE 1
What Proselint checks.

expressiveness allow developers to build detectors for all com-
putable usage and style requirements, but provide little guidance
for implementing new rules.

To provide guidance for implementing new rules, we
wrote helper functions that follow the protocol and provide
some common logical forms of rules. These include check-
ing for the existence of a given word, phrase, or pattern
(existence_check()); for intra-document consistency in us-
age (consistency_check()); and for use of a word’s pre-
ferred form (preferred_forms_check()).

The entry on decimate bans a word and so can be implemented
using the existence_check template:

1 def check_for_decimate(text):
2 err = "skunked_terms.decimate"
3 msg = (u"'{}' is a skunked term -- impossible to
4 "use without someone taking issue. Find"
5 "another way to say it")
6 regex = "decimat(?:e|es|ed|ing)?"
7 return existence_check(
8 text, [regex], err, msg, join=True)

First the function defines an error code, an error message, and a

ID Description

misc.pretension Avoiding being pretentious
misc.professions Calling jobs by the right name
misc.punctuation Using punctuation assiduously
misc.scare_quotes Using scare quotes only when needed
misc.suddenly Avoiding the word suddenly
misc.waxed Waxing poetic
misc.whence Using "whence"
mixed_metaphors.misc Not mixing metaphors
mondegreens.misc Avoiding mondegreens
needless_variants.misc Using the preferred form
nonwords.misc Avoid using nonwords
oxymorons.misc Avoiding oxymorons
psychology.misc Avoiding misused psychological terms
redundancy.misc Avoid redundancy & saying things twice
redundancy.ras_syndrome Avoiding RAS syndrome
skunked_terms.misc Avoid using skunked terms
spelling.able_atable -able vs. -atable
spelling.able_ible -able vs. -ible
spelling.athletes Spelling of athlete names
spelling.em_im_en_in -em vs. -im and -en vs. -in
spelling.er_or -er vs. -or
spelling.in_un in- vs. un-
spelling.misc Spelling words corectly
security.credit_card Keeping credit card numbers secret
security.password Keeping passwords secret
sexism.misc Avoiding sexist language
terms.animal_adjectives Animal adjectives
terms.denizen_labels Calling denizens by the right name
terms.eponymous_adjs Calling people by the right name
terms.venery Call groups of animals by the right name
typography.diacritics Using dïacríticâl marks
typography.exclamation Avoiding overuse of exclamation
typography.symbols Using the right symbols
uncomparables.misc Not comparing uncomparables
weasel_words.misc Avoiding weasel words

TABLE 2
What Proselint checks (cont.).

regular expression that matches the word decimate in its various
forms. Then it applies the existence check.

Using Proselint

Installation

Proselint is available on the Python Package Index and can be
installed using pip:

pip install proselint

Alternatively, developers can retrieve the Git repository from
GitHub (https://github.com/amperser/Proselint) and then install
the software using setuptools:

pip install --editable

Command-line utility

Proselint is a command-line utility that reads in a text file:

proselint text.md

LINTING SCIENCE PROSE AND THE SCIENCE OF PROSE LINTING 93

Running this command prints a list of suggestions to stdout, one
per line. The GNU Error Message Formatting standard [S+16] is
the basis for the format of displaying these suggestions. We further
require that the error code (here, the check_name) is separated
from the error message by a space. Because this format is used
by many linters, we call it the Standard Linting Format (SLF). An
SLF-formatted suggestion has the form:

text.md:<line>:<column>: <check_name> <message>

For example,

text.md:0:10: skunked_terms.misc 'decimate' is ...
a skunked term -- impossible to use without ...
someone taking issue. Find another way to say it."

This message suggests that, at column 10 of line 0, the module
skunked_terms.misc detected the presence of the skunked
term decimate. The command-line utility can instead print the list
of suggestions in JSON through the --json flag. In this case, the
output is considerably richer:

{
// The check originating this suggestion
"check": "uncomparables.misc",

// The line where the error starts
"line": 1,

//The column where the error starts
"column": 1,

// Index in the text where the error starts
"start": 1,

// the index in the text where the error ends
"end": 18,

// start - end
"extent": 17,

// Message describing the advice
"message": "Comparison of an uncomparable: ...
'very unique\n' is not comparable.",

// Possible replacements
"replacements": null,

// Importance("suggestion", "warning", "error")
"severity": "warning"

}

Text editor plugins

Proselint is available as a plugin for popular text editors, including
Emacs, vim, Sublime Text, and Atom. Embedding linters within
the tools that people already use to write removes a barrier to
adoption the linter and thereby promotes adoption of best practices
in writing [Was90].

Proselint’s approach

In the following sections, we describe Proselint’s approach and its
greatest points of departure from previous attempts to lint prose.
As part of this analysis, we curated a list of known tools for
automated language checking. The dataset contains the name of
each tool, a link to its website, and data about its basic features,
including languages and licenses (link). The tools are varied in
their approaches and coverage, but typically focus on grammar
versus usage and style; are unsystematic in choosing sources of

advice; or have been abandoned. In general, we regard the tools as
being imprecise, incomplete, and inaccessible:

Imprecise. Even the best software-based tools for editing are
riddled with false positives. We evaluated many of the tools in
our dataset on an earlier version of the corpus. Proselint’s false
discovery rate of 1 false positive to 10 true positives was 20×
better than the next best tool, Microsoft Word, which had a false
discovery rate of 2 false positives to 1 true positive.

Incomplete. All software-based tools for editing are incom-
plete; not one frees our collective knowledge about best practices
in writing from its bindings. Completion is likely an unattain-
able goal, which inspires Proselint’s open-source, community-
participation model.

Inaccessible. Many existing tools are inaccessible because
they cost money, are closed source, or are inextensible. Thus we
designed Proselint to be free, open source, and extensible.

What to check: usage, not grammar

Proselint does not detect grammatical errors because it is both too
easy and too hard:

Detecting grammatical errors is too easy in the sense that most
native speakers can readily identify and easily fix them. The errors
that leave the greatest negative impression in the reader’s mind are
often glaring to native speaker. On the other hand, more subtle
errors, such as a disagreement in number set apart by a long string
of intermediary text, escapes even a native speaker’s notice.

Detecting grammatical errors is too hard in the sense that
its most general form is AI-hard, requiring at least human-level
artificial intelligence and a native speaker’s ear [Yam13]. Modern
NLP techniques that detect grammatical errors are unavoidably
statistical and produce many false positives [BKL09] [LCGT10].
This is in part because syntax parsers used in grammatical error
detection must tolerate grammatical errors, a problem that is
compounded in writing by English-language learners [LCGT10].
Once a grammatical error has been detected, determining the
correct replacement hinges on the intended meaning. Occasionally,
the intended meaning will determine even whether a grammatical
error is present: e.g., is "Man bites dog" a headline about canine
aggression, or are the subject and object swapped in error? In the
general case, the problem of determining the intended meaning of
a sentence is AI-hard [Yam13].

Instead of focusing on grammatical errors, Proselint addresses
errors of usage and style.

Published expertise as primary sources

People have such strong shared intuitions about grammar that a
common experimental measure in linguistics is the grammaticality
of a sentence as measured by the intuitions of native speakers
[Kel00]. But style and usage inspire a multitude of intuitions.
Authors of usage guides have done much of the work of hashing
out these conflicting intuitions to arrive at sensible everyday
advice [Gar16]. Proselint thus defers to these experts, and in doing
so embodies our collective understanding about the craft of writing
with style.

Levels of difficulty

In a loose analogy to Chomsky’s hierarchy of formal grammars
[Cho56], usage errors vary in the difficulty of detecting and
correcting them:

1) AI-hard

94 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

2) NLP, beyond state-of-the-art
3) NLP, state-of-the-art
4) Syntax-dependent rules
5) Regular expressions
6) One-to-one replacement rules.

At the lowest levels of the hierarchy are usage errors that a
linter can reliably detect and correct through one-to-one replace-
ment rules. At the highest levels are usage errors whose detection
and correction are such hard computational problems that it would
require at least human-level intelligence to solve in the general
case, if a solution is possible at all [Yam13]. Consider usage
errors pertaining to placement of the word only, which depends
on the intended meaning. For example, in "John hit Peter in
his only nose", is the only misplaced or is it unusual that Peter
has only one nose? Usage errors at this highest level of the
hierarchy are hard to detect without introducing false positives and
determining the correct replacement requires understanding the
intended meaning. Development of Proselint begins at the lowest
levels of the hierarchy and builds upwards.

Signal detection theory and the lintscore

Any new tool, for language or otherwise, faces a challenge to its
adoption: it must demonstrate that the utility the tool provides
outweighs the cost of learning to use it [Was90]. The utility of a
prose linter comes in part from its ability to detect usage and style
errors. Each issue flagged might be an error, but it might instead
be a false positive. Let T be the number of true errors and F be
the number of false positives, thus making T +F the total number
of flags raised by the tool. An approach that attempts to maximize
T by flagging many errors without adequately considering F will
identify many genuine errors, but raise so many false positives that
writers must evaluate each proposed error.

With Proselint, we aim for a tool precise enough that users
can adopt its recommendations unquestioningly and still come out
ahead. To achieve this, we penalize the number of false positives
F by evaluating Proselint in terms of its empirical lintscore. The
lintscore gives one point for every true positive T and penalizes
on the basis of the false discovery rate α = F

T+F . The lintscore is
given by

l(T,F ;k) = T (1−α)k,

where the parameter :math:kgeq1‘ controls the strength of the 1−
α penalty. Notably, the lintscore does not reflect the number of true
and false negatives; we reason that it is more important to be quiet
and authoritative than to be loud and risk being untrustworthy (cf.
the metrics discussed in [CDIT12]).

The lintscore can be computed exactly if an evaluator can
classify each error flagged by the linter as a true or false positive.
However, many corpora are large enough to preclude this kind
of exhaustive assessment. In these cases, the lintscore can be
estimated from the total number of issues flagged and an estimate
of the false discovery rate.

Note that the lintscore is not a readability metric because it
evaluates linters, not prose. Given a set of documents, signal detec-
tion theory makes it possible to estimate a linters’ trustworthiness
through the lintscore.

Speed via Memoization

Proselint must be efficient for use as a real-time linter. Avoiding
redundant computation by storing the results of expensive function

calls ("memoization") improves efficiency. Because most para-
graphs do not change from moment to moment during editing of a
sizable document, memoizing Proselint’s output over paragraphs
and recomputing only when a paragraph has changed (otherwise
returning the memoized result) reduces the total amount of com-
putation and thus improves the running time.

A proof of concept

As a proof of concept, we used Proselint to make contributions
to several documents. These include the White House’s Federal
Source Code Policy; The Open Logic Project textbook on ad-
vanced logic; Infoactive’s Data + Design book; and many of the
other papers submitted to SciPy 2016. In addition, we evaluated
Proselint’s false discovery rate on a corpus of essays from well-
edited magazines such as Harper’s Magazine, The New Yorker,
and The Atlantic (full list). We then measured the lintscore.
Because the essays included in our corpus were edited by a team
of experts, we expect Proselint to remain mostly silent. By design,
Proselint should comment only on the rare error that slips through
unnoticed by the editors or, more commonly, on finer points of
usage, about which the experts sometimes disagree. When run
over v0.1.0 of our corpus, we achieved a lintscore (k = 2) of 98.8.

Future development and possible applications

We see a number of directions for future development of Proselint
that improve the tool and its utility for science:

Context-sensitive rule application and machine learning

Many rules apply better to some kinds of documents than to others.
For example, in most cases extendable is preferable to extensible,
but in software development the opposite is true. Applying these
rules without consideration of the context will systematically
introduce false positives.

Silencing rules that are predicted to be irrelevant because
of the context allows a greater variety of rules to be included
without introducing false positives. Consider the advice that, when
specifying a decade, an apostrophe is unnecessary: Eisenhower
was president in the 50s, not the 50’s. However, not all instances
of 50’s are problematic: one can validly write 50’s manager to
refer to 50’s manager without making a usage error about decades.
To account for this context sensitivity, Proselint detects whether a
document’s topic is 50 Cent, identifying 50’s as a usage error only
when the topic is not detected.

The 50 Cent topic detector was hand-crafted in the fashion of
expert knowledge systems [Jac86]. Machine-learning techniques
for identifying the topic of a document (e.g., topic models [BL09])
can generalize this ability and will be crucial to safely growing
Proselint’s coverage of usage errors. Once incorporated, extending
this to hierarchical nonparametric topic models will enable docu-
ment sub-structure to be taken into account as a form of context
[BGJ10].

Evaluating linters by testing on multiple corpora

In our internal evaluations of Proselint, we calculate the empirical
lintscore manually on a corpus of professionally edited documents,
which presumably have few errors. This efficiently alerts us to
false positives that are introduced by new rules, but tells us little
about its performance in other settings. A major improvement
would be to compute the lintscore on corpora such as student
essays, which are more likely to have true positives and will thus

LINTING SCIENCE PROSE AND THE SCIENCE OF PROSE LINTING 95

improve our estimates of Proselint’s positive utility for a more
typical user.

Corpora of documents drawn from different content-based
categories (technical papers, scientific articles, software documen-
tation, fiction, journalism, etc.) will help in evaluating Proselint’s
performance in evaluating prose from different fields. Certain rules
may be relevant to some fields more than others and testing with
diverse corpora will ensure that Proselint can be used by a diverse
range of individuals. Furthermore, this will allow us to learn which
rule sets are relevant in which contexts.

Observing how a document is modified in accordance with
Proselint’s suggestions affords new opportunities for evaluation of
Proselint, tracking the acceptance of its advice and any effects on
the rate of new errors introduced between drafts.

File formats and markup languages for documents (e.g, re-
StructuredText, LaTeX, Markdown, HTML, etc.) often rely on
syntactical conventions that Proselint falsely identifies as errors.
Similar concerns arise for documentation written as docstrings or
code comments in a variety of programming languages. Corpora
focusing on individual formats and languages will aid in identi-
fying and filtering these errors, enabling development targeted at
addressing these problems.

Stylometrics and machine learning

The field of stylometrics has extensively studied the problem of
identifying the authors of documents [ZLCH06]. Many of these
studies focus on the relative frequencies with which individual
words are used, especially function words. For example, Mosteller
& Wallace inferred the authorship of twelve essays in the Federal-
ist Papers on the basis of the frequency of common function words
such as to and by [MW63]. Proselint provides new measures that
could be used to improve this kind of stylometric analysis.

Several applications follow from authorship identification:
One application uses Proselint to detect ghost-written docu-

ments, which could also have benefits for identifying academic
dishonesty (e.g., purchasing and selling of ghost-written essays).
This application assumes that there is a ground-truth corpus with
samples of the author’s writing. On the other hand, someone
may be able to use Proselint to escape identification by avoiding
features that distinguish the author’s writing from those of others.

A second application inverts and generalizes the process of
identifying authors by selectively introducing, changing, or remov-
ing usage choices to obfuscate or encrypt messages. With some
modifications and a protocol for establishing usage-based keys,
Proselint could become a system for designing content-aware
steganographic systems that convey hidden messages through their
choice of words and style [BK06]. Encryption would require
modifying the Proselint infrastructure to identify when more than
one acceptable choice exists.

The errors Proselint can detect are rare compared to the
typical linguistic features used in stylometry [ZLCH06], [MW63],
[Rud97]. Sparse measures pose difficulty for methods like those
in Mosteller & Wallace (1963) [MW63]. Machine-learning tech-
niques for inferring identity from sparse data will thus be partic-
ularly applicable. Furthermore, this endeavor will benefit from an
approach that considers the cross product of authors and topics
[RZGSS04].

Automated usage and style metrics

Readability metrics such as the Flesch–Kincaid Grade Level and
the Gunning fog index do not capture usage and style because they

measure reading ease rather than conventionality [Fle48]. Proselint
could be used to create automated metrics for the consistency and
stylishness of prose. Such metrics may also find use as part of
automated essay-grading tools [VNC03].

Tracking historical trends in usage

An application of Proselint as a tool for language science is in
tracking historical trends in usage. Corpora such as Google Books
have been useful for measuring changes in the prevalence of words
and phrases over several hundred years [MSA+11]. Our tool can
be used in a similar way because it provides a feature set for
usage. For example, one might study the prevalence of airlinese
(including, e.g., use of "momentarily" to mean "in a moment", as
in the phrase "we are taking off momentarily") and its alignment
with the rise of that industry.

An unsolved problem: foreign languages

We have no immediate plans for extending Proselint to other
languages. This is in part because building a linter for style and
usage errors in both American and British English is challenging
enough for a native speaker, and in part because attempting to
build a linter for languages in which the creators lack fluency
would seem to be an exercise in folly. An open problem is how to
extend Proselint to become a universal linter for prose.

Missing corpora

To evaluate Proselint’s false discovery rate, we built a corpus of
text from well-edited magazines believed to contain low rates of
usage errors. In the course of assembling this corpus, we discov-
ered a lack of annotated corpora that provide false discovery rates
for style and usage violations3. The Proselint testing framework is
an excellent opportunity to develop such a corpus. Unfortunately,
because our current corpus derives from copyrighted work, it
cannot be released as part of open-source software. Developing
an open-source corpus of style and usage errors will be necessary
if these tools are to be made available for NLP research outside
internal testing of Proselint.

A critique of normativity in prose styling, and a response

One critique of Proselint [hac] is a concern that introducing
any kind of linter-like process to the act of writing diminishes
the ability for authors to express themselves creatively. These
arguments suggest that authors will find themselves limited by
the linter’s rules and that, as a result, this will have a shaping or
homogenizing effect on language.

In response to this critique, we note that our goal is not to
homogenize text for the sake of uniformity (though perhaps there
is value there, too), but rather to detect instances of language use
that have been identified by experts as problematic. Creative use
of language is not flagged unless it has been previously identified
as problematic, furthering our aim of a quiet and authoritative
tool. And even an author who intentionally flouts conventions for
creative reasons will benefit from a thorough understanding of
them [Bri04].

3. Editor [edi] has built a corpus which compares the performance of various
grammar checkers. Their corpus contains "real-world examples of grammatical
mistakes and stylistic problems taken from published sources". A corpus made
of errors will maximize true positives, but misestimate false discovery rates in
real-world documents. Their corpus is not publicly available, and they do not
provide a standard format for describing corpora annotated with false positives
and negatives.

96 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Furthermore, technical writing of all kinds is often char-
acterized by consistent language use and precise terminology.
Even an author who views all writing as inextricably creative
must sometimes direct that creativity toward a particular aim.
Software documentation, technical manuals, and legal briefs, and
pedagogical writing all feature this need and are improved when
the author follows the conventions of a field.

Lastly, science demands consistency to promote clarity and
replication. At the same time, scientists are in the business of
expressing ideas that challenge even the greatest of minds, and
their success depends on conveying those ideas to people who
then use the ideas in their own work. When an idea is hard to
grasp, simplicity and clarity will further its proliferation.

Contributing to Proselint

The primary avenue for contributing to Proselint is by contributing
code to its GitHub repository. In particular, we have developed an
extensive set of Issues that range from trivial-to-fix bugs to lofty
features whose addition are entire research projects in their own
right. To merit inclusion in Proselint, contributed rules should be
accompanied by a citation to a recognized expert on language
usage who has defined the rule clearly. This is not because
language experts are the only arbiters of language usage, but
because our goal is explicitly to aggregate best practices as put
forth by the experts.

A secondary avenue for contributing to Proselint is through
discovery of false positives: instances where Proselint flags well-
formed idiomatic prose as containing a usage error. In this way,
people with expertise in editing, language, and quality assurance
can make a valuable contribution that directly improves the metric
we use to gauge success.

Acknowledgments

Proselint is supported in part by the Berkeley Center for Tech-
nology, Society and Policy through the CTSP Fellows program,
specifically for applying it to the problem of improving govern-
mental communications as laid out in the Federal Plain Language
Guidelines. We thank several reviewers who gave feedback on the
manuscript, including Dan Lewis, David Lippa, Scott Rostrup, and
Stéfan van der Walt. This work was presented as a talk at SciPy
2016 (YouTube).

REFERENCES

[AI00] L. Argote and P. Ingram. Knowledge transfer: A basis for
competitive advantage in firms. Organizational Behavior and
Human Decision Processes, 82:150–169, 2000.

[Ass94] American Psychological Association. Publication Manual of the
American Psychological Association. American Psychological
Association Washington, 1994.

[BGJ10] David M Blei, Thomas L Griffiths, and Michael I Jordan. The
nested chinese restaurant process and bayesian nonparametric
inference of topic hierarchies. Journal of the ACM (JACM),
57(2):7, 2010.

[BK06] Richard Bergmair and Stefan Katzenbeisser. Content-aware
steganography: about lazy prisoners and narrow-minded wardens.
In International Workshop on Information Hiding, pages 109–
123. Springer, 2006.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python. O’Reilly Media, Sebastopol, CA, 2009.
504 pages.

[BL09] David M Blei and John D Lafferty. Topic models. Text mining:
classification, clustering, and applications, 10(71):34, 2009.

[Bri04] Robert Bringhurst. The Elements of Typographic Style. 3rd
revision. Canada, USA: Hartley & Marks, 2004.

[CDIT12] Martin Chodorow, Markus Dickinson, Ross Israel, and Joel R
Tetreault. Problems in evaluating grammatical error detection
systems. In COLING 2012, pages 611–628, 2012.

[Cho56] Noam Chomsky. Three models for the description of language.
IRE Transactions on Information Theory, 2(3):113–124, 1956.

[CM83] Lorinda L Cherry and Nina H Macdonald. The unix writers
workbench software. Byte, 8(10):241, 1983.

[edi] Comparing grammar checkers: Holding grammar scammers’
feats to the fire. http://www.serenity-software.com/pages/
comparisons.html. Accessed: 2016-07-11.

[FH10] B. J. Fogg and J. Hreha. Behavior wizard: a method for matching
target behaviors with solutions. International Conference on
Persuasive Technology, pages 117–131, 2010.

[Fle48] Rudolph Flesch. A new readability yardstick. Journal of Applied
Psychology, 32(3):221, 1948.

[FS57] Charles B Ferster and Burrhus Frederic Skinner. Schedules of
reinforcement. 1957.

[Gar16] Bryan Garner. Garner’s Modern English Usage. Oxford Univer-
sity Press, 2016.

[hac] Hacker news: Proselint (proselint.com). https://news.
ycombinator.com/item?id=11232882. Accessed: 2016-07-05.

[HJM+82] George E. Heidorn, Karen Jensen, Lance A. Miller, Roy J. Byrd,
and Martin S Chodorow. The epistle text-critiquing system. IBM
Systems Journal, 21(3):305–326, 1982.

[Jac86] Peter Jackson. Introduction to expert systems. 1986.
[Joh77] S. Johnson. Lint, a C program checker. Computer Science

Technical Report 65, Bell Laboratories, December 1977.
[Kel00] Frank Keller. Gradience in grammar: Experimental and compu-

tational aspects of degrees of grammaticality. PhD thesis, 2000.
[LCGT10] Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel

Tetreault. Automated grammatical error detection for language
learners. Synthesis Lectures on Human Language Technologies,
3(1):1–134, 2010.

[Mił10] Marcin Miłkowski. Developing an open-source, rule-based proof-
reading tool. Software: Practice and Experience, 40(7):543–566,
2010.

[MPU+92] Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hol-
lander, T John Rosen, Fei Xu, and Harald Clahsen. Overregular-
ization in language acquisition. Monographs of the Society for
Research in Child Development, pages i–178, 1992.

[MS01] Casey Miller and Kate Swift. The handbook of nonsexist writing.
iUniverse, 2001.

[MSA+11] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden,
Adrian Veres, Matthew K Gray, Joseph P Pickett, Dale Hoiberg,
Dan Clancy, Peter Norvig, Jon Orwant, et al. Quantitative
analysis of culture using millions of digitized books. Science,
331(6014):176–182, 2011.

[MW63] Frederick Mosteller and David L Wallace. Inference in an
authorship problem: A comparative study of discrimination meth-
ods applied to the authorship of the disputed Federalist Papers.
Journal of the American Statistical Association, 58(302):275–
309, 1963.

[Nab03] Daniel Naber. A rule-based style and grammar checker. PhD
thesis, 2003.

[Nor] Copy Editing at The New Yorker with Mary Norris. https:
//andyrossagency.wordpress.com/2009/09/20/. Accessed: 2016-
07-11.

[Phi04] S. U. Philips. Language and social inequality. A Companion to
Linguistic Anthropology. 2004.

[Pla11] Plain Language Action and Information Network. Federal
plain language guidelines. http://www.plainlanguage.gov/howto/
guidelines/bigdoc/fullbigdoc.pdf, 2011.

[PRR12] Fabrizio Perin, Lukas Renggli, and Jorge Ressia. Linguistic style
checking with program checking tools. Computer Languages,
Systems & Structures, 38(1):61–72, 2012.

[Rud97] Joseph Rudman. The state of authorship attribution studies:
Some problems and solutions. Computers and the Humanities,
31(4):351–365, 1997.

[RZGSS04] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and
Padhraic Smyth. The author-topic model for authors and doc-
uments. In Proceedings of the 20th Conference on Uncertainty
in Artificial Intelligence, pages 487–494. AUAI Press, 2004.

[S+16] Richard Stallman et al. GNU coding standards. https://www.
gnu.org/prep/standards/html_node/Errors.html/, 2016. Accessed:
2016-07-18.

LINTING SCIENCE PROSE AND THE SCIENCE OF PROSE LINTING 97

[Ver00] Alex Vernon. Computerized grammar checkers 2000: Capabil-
ities, limitations, and pedagogical possibilities. Computers and
Composition, 17(3):329–349, 2000.

[VNC03] Salvatore Valenti, Francesca Neri, and Alessandro Cucchiarelli.
An overview of current research on automated essay grading.
Journal of Information Technology Education, 2:319–330, 2003.

[Was90] Anthony I Wasserman. Tool integration in software engineering
environments. In Software Engineering Environments, pages
137–149. Springer, 1990.

[Yam13] Roman V Yampolskiy. Turing test as a defining feature of ai-
completeness. In Artificial Intelligence, Evolutionary Computing
and Metaheuristics, pages 3–17. Springer, 2013.

[ZLCH06] Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan Huang. A
framework for authorship identification of online messages:
Writing-style features and classification techniques. Journal of
the American Society for Information Science and Technology,
57(3):378–393, 2006.

98 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

MDAnalysis: A Python Package for the Rapid Analysis
of Molecular Dynamics Simulations

Richard J. Gowers††‡‡†, Max Linke∗∗†, Jonathan Barnoud¶†, Tyler J. E. Reddy§, Manuel N. Melo¶, Sean L. Seyler‡,
Jan Domański§, David L. Dotson‡, Sébastien Buchoux‖, Ian M. Kenney‡, Oliver Beckstein‡∗

https://youtu.be/zVQGFysYDew

F

Abstract—MDAnalysis (http://mdanalysis.org) is a library for structural and tem-
poral analysis of molecular dynamics (MD) simulation trajectories and individual
protein structures. MD simulations of biological molecules have become an
important tool to elucidate the relationship between molecular structure and
physiological function. Simulations are performed with highly optimized software
packages on HPC resources but most codes generate output trajectories in their
own formats so that the development of new trajectory analysis algorithms is
confined to specific user communities and widespread adoption and further
development is delayed. MDAnalysis addresses this problem by abstracting
access to the raw simulation data and presenting a uniform object-oriented
Python interface to the user. It thus enables users to rapidly write code that
is portable and immediately usable in virtually all biomolecular simulation com-
munities. The user interface and modular design work equally well in complex
scripted work flows, as foundations for other packages, and for interactive
and rapid prototyping work in IPython / Jupyter notebooks, especially together
with molecular visualization provided by nglview and time series analysis with
pandas. MDAnalysis is written in Python and Cython and uses NumPy arrays for
easy interoperability with the wider scientific Python ecosystem. It is widely used
and forms the foundation for more specialized biomolecular simulation tools.
MDAnalysis is available under the GNU General Public License v2.

Index Terms—molecular dynamics simulations, science, chemistry, physics,
biology

Introduction

Molecular dynamics (MD) simulations of biological molecules
have become an important tool to elucidate the relationship be-
tween molecular structure and physiological function [DDG+12],
[Oro14]. Simulations are performed with highly optimized soft-
ware packages on HPC resources but most codes generate output
trajectories in their own formats so that the development of
new trajectory analysis algorithms is confined to specific user
communities and widespread adoption and further development is

† These authors contributed equally.
†† University of Manchester, Manchester, UK
‡‡ University of Edinburgh, Edinburgh, UK
** Max Planck Institut für Biophysik, Frankfurt, Germany
¶ University of Groningen, Groningen, The Netherlands
§ University of Oxford, Oxford, UK
‡ Arizona State University, Tempe, Arizona, USA
|| Université de Picardie Jules Verne, Amiens, France
* Corresponding author: oliver.beckstein@asu.edu

Copyright © 2016 Richard J. Gowers et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

delayed. Typical trajectory sizes range from gigabytes to terabytes
so it is typically not feasible to convert trajectories into a range
of different formats just to use a tool that requires this specific
format. Instead, a framework is required that provides a common
interface to raw simulation data. Here we describe the MDAnalysis
library [MADWB11] that addresses this problem by abstracting
access to the raw simulation data. MDAnalysis presents a uniform
object-oriented Python interface to the user. Since its original
publication in 2011 [MADWB11], MDAnalysis has been widely
adopted and has undergone substantial changes. Here we provide
a short introduction to MDAnalysis and its capabilities and an
overview over recent improvements.

MDAnalysis was initially inspired by MDTools for Python
(J.C. Phillips, unpublished) and MMTK [Hin00]. MDTools pi-
oneered the key idea to use an extensible and object-oriented
language, namely, Python, to provide a high-level interface for
the construction and analysis of molecular systems for MD
simulations. MMTK became a tool kit to build MD simulation
applications on the basis of a concise object model of a molecular
system. MDAnalysis was built on an object model similar to that
of MMTK with a strong focus on providing universal high-level
building blocks for the analysis of MD trajectories, but for a much
wider range of formats than previously available. MDAnalysis
has been publicly available since January 2008 and is one of
the longest actively maintained Python packages for the analysis
of molecular simulations. Since then many other packages have
appeared that primarily function as libraries for providing access
to simulation data from within Python. Three popular examples
are PyLOOS [RLG14], mdtraj [MBH+15], and pytraj [NRSC16].
PyLOOS [RLG14] consists of Python bindings to the C++ LOOS
library [RG09]; in order to aid novice users, LOOS also provides
about 140 small stand-alone tools that each focus on a single task.
mdtraj [MBH+15] is similar to MDAnalysis in many aspects but
focuses even more on being a light-weight building block for other
packages; it also includes a number of innovative performance op-
timizations. pytraj [NRSC16] is a versatile Python frontend to the
popular and powerful cpptraj tool [RCI13] and is particularly
geared towards users of the Amber MD package [CCD+05]. These
three packages and MDAnalysis have in common that they are
built on an object model of the underlying data (such as groups of
particles or a trajectory), use compiled code in C, C++ or Cython
to accelerate time critical bottlenecks, and have a "Pythonic" user
interface. LOOS and MDAnalysis share a similar object-oriented

MDANALYSIS: A PYTHON PACKAGE FOR THE RAPID ANALYSIS OF MOLECULAR DYNAMICS SIMULATIONS 99

philosophy in their user interface design. In contrast, mdtraj and
pytraj expose a functional user interface. Both approaches have
advantages and the existence of different "second generation"
Python packages for the analysis of MD simulations provides
many good choices for users and a fast moving and stimulating
environment for developers.

Overview

MDAnalysis is specifically tailored to the domain of molecular
simulations, in particularly in biophysics, chemistry, and biotech-
nology as well as materials science. The user interface provides
physics-based abstractions (e.g., atoms, bonds, molecules) of the
data that can be easily manipulated by the user. It hides the
complexity of accessing data and frees the user from having to
implement the details of different trajectory and topology file for-
mats (which by themselves are often only poorly documented and
just adhere to certain community expectations that can be difficult
to understand for outsiders). MDAnalysis currently supports more
than 25 different file formats and covers the vast majority of
data formats that are used in the biomolecular simulation com-
munity, including the formats required and produced by the most
popular packages such as NAMD [PBW+05], Amber [CCD+05],
Gromacs [AMS+15], CHARMM [BBIM+09], LAMMPS [Pli95],
DL_POLY [TSTD06], HOOMD [GNA+15] as well as the Protein
Data Bank PDB format [BWF+00] and various other specialized
formats.

Since the original publication [MADWB11], improvements
in speed and data structures make it now possible to work with
terabyte-sized trajectories containing up to ~10 million particles.
MDAnalysis also comes with specialized analysis classes in the
MDAnalysis.analysis module that are unique to MDAnal-
ysis such as LeafletFinder (in the leaflet module), a graph-
based algorithm for the analysis of lipid bilayers [MADWB11], or
Path Similarity Analysis (psa) for the quantitative comparison of
macromolecular conformational changes [SKTB15].

Code base

MDAnalysis is written in Python and Cython with about 42k lines
of code and 24k lines of comments and documentation. It uses
NumPy arrays [VCV11] for easy interoperability with the wider
scientific Python ecosystem. Although the primary dependency is
NumPy, other Python packages such as netcdf4 and BioPython
[HM03] also provide specialized functionality to the core of the
library (Figure 1).

Availability

MDAnalysis is available in source form under the GNU General
Public License v2 from GitHub as MDAnalysis/mdanalysis, and
as PyPi and conda packages. The documentation is extensive and
includes an introductory tutorial.

Development process

The development community is very active with more than five
active core developers and many community contributions in
every release. We use modern software development practices
[WAB+14], [SM14] with continuous integration (provided by
Travis CI) and an extensive automated test suite (containing
over 3500 tests with >92% coverage for our core modules).
Development occurs on GitHub through pull requests that are
reviewed by core developers and other contributors, supported by

MDAnalysis.
analysis

MDAnalysis.
visualization

Universe
AtomGroup
(main data
structures in the
user interface)

MDAnalysis

trajectory I/Otopology I/O

selections

utilities
units

geometry (OpenMP)

“core”

& maths

NumPy
Fig. 1: Structure of the MDAnalysis package. MDAnalysis consists of
the core with the Universe class as the primary entry point for users.
The MDAnalysis.analysis package contains independent mod-
ules that make use of the core to implement a wide range of algorithms
to analyze MD simulations. The MDAnalysis.visualization
package contains a growing number of tools that are specifically
geared towards calculating visual representations such as, for in-
stance, streamlines of molecules.

the results from the automated tests, test coverage reports provided
by Coveralls, and QuantifiedCode code quality reports. Users and
developers communicate extensively on the community mailing
list (Google groups) and the GitHub issue tracker; new users
and developers are very welcome and most user contributions
are eventually integrated into the code base. The development
and release process is transparent to users through open discus-
sions and announcements and a full published commit history
and changes. Releases are numbered according to the semantic
versioning convention so that users can immediately judge the
impact of a new release on their existing code base, even without
having to consult the CHANGELOG documentation. Old code is
slowly deprecated so that users have ample opportunity to update
the code although we generally attempt to break as little code as
possible. When backwards-incompatible changes are inevitable,
we provide tools (based on the Python standard library’s lib2to3)
to automatically refactor code or warn users of possible problems
with their existing code.

Basic usage

The core object in MDAnalysis is the Universe which acts as a
nexus for accessing all data contained within a simulation. It is
initialized by passing the file names of the topology and trajectory
files, with a multitude of different formats supported in these roles.
The topology acts as a description of all the particles in the system
while the trajectory describes their behavior over time.
import MDAnalysis as mda

Create a Universe based on simulation results
u = mda.Universe('topol.tpr', 'traj.trr')

100 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Create a selection of atoms to work with
ag = u.atoms.select_atoms('backbone')

The select_atoms method allows for AtomGroups to be created
using a human readable syntax which allows queries according to
properties, logical statements and geometric criteria.
Select all solvent within a set distance from protein atoms
ag = u.select_atoms('resname SOL and around 5.0 protein')

Select all heavy atoms in the first 20 residues
ag = u.select_atoms('resid 1:20 and not prop mass < 10.0')

Use a preexisting AtomGroup as part of another selection
sel1 = u.select_atoms('name N and not resname MET')
sel2 = u.select_atoms('around 2.5 group Nsel', Nsel=sel1)

Perform a selection on another AtomGroup
sel1 = u.select_atoms('around 5.0 protein')
sel2 = sel1.select_atoms('type O')

The AtomGroup acts as a representation of a group of particles,
with the properties of these particles made available as NumPy
arrays.
ag.names
ag.charges
ag.positions
ag.velocities
ag.forces

The data from MD simulations comes in the form of a trajectory
which is a frame by frame description of the motion of particles
in the simulation. Today trajectory data can often reach sizes of
hundreds of GB. Reading all these data into memory is slow and
impractical. To allow the analysis of such large simulations on an
average workstation (or even laptop) MDAnalysis will only load a
single frame of a trajectory into memory at any time.

The trajectory data can be accessed through the trajectory
attribute of a Universe. Changing the frame of the trajectory object
updates the underlying arrays that AtomGroups point to. In this
way the positions attribute of an AtomGroup within the iteration
over a trajectory will give access to the positions at each frame.
Through this approach only a single frame of data is present in
memory at any time, allowing for large data sets, from half a
million particles to tens of millions (see also section Analysis of
large systems), to be dissected with minimal resources.
the trajectory is an iterable object
len(u.trajectory)

seek to a given frame
u.trajectory[72]
iterate through every 10th frame
for ts in u.trajectory[::10]:

ag.positions

In some cases it is necessary to access frames of trajectories in
a random access pattern or at least be able to rapidly access
a starting frame anywhere in the trajectory. Examples for such
usage are the calculation of time correlation functions, skipping
of frames (as in the iterator u.trajectory[5000::1000]),
or parallelization over trajectory blocks in a map/reduce pattern
[TRB+08]. If the underlying trajectory reader only implements
linear sequential reading from the beginning, searching for spe-
cific frames becomes extremely inefficient, effectively prohibiting
random access to time frames on disk. Many trajectory formats
suffer from this shortcoming, including the popular Gromacs XTC
and TRR formats, but also commonly used multi-frame PDB
files and other text-based formats such as XYZ. LOOS [RG09]

implemented a mechanism by which the trajectory was read once
on loading and frame offsets on disk were computed that could
be used to directly seek to individual frames. Based on this idea,
MDAnalysis implements a fast frame scanning algorithm for TRR
and XTC files and also saves the offsets to disk (as a compressed
NumPy array). When a trajectory is loaded again then instead of
reading the whole trajectory, only the persistent offsets are read
(provided they have not become stale as checked by conservative
criteria such as changes in file name, modification time, and size
of the original file, which are all saved with the offsets). In cases
of terabyte-sized trajectories, the persistent offset approach can
save hundreds of seconds for the initial loading of the Universe
(after an initial one-time cost of scanning the trajectory). Current
development work is extending the persistent offset scheme to
all trajectory readers, which will provide random access for all
trajectories in a completely automatic and transparent manner to
the user.

Example: Per-residue RMSF

As a complete example consider the calculation of the Cα root
mean square fluctuation (RMSF) ρi that characterizes the mobility
of a residue i in a protein:

ρi =

√〈
(xi(t)−〈xi〉)2

〉
(1)

The code in Figure 2 A shows how MDAnalysis in combination
with NumPy can be used to implement Eq. 1. The topology
information and the trajectory are loaded into a Universe
instance; Cα atoms are selected with the MDAnalysis selection
syntax and stored as the AtomGroup instance ca. The main loop
iterates through the trajectory using the MDAnalysis trajectory
iterator. The coordinates of all selected atoms become available in
a NumPy array ca.positions that updates for each new time
step in the trajectory. Fast operations on this array are then used
to calculate variance over the whole trajectory. The final result
is plotted with matplotlib [Hun07] as the RMSF over the residue
numbers, which are conveniently provided as an attribute of the
AtomGroup (Figure 2 B).

The example demonstrates how the abstractions that MDAnal-
ysis provides enable users to write concise code where the compu-
tations on data are cleanly separated from the task of extracting the
data from the simulation trajectories. These characteristics make
it easy to rapidly prototype new algorithms. In our experience,
most new analysis algorithms are developed by first prototyping
a simple script (like the one in Figure 2), often inside a Jupyter
notebook (see section Interactive Use and Visualization). Then the
code is cleaned up, tested and packaged into a module. In section
Analysis Module, we describe the analysis code that is included
as modules with MDAnalysis.

Interactive use and visualization

The high level of abstraction and the pythonic API, together with
comprehensive Python doc strings, make MDAnalysis well suited
for interactive and rapid prototyping work in IPython [PG07] and
Jupyter notebooks. It works equally well as an interactive analysis
tool, especially with Jupyter notebooks, which then contain an
executable and well-documented analysis protocol that can be
easily shared and even accessed remotely. Universes and Atom-
Groups can be visualized in Jupyter notebooks using nglview,
which interacts natively with the MDAnalysis API (Figure 3).

MDANALYSIS: A PYTHON PACKAGE FOR THE RAPID ANALYSIS OF MOLECULAR DYNAMICS SIMULATIONS 101

50 100 150 200
0
1
2
3
4
5
6

residue number

C
α
 R

M
SF

 (Å
)

import numpy as np
import MDAnalysis as mda

u = mda.Universe("topol.tpr", "trj.xtc")
ca = u.select_atoms("name CA")
means = np.zeros((len(ca), 3))
sumsq = np.zeros_like(means)
for k, ts in enumerate(u.trajectory):
 sumsq += (k/(k+1.0)) *
 (ca.positions - means)**2
 means[:] = (k*means + ca.positions)/(k+1.0)
rmsf = np.sqrt(sumsq.sum(axis=1)/(k+1.0))

matplotlib.pyplot.plot(ca.residues.resids, rmsf)

A

B

Fig. 2: Example for how to calculate the root mean square fluctuation
(RMSF) for each residue in a protein with MDAnalysis and NumPy.
A: Based on the input simulation data (topology and trajectory in
the Gromacs format (TPR and XTC), MDAnalysis makes coordinates
of the selected Cα atoms available as NumPy arrays. From these
coordinates, the RMSF is calculated by averaging over all frames
in the trajectory. The RMSF is then plotted with matplotlib. The
algorithm to calculate the variance in a single pass is due to Welford
[Wel62]. B: Cα RMSF for each residue.

Fig. 3: MDAnalysis can be used with nglview to directly visualize
molecules and trajectories in Jupyter notebooks. The adenylate kinase
(AdK) protein from one of the included test trajectories is shown. .

Other Python packages that have become extremely useful in
notebook-based analysis work flows are pandas [McK10] for rapid
analysis of time series analysis, distributed [Roc15] for simple
parallelization, FireWorks [JOC+15] for complex work flows, and
MDSynthesis [DGS+16] for organizing, bundling and querying
many simulations.

Analysis module

In the MDAnalysis.analysis module we provide a large
variety of standard analysis algorithms, like RMSD (root mean
square distance) and RMSF (root mean square fluctuation) cal-
culations, RMSD-optimized structural superposition [LAT10],
native contacts [BHE13], [FKDD07], or analysis of hydrogen
bonds as well as unique algorithms, such as the LeafletFinder
in MDAnalysis.analysis.leaflet [MADWB11] and
Path Similarity Analysis (MDAnalysis.analysis.psa)
[SKTB15]. Historically these algorithms were contributed by var-
ious researchers as individual modules to satisfy their own needs
but this lead to some fragmentation in the user interface. We have
recently started to unify the interface to the different algorithms
with an AnalysisBase class. Currently PersistenceLength,
InterRDF, LinearDensity and Contacts analysis have
been ported. PersistenceLength calculates the persistence
length of a polymer, InterRDF calculates the pairwise radial
distribution function inside of a molecule, LinearDensity
generates a density along a given axis and Contacts analysis
native contacts, as described in more detail below. The API
to these different algorithms is being unified with a common
AnalysisBase class, with an emphasis on keeping it as generic
and universal as possible so that it becomes easy to, for instance,
parallelize analysis. Most other tools hand the user analysis
algorithms as black boxes. We want to avoid that and allow the
user to adapt an analysis to their needs.

The new Contacts class is a good example of a generic
API that allows straightforward implementation of algorithms
while still offering an easy setup for standard analysis types. The
Contacts class is calculating a contact map for atoms in a frame
and compares it with a reference map using different metrics. The
used metric then decides which quantity is measured. A common
quantity is the fraction of native contacts, where native contacts are
all atom pairs that are close to each other in a reference structure.
The fraction of native contacts is often used in protein folding
to determine when a protein is folded. For native contacts two
major types of metrics are considered: ones based on differentiable
functions [BHE13] and ones based on hard cut-offs [FKDD07]
(which we set as the default implementation). We have designed
the API to choose between the two metrics and pass user defined
functions to develop new metrics or measure other quantities.
This generic interface allowed us to implement a "q1q2" analysis
[FKDD07] on top of the Contacts class; q1 and q2 refer to the
fractions of native contacts that are present in a protein structure
relative to two reference states 1 and 2. Below is an incomplete
code example that shows how to implement a q1q2 analysis, the
default value for the method keyword argument is overwritten with
a user defined method radius_cut_q. A more detailed explanation
can be found in the documentation.
def radius_cut_q(r, r0, radius):

y = r <= radius
return y.sum() / r.size

contacts = Contacts(u, selection,

102 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

X

y

A B

Fig. 4: Visualization of the flow of lipids in a large
bilayer membrane patch. A: 2D stream plot (produced
with MDAnalysis.visualization.streamlines
and plotted with matplotlib [Hun07]). B: 3D stream plot,
viewed down the z axis onto the membrane (produced with
MDAnalysis.visualization.streamlines_3D and
plotted with MayaVi [RV11]).

(first_frame, last_frame),
radius=radius,
method=radius_cut_q,
start=start, stop=stop,
step=step,
kwargs={'radius': radius})

This type of flexible analysis algorithm paired with a collection of
base classes enables rapid and easy analysis of simulations as well
as development of new ones.

Visualization module

The new MDAnalysis.visualization name space con-
tains modules that primarily produce visualizations of molec-
ular systems. Currently it contains functions that gen-
erate specialized streamline visualizations of lipid diffu-
sion in membrane bilayers [CRG+14]. In short, the algo-
rithm decomposes any given membrane into a grid and
tracks the displacement of lipids between different grid
elements, emphasizing collective lipid motions. Both 2D
(MDAnalysis.visualization.streamlines) and 3D
(MDAnalysis.visualization.streamlines_3D) im-
plementations are available in MDAnalysis, with output shown
in Figure 4. Sample input data files are available online from the
Flows website along with the expected output visualizations.

Improvements in the internal topology data structures

Originally MDAnalysis followed a strict object-oriented approach
with a separate instance of an Atom object for each particle
in the simulation data. The AtomGroup then simply stored its
contents as a list of these Atom instances. With simulation data
now commonly exceeding 106 particles this solution did not scale
well and so recently this design was overhauled to improve the
scalability of MDAnalysis.

Because all Atoms have the same property fields (i.e. mass,
position) it is possible to store this information as a single NumPy
array for each property. Now an AtomGroup can keep track of its
contents as a simple integer array, which can be used to slice these
property arrays to yield the relevant data.

Overall this approach means that the same number of Python
objects are created for each Universe, with the number of particles

atoms v0.15.0 v0.16.0 speed up

1.75 M 19 ms 0.45 ms 42
3.50 M 18 ms 0.54 ms 33
10.1 M 17 ms 0.45 ms 38

TABLE 1: Performance comparison of subselecting an AtomGroup
from an existing one using the new system (upcoming release v0.16.0)
against the old (v0.15.0). Subselections were slices of the same size
(82,056 atoms). Shorter processing times are better. The benchmarks
systems were taken from the vesicle library [KB15] and are listed
with their approximate number of particles ("# atoms"). Benchmarks
were performed on a laptop with an Intel Core i5 2540M 2.6 GHz
processor, 8 GB of RAM and a SSD drive.

atoms v0.15.0 v0.16.0 speed up

1.75 M 250 ms 35 ms 7.1
3.50 M 490 ms 72 ms 6.8
10.1 M 1500 ms 300 ms 5.0

TABLE 2: Performance comparison of accessing attributes with new
AtomGroup data structures (upcoming release v0.16.0) compared with
the old Atom classes (v0.15.0). Shorter access times are better. The
same benchmark systems as in Table 1 were used.

only changing the size of the arrays. This translates into a much
smaller memory footprint (1.3 GB vs. 3.6 GB for a 10.1 M
atom system), highlighting the memory cost of millions of simple
Python objects.

This transformation of the data structures from an Array of
Structs to a Struct of Arrays also better suits the typical access
patterns within MDAnalysis. It is quite common to compare
a single property across many Atoms, but rarely are different
properties within a single Atom compared. Additionally, it is
possible to utilize NumPy’s faster indexing capabilities rather than
using a list comprehension. This new data structure has lead to
performance improvements in our whole code base. The largest
improvement is in accessing subsets of Atoms which is now over
40 times faster (Table 1), an operation that is used everywhere
in MDAnalysis. Speed-ups of a factor of around five to seven
were realized for accessing Atom attributes for whole AtomGroup
instances (Table 2). The improved topology data structures are also
much faster to initialize, which translates into speed-ups of about
three for the task of loading a system from a file (for instance, in
the Gromacs GRO format or the Protein Databank PDB format)
into a Universe instance (Table 3). Given that for systems with 10
M atoms this process used to take over 100 s, the reduction in load
time down to a third is a substantial improvement — and it came
essentially "for free" as a by-product of improving the underlying
topology data structures.

Analysis of large systems

MDAnalysis has been used extensively to study extremely large
simulation systems for long simulation times. Marrink and co-
workers [IME+14] used MDAnalysis to analyze a realistic model
of the membrane of a mammalian cell with 63 different lipid
species and over half a million particles for 40 µs. They discovered
that transient domains with liquid-ordered character formed and
disappeared on the microsecond time scale, with different lipid

MDANALYSIS: A PYTHON PACKAGE FOR THE RAPID ANALYSIS OF MOLECULAR DYNAMICS SIMULATIONS 103

atoms v0.15.0 v0.16.0 speed up

1.75 M 18 s 5 s 3.6
3.50 M 36 s 11 s 3.3
10.1 M 105 s 31 s 3.4

TABLE 3: Performance comparison of loading a topology file with
1.75 to 10 million atoms with new AtomGroup data structures (upcom-
ing release v0.16.0) compared with the old Atom classes (v0.15.0).
Shorter loading times are better. The same benchmark systems as in
Table 1 were used.

zA

B

Fig. 5: Simulation of a coarse-grained model of the influenza A
virion membrane (purple/red) close to a model of the human plasma
membrane (brown). A: Left: initial frame. Right: system after 40 ns .
A horizontal black guide line is used to emphasize the rising plasma
membrane position. The images were produced with VMD [HDS96].
B Maximum Z (vertical) coordinate values for the influenza A virus
envelope and the plasma membrane are tracked over the course of the
simulation, indicating that the membrane rises to rapidly.

species clustering in a lipid-specific manner. A coarse-grained
model of the influenza A virion outer lipid envelope (5 M parti-
cles) was simulated for 5 microseconds and the resulting trajectory
was analyzed using MDAnalysis [RSP+15] and the open source
MDAnalysis-based lipid diffusion analysis code, which calculates
the diffusion constants of lipids for spherical structures and planar
bilayers [Red14]. The construction of the CG dengue virion
envelope (1 M particles) was largely dependent on MDAnalysis
[RS16]. The symmetry operators in the deposited dengue protein
shell PDB file were applied to a simulated asymmetric unit
in a bilayer, effectively tiling both proteins and lipids into the
appropriate positions on the virion surface.

More recently, a 12.7 M CG particle system combining the
influenza A envelope and a model of a plasma membrane [KS15]
were simulated together (Figure 5 A). MDAnalysis was used
to assess the stability of this enormous system by tracking, for
example, the changes in Z coordinate values for different system
components (Figure 5 B). In this case, the membrane appeared to
rise too rapidly over the course of 50 ns, which suggests that the
simulation system will likely have to be redesigned. Such large

systems are challenging to work with, including their visualiza-
tion, and analysis of quantities based on particle coordinates is
essential to assess the correct behavior of the simulations.

Other packages that use MDAnalysis

The user interface and modular design work well in complex
scripted work flows and for interactive work, as discussed in sec-
tion Interactive Use and Visualization. MDAnalysis also serves as
foundation for other packages. For example, ProtoMD [SMO16]
is a toolkit that facilitates the development of algorithms for
multiscale (MD) simulations and uses MDAnalysis for on-the-
fly calculations of the collective variables that drive the coarse-
grained degrees of freedom. The ENCORE package [TPB+15]
enables users to compare conformational ensembles generated
either from simulations alone or synergistically with experiments.
MDAnalysis is also the back end for ST-analyzer [JJW+14], a
standalone graphical user interface tool set to perform various
trajectory analyses. MDSynthesis [DGS+16] (which is based on
datreant (Dotson et al, this issue)) gives a Pythonic interface to
molecular dynamics trajectories using MDAnalysis, giving the
ability to work with the data from many simulations scattered
throughout the file system with ease. It makes it possible to write
analysis code that can work across many varieties of simulation,
but even more importantly, MDSynthesis allows interactive work
with the results from hundreds of simulations at once without
much effort.

Conclusions

MDAnalysis provides a uniform interface to simulation data,
which comes in a bewildering array of formats. It enables users
to rapidly write code that is portable and immediately usable
in virtually all biomolecular simulation communities. It has an
active international developer community with researchers that are
expert developers and users of a wide range of simulation codes.
MDAnalysis is widely used (the original paper [MADWB11]
has been cited more than 195 times) and forms the foundation
for more specialized biomolecular simulation tools. Ongoing and
future developments will improve performance further, introduce
transparent parallelization schemes to utilize multi-core and GPU
systems efficiently, and interface with the SPIDAL library for high
performance data analytics algorithms [QJLF14].

Acknowledgments

We thank the members of the MDAnalysis community for their
contributions in the form of code contributions (see the file
AUTHORS in the source distribution for the names of all 44
contributors), bug reports, and enhancement requests. RG was
supported by BBSRC grant BB/J014478/1. ML was supported by
the Max Planck Society. JB was supported by the TOP programme
of Prof. Marrink, financed by the Netherlands Organisation for
Scientific Research (NWO). TR was supported by the Canadian
Institutes of Health Research, the Wellcome Trust, the Leverhulme
Trust, and Somerville College; computational resources for TR’s
work were provided by PRACE, HPC-Europa2, CINES (France),
and the SBCB unit (Oxford). MNM was supported by the NWO
VENI grant 722.013.010. SLS was supported in part by a Wally
Stoelzel Fellowship from the Department of Physics at Arizona
State University. JD was in part supported by a Wellcome Trust
grant 092970/Z/10/Z. DLD was in part supported by a Molecular

104 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Imaging Fellowship from the Department of Physics at Arizona
State University. IMK was supported by a REU supplement to
grant ACI-1443054 from the National Science Foundation. OB
was supported in part by grant ACI-1443054 from the National
Science Foundation; computational resources for OB’s work
were in part provided by the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by Na-
tional Science Foundation grant number ACI-1053575 (allocation
MCB130177 to OB). The MDAnalysis Atom logo was designed
by Christian Beckstein.

REFERENCES

[AMS+15] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd
Páll, Jeremy C. Smith, Berk Hess, and Erik Lindahl. GRO-
MACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers. Soft-
wareX, 1–2:19 – 25, 2015. URL: http://www.gromacs.org,
doi:10.1016/j.softx.2015.06.001.

[BBIM+09] B R Brooks, C L Brooks III., A D Jr Mackerell, L Nils-
son, R J Petrella, B Roux, Y Won, G Archontis, C Bartels,
S Boresch, A Caflisch, L Caves, Q Cui, A R Dinner, M Feig,
S Fischer, J Gao, M Hodoscek, W Im, K Kuczera, T Lazaridis,
J Ma, V Ovchinnikov, E Paci, R W Pastor, C B Post, J Z
Pu, M Schaefer, B Tidor, R M Venable, H L Woodcock,
X Wu, W Yang, D M York, and M Karplus. CHARMM:
the biomolecular simulation program. J Comput Chem,
30(10):1545–1614, Jul 2009. URL: https://www.charmm.org,
doi:10.1002/jcc.21287.

[BHE13] Robert B Best, Gerhard Hummer, and William A Eaton. Native
contacts determine protein folding mechanisms in atomistic
simulations. Proc Natl Acad Sci USA, 110(44):17874–17879,
2013. doi:10.1073/pnas.1311599110.

[BWF+00] Helen M. Berman, John Westbrook, Zukang Feng, Gary
Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov, and
Philip E. Bourne. The Protein Data Bank. Nucleic Acids Res,
28(1):235–242, 2000. URL: http://www.rcsb.org/pdb/.

[CCD+05] David A Case, Thomas E Cheatham, 3rd, Tom Darden, Holger
Gohlke, Ray Luo, Kenneth M Merz, Jr, Alexey Onufriev,
Carlos Simmerling, Bing Wang, and Robert J Woods. The
amber biomolecular simulation programs. J Comput Chem,
26(16):1668–1688, 2005. URL: http://ambermd.org/, doi:
10.1002/jcc.20290.

[CRG+14] Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caro-
line E. Dahl, John E. Stone, Bruno Jobard, and Mark S. P.
Sansom. Methodologies for the analysis of instantaneous
lipid diffusion in MD simulations of large membrane sys-
tems. Faraday Discuss., 169:455–475, 2014. doi:10.1039/
C3FD00145H.

[DDG+12] Ron O Dror, Robert M Dirks, J P Grossman, Huafeng Xu,
and David E Shaw. Biomolecular simulation: a computational
microscope for molecular biology. Annu Rev Biophys, 41:429–
52, 2012. doi:10.1146/annurev-biophys-042910-
155245.

[DGS+16] David Dotson, Richard Gowers, Sean Seyler, Max Linke, and
Oliver Beckstein. MDSynthesis: release-0.6.1. (source code),
May 2016. URL: https://github.com/datreant/MDSynthesis,
doi:10.5281/zenodo.51506.

[FKDD07] Joel Franklin, Patrice Koehl, Sebastian Doniach, and Marc
Delarue. MinActionPath: Maximum likelihood trajec-
tory for large-scale structural transitions in a coarse-
grained locally harmonic energy landscape. Nucleic Acids
Res, 35(SUPPL.2):477–482, 2007. doi:10.1093/nar/
gkm342.

[GNA+15] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynamics
simulations on gpus. Computer Physics Communications,
192:97–107, 7 2015. URL: http://glotzerlab.engin.umich.edu/
hoomd-blue/, doi:10.1016/j.cpc.2015.02.028.

[HDS96] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual
Molecular Dynamics. J Molec Graphics, 14:33–38, 1996.
URL: http://www.ks.uiuc.edu/Research/vmd/.

[Hin00] K. Hinsen. The molecular modeling toolkit: a new approach to
molecular simulations. J Comput Chem, 21(2):79–85, 2000.

[HM03] Thomas Hamelryck and Bernard Manderick. PDB file
parser and structure class implemented in python. Bioin-
formatics, 19(17):2308–2310, 2003. doi:10.1093/
bioinformatics/btg299.

[Hun07] John D. Hunter. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, 9(3):90–95, May-Jun
2007. URL: http://matplotlib.org.

[IME+14] Helgi I Ingólfsson, Manuel N Melo, Floris J Van Eerden,
Clement Arnarez, Cesar A López, Tsjerk A Wassenaar, Xavier
Periole, Alex H De Vries, D Peter Tieleman, and Siewert J
Marrink. Lipid organization of the plasma membrane. J
Am Chem Soc, 136(41):14554–14559, 2014. doi:10.1021/
ja507832e.

[JJW+14] Jong Cheol Jeong, Sunhwan Jo, Emilia L Wu, Yifei Qi, Viviana
Monje-Galvan, Min Sun Yeom, Lev Gorenstein, Feng Chen,
Jeffery B Klauda, and Wonpil Im. ST-analyzer: a web-based
user interface for simulation trajectory analysis. J Comput
Chem, 35(12):957–63, May 2014. doi:10.1002/jcc.
23584.

[JOC+15] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani,
Xiaohui Qu, Michael Kocher, Miriam Brafman, Guido Petretto,
Gian-Marco Rignanese, Geoffroy Hautier, Daniel Gunter, and
Kristin A. Persson. Fireworks: a dynamic workflow system
designed for high-throughput applications. Concurrency and
Computation: Practice and Experience, 27(17):5037–5059,
2015. URL: https://github.com/materialsproject/fireworks,
doi:10.1002/cpe.3505.

[KB15] Ian M. Kenney and Oliver Beckstein. SPIDAL Summer
REU 2015: Biomolecular benchmark systems. Technical re-
port, Arizona State University, Tempe, AZ, October 2015.
doi:10.6084/m9.figshare.1588804.v1.

[KS15] Heidi Koldsø and Mark S. P. Sansom. Organization and
dynamics of receptor proteins in a plasma membrane. J Am
Chem Soc, 137(46):14694–14704, 2015. PMID: 26517394.
doi:10.1021/jacs.5b08048.

[LAT10] Pu Liu, Dimitris K Agrafiotis, and Douglas L. Theobald. Fast
Determination of the Optimal Rotational Matrix for Macro-
molecular Superpositions. J Comput Chem, 31(7):1561–1563,
2010. doi:10.1002/jcc.21439.

[MADWB11] Naveen Michaud-Agrawal, Elizabeth Jane Denning, Thomas B.
Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the
analysis of molecular dynamics simulations. J Comput Chem,
32:2319–2327, 2011. URL: http://mdanalysis.org, doi:10.
1002/jcc.21787.

[MBH+15] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harri-
gan, Christoph Klein, Jason M. Swails, Carlos X. Hernández,
Christian R. Schwantes, Lee-Ping Wang, Thomas J. Lane,
and Vijay S. Pande. MDTraj: A modern open library for
the analysis of molecular dynamics trajectories. Biophysi-
cal J, 109(8):1528 – 1532, 2015. URL: http://mdtraj.org,
doi:10.1016/j.bpj.2015.08.015.

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python. Proceedings of the 9th Python Science Conference,
1697900(Scipy):51–56, 2010. URL: http://conference.scipy.
org/proceedings/scipy2010/mckinney.html.

[NRSC16] Hai Nguyen, Daniel R. Roe, Jason Swails, and David A. Case.
PYTRAJ: Interactive data analysis for molecular dynamics sim-
ulations. (source code), 2016. URL: https://github.com/Amber-
MD/pytraj.

[Oro14] Modesto Orozco. A theoretical view of protein dynamics.
Chem. Soc. Rev., 43:5051–5066, 2014. doi:10.1039/
C3CS60474H.

[PBW+05] JC Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid,
E Villa, C Chipot, RD Skeel, L Kale, and K Schulten. Scalable
molecular dynamics with NAMD. J Comput Chem, 26:1781–
1802, 2005. URL: http://www.ks.uiuc.edu/Research/namd/,
doi:10.1002/jcc.20289.

[PG07] Fernando Pérez and Brian E. Granger. IPython: A system for
interactive scientific computing. Comput Sci Eng, 9(3):21–
29, 2007. URL: https://ipython.org/, doi:10.1109/MCSE.
2007.53.

[Pli95] Steve Plimpton. Fast parallel algorithms for short-range molec-
ular dynamics. J Comput Phys, 117(1):1–19, 1995. URL:
http://lammps.sandia.gov/index.html, doi:10.1006/jcph.
1995.1039.

[QJLF14] Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C. Fox.
Towards HPC-ABDS: An initial high-performance big data

MDANALYSIS: A PYTHON PACKAGE FOR THE RAPID ANALYSIS OF MOLECULAR DYNAMICS SIMULATIONS 105

stack. In Building Robust Big Data Ecosystem, San Diego
Supercomputer Center, San Diego, CA, 2014. ISO/IEC JTC 1
Study Group on Big Data. URL: http://spidal.org.

[RCI13] Daniel R. Roe and Thomas E. Cheatham III. PTRAJ and
CPPTRAJ: Software for processing and analysis of molecular
dynamics trajectory data. J Chemical Theory Computation,
9(7):3084–3095, 2013. URL: https://github.com/Amber-MD/
cpptraj, doi:10.1021/ct400341p.

[Red14] Tyler Reddy. diffusion_analysis_MD_simulations: Initial re-
lease. (source code), September 2014. URL: https://github.
com/tylerjereddy/diffusion_analysis_MD_simulations, doi:
10.5281/zenodo.11827.

[RG09] Tod D. Romo and Alan Grossfield. LOOS: An extensible
platform for the structural analysis of simulations. In 31st
Annual International Conference of the IEEE EMBS, pages
2332–2335, Minneapolis, Minnesota, USA, 2009. IEEE. URL:
http://loos.sourceforge.net/.

[RLG14] Tod D. Romo, Nicholas Leioatts, and Alan Grossfield.
Lightweight object oriented structure analysis: Tools for build-
ing tools to analyze molecular dynamics simulations. J Comput
Chem, 35(32):2305–2318, 2014. URL: http://loos.sourceforge.
net/, doi:10.1002/jcc.23753.

[Roc15] Matthew Rocklin. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th
Python in Science Conference, number 130–136, 2015. URL:
https://github.com/dask/dask.

[RS16] T. Reddy and M. S. Sansom. The role of the membrane
in the structure and biophysical robustness of the Dengue
virion envelope. Structure, 24(3):375–382, Mar 2016. doi:
10.1016/j.str.2015.12.011.

[RSP+15] T. Reddy, D. Shorthouse, D. L. Parton, E. Jefferys, P. W.
Fowler, M. Chavent, M. Baaden, and M. S. Sansom. Nothing
to sneeze at: a dynamic and integrative computational model
of an influenza A virion. Structure, 23(3):584–597, Mar 2015.
doi:10.1016/j.str.2014.12.019.

[RV11] P. Ramachandran and G. Varoquaux. Mayavi: 3D visualization
of scientific data. Computing in Science & Engineering,
13(2):40–51, 2011. URL: http://code.enthought.com/projects/
mayavi/.

[SKTB15] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beck-
stein. Path similarity analysis: A method for quantifying macro-
molecular pathways. PLoS Comput Biol, 11(10):e1004568, 10
2015. doi:10.1371/journal.pcbi.1004568.

[SM14] Victoria Stodden and Sheila Miguez. Best practices for com-
putational science: Software infrastructure and environments
for reproducible and extensible research. J Open Research
Software, 2(1):e21, July 2014. doi:10.5334/jors.ay.

[SMO16] Endre Somogyi, Andrew Abi Mansour, and Peter J. Ortol-
eva. ProtoMD: A prototyping toolkit for multiscale molec-
ular dynamics. Computer Physics Communications, 202:337
– 350, 2016. URL: https://github.com/CTCNano/proto_md,
doi:10.1016/j.cpc.2016.01.014.

[TPB+15] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter
Boomsma, and Kresten Lindorff-Larsen. ENCORE: Soft-
ware for quantitative ensemble comparison. PLoS Comput
Biol, 11(10):e1004415, 10 2015. doi:10.1371/journal.
pcbi.1004415.

[TRB+08] T. Tu, C.A. Rendleman, D.W. Borhani, R.O. Dror,
J. Gullingsrud, MO Jensen, J. L. Klepeis, P. Maragakis,
P. Miller, K.A. Stafford, and David E. Shaw. A scalable
parallel framework for analyzing terascale molecular dynam-
ics simulation trajectories. In International Conference for
High Performance Computing, Networking, Storage and Anal-
ysis, 2008. SC 2008., pages 1–12, Austin, TX, 2008. IEEE.
doi:10.1109/SC.2008.5214715.

[TSTD06] Ilian T Todorov, William Smith, Kostya Trachenko, and Mar-
tin T Dove. DL_POLY_3: new dimensions in molecular
dynamics simulations via massive parallelism. Journal of
Materials Chemistry, 16(20):1911–1918, 2006. URL: http:
//www.ccp5.ac.uk/DL_POLY_CLASSIC/.

[VCV11] Stefan Van Der Walt, S. Chris Colbert, and Gael Varoquaux.
The NumPy array: A structure for efficient numerical com-
putation. Comput Sci Eng, 13(2):22–30, 2011. URL: http:
//www.numpy.org/, arXiv:1102.1523, doi:10.1109/
MCSE.2011.37.

[WAB+14] Greg Wilson, D A Aruliah, C Titus Brown, Neil P Chue Hong,
Matt Davis, Richard T Guy, Steven H D Haddock, Kathryn D

Huff, Ian M Mitchell, Mark D Plumbley, Ben Waugh, Ethan P
White, and Paul Wilson. Best practices for scientific comput-
ing. PLoS Biol, 12(1):e1001745, Jan 2014. doi:10.1371/
journal.pbio.1001745.

[Wel62] B. P. Welford. Note on a method for calculating corrected sums
of squares and products. Technometrics, 4(3):419–420, 1962.
doi:10.1080/00401706.1962.10490022.

106 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Validating Function Arguments in Python Signal
Processing Applications

Patrick Steffen Pedersen‡∗, Christian Schou Oxvig‡, Jan Østergaard‡, Torben Larsen‡

F

Abstract—Python does not have a built-in mechanism to validate the value
of function arguments. This can lead to nonsensical exceptions, unexpected
behaviour, erroneous results and the like. In the present paper, we define
the concept of so-called application-driven data types which place a layer of
abstraction on top of Python data types. With this concept in mind, we discuss
the current argument validation solutions of PyDBC, Traitlets and Numtraits,
MyPy, PyValid, and PyContracts. We find that they share the issue of expressing
the validation scheme in terms of Python objects rather than in terms of the
data they hold. Consequently, we lay out a suggestion for a validation strategy
including what qualifies as a validation scheme, how to create an interface
which promotes both usability and readability, and which Python constructs to
encourage using for validation encapsulation. A reference implementation of the
suggested validation strategy is part of the open-source Python package, Magni
which is thus presented along with a number of examples of the usages of this
package.

Index Terms—Function Argument Validation, Application-driven Data Types,
Signal Processing, Computational Science

Introduction

Python is a dynamically typed language that does not have a built-
in mechanism to ensure that the value of an argument passed to
a function conforms to the intentions of that particular argument.
This can lead to nonsensical exceptions, unexpected behaviour,
erroneous results and the like. In signal processing applications
and scientific computing in general, large amounts of numerical
data are passed to any number of functions that inherently impose
limitations upon that data. If such functions do not validate
their arguments, these limitations may be violated without raising
exceptions leading to potentially erroneous results. Thus, although
impairing the performance, explicit validation may not only spare
the user a lot of frustration by providing useful exceptions but may
also prevent erroneous results and thereby ensure the credibility of
works in scientific computing.

The usage of explicit function argument validation could
be considered "unpythonic"1 as it goes against dynamic typing
[CVS13] and duck typing [CVS13] by not relying on documen-
tation, clear code and testing to ensure correct usage. Even so,
there exist a number of solutions for validating function arguments

* Corresponding author: psp@es.aau.dk
‡ Faculty of Engineering and Science, Department of Electronic Systems,
Section of Signal and Information Processing, Aalborg University, 9220
Aalborg, Denmark

Copyright © 2016 Patrick Steffen Pedersen et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

in Python relying on a wide range of language constructs and
interfaces. The validation capabilities of these solutions vary
greatly from type, attribute, and value checks to fully customisable
checks. Among these solutions are PyDBC, Traitlets and Num-
traits, MyPy, PyValid, and PyContracts which are all discussed
later. Most of the solutions do, however, seem to have an interface
which relates to the data model used by Python and therefore
translates to Python check in a straightforward way.

Unfortunately, there are a number of shortcomings with the ex-
isting validation strategies as implemented in the existing Python
packages with validation capabilities; in particular in signal pro-
cessing applications. Some of the existing solutions lack general-
ity, some do not promote readability, and some are inconvenient
to use. However, the primary issue is that the validation scheme of
function arguments is expressed in terms of Python objects rather
than in terms of the data they hold, and this poses a number of
problems. Even with these shortcomings, the existing solutions
represent a large variety of validation strategies which are an
obvious source of inspiration.

In the present effort, we suggest the concept of so-called
application-driven data types as a signal processing data model
for programming. These data types are intended for expressing the
validation scheme of function arguments. Furthermore, based on
existing solutions, we lay out a new strategy for validating function
arguments in Python signal processing applications. Finally, we
present the open-source Python package, Magni which includes a
reference implementation of the suggested validation strategy, and
we show a number of examples of the usage of this package.

The remainder of the present paper is organised as follows.
We first take a look at validation in Python at a glance before
presenting the concept of application-driven data types. Next, we
discuss some of the existing solutions with an emphasis on the
validation strategies they represent. Drawing on the observations
made, we then present the suggested Python validation strategy.
Following this specification, we detail a reference implementation
of it and give examples of its usage. Finally, we conclude on
what is achieved by the presented validation strategy and reference
implementation as well as when to use them. All code examples
have been run with Python 2.7 unless otherwise noted, all trace-
backs have been removed to save space, and exception messages
and the like have been broken across multiple lines using trailing
backslashes where necessary.

1. For an informal yet fitting definition, see http://stackoverflow.com/
questions/25011078/what-does-pythonic-mean

VALIDATING FUNCTION ARGUMENTS IN PYTHON SIGNAL PROCESSING APPLICATIONS 107

Validation in Python at a glance

For the purpose of exemplifying the concepts discussed in this
section, we define a simple Python function for returning the
square root of the first item of a sequence. Obviously, only a
sequence with a non-negative, numerical first item, a0 ∈ R≥0,
should be a valid argument of this function.
def do_something(a):

print(a[0]**0.5)

To quote the Zen of Python2, "there should be one-- and preferably
only one --obvious way to do it" when faced with solving a
task in Python, and the obvious ways to solve common tasks
are oftentimes referred to as pythonic idioms. When it comes to
function argument validation in Python, the most pythonic idiom
is to clearly document what a function expects and then just try to
use whatever gets passed to the function and either let exceptions
propagate or catch attribute errors and raise other exceptions
instead. This approach is well-suited for Python because it is a
dynamically typed language. Basically, this means that variables,
such as the function argument in the example, are not limited to
hold values of a certain type. Instead, we can pass a number, a
sequence, a mapping, or any other type to the example function.
Regardless of the type, Python tries to use whatever value gets
passed to the function which is a consequence of duck typing. The
basic principle is that if a bird looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck. That is,
if a value exhibits the desired behaviour, then that value probably
is valid. Translated to our example, if the value of the function
argument, a, has the __getitem__ attribute which Python uses
internally for retrieving the first item, then a probably is valid.
Thus, the most pythonic idiom would rely on documentation, clear
code, and testing to ensure correct usage rather than explicitly
testing function arguments to ensure conformity to the intentions
of the function.

What happens, then, if the value of a function argument
is invalid by the reckoning of duck typing? This is the case
with the following call as the built-in int type does not define
__getitem__:
>>> integer = 42
>>> do_something(integer)
TypeError: 'int' object has no attribute \
'__getitem__'

With the following call, a TypeError exception is raised with a
message that "'int' object has no attribute '__getitem__'".
Even with this simple example, such an exception message is
less sensible than desired. Furthermore, such an exception is
as likely to occur in some obscure function call and, thus, be
accompanied by a traceback with more levels than anyone would
want. However, at least the presence of an exception indicates that
something did not go as expected. What happens, however, if the
value of a function argument is valid by the reckoning of duck
typing but does not conform to the intentions of the function?
This is the case with the following call as the built-in dict
type defines __getitem__ but with a different purpose than
the __getitem__ of sequences:
>>> dictionary = {-1: 0, 0: 1}
>>> do_something(dictionary)
1.0

The intention of the function is to operate on the first item of the
function argument, but dictionary is unordered meaning that

2. See https://www.python.org/dev/peps/pep-0020/

there is no such thing as a first item. However, the call does not
raise an exception because of duck typing. This is an example of
unexpected or erroneous behaviour.

The two examples of calls presented showcase how the lack of
function argument validation can lead to hard-to-debug exceptions
or even worse to unexpected or erroneous behaviour. The benefit
of explicit function argument validation is that the mentioned
problems should be avoided. Furthermore, by having such val-
idation for functions that are part of a public API of released
packages, the package is made more trustworthy and user-friendly.

How to Test for Validity

One way to test for validity would be to check if the value of
a variable has a certain type. That is, to determine the validity
based on what a value is. For example, we could rewrite the
do_something example in the following way:

def do_something(a):
if not isinstance(a, list):

raise TypeError('Descriptive message.')

if not isinstance(a[0], int):
raise TypeError('Descriptive message.')

print(a[0]**0.5)

Obviously, this approach to validation goes against dynamical
typing as it restricts variables to only hold values of certain types.
In the example, amay hold values of the type list or of a derived
type, and the first item of a may hold values of the type int or of
a derived type. Clearly, the validation in the above example is too
restrictive: as the intention of the function is to allow a sequence
with a non-negative, numerical first item, the following call should
pass but instead fails the validation checks:

>>> sequence = (0., 1.)
>>> do_something(sequence)
TypeError: Descriptive message.

The issue is that a number of Python types represent sequences,
and a number of Python types represent numbers. This could be
accounted for in the example, but the point to stress is that the
programmer should not have to know about every single Python
type, nor should he or she have to explicitly list a large number of
Python types for each validation check.

Another way to test for validity would be to check if the value
of a variable displays a certain behaviour. That is, to determine
the validity based on what a value can do. For example, we could
rewrite the do_something example in the following way:

def do_something(a):
if not hasattr(a, '__getitem__'):

raise TypeError('Descriptive message.')

if not hasattr(a[0], '__pow__'):
raise TypeError('Descriptive message.')

print(a[0]**0.5)

Clearly, this approach to validation is along the lines of duck
typing as it explicitly checks for the presence of the required
attribute. In the example, a may hold values of any type that
defines the __getitem__ attribute, and a[0] may hold values
of any type that defines the __pow__ attribute. Unlike with the
first way to test for validity, the validation in the above example is
not restrictive enough as already explained using the example with
the dictionary. The same check could be achieved in a cleaner and

108 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

more thorough way using abstract base classes3, but this solution
would essentially suffer from the same type of problem.

Neither of the two ways to test for validity mentioned, consider
the fact that the square root operation is only defined for non-
negative a[0] values if complex numbers are ignored. Thus, a
third way to partially test for validity would be to check if the
value of a variable is in a set of valid values. That is, to determine
validity based on what a value contains. For example, we could
rewrite the do_something example in the following way:
def do_something(a):

if len(a) < 1:
raise ValueError('Descriptive message.')

if a[0] < 0:
raise ValueError('Descriptive message.')

print(a[0]**0.5)

Obviously, this approach would have to be combined with some-
thing else to ensure that a is indeed a sequence and a[0] is indeed
a number as covered by the first two ways to test for validity.

The Concept of Application-Driven Data Types

The approaches presented in the previous section do not even
consider less common although valid cases such as non-derived
types that only implicitly define the required attributes. Even more
so, it is apparent that there is no straightforward way to test for
validity based solely on what a value is, can do, or contains. A
possible explanation for this is that all three approaches express
the validation scheme in terms of Python objects rather than
in terms of the data they hold. Indeed, it was easy to identify
and in plain writing express that the function argument of the
do_something example must be a sequence with a non-
negative, numerical first item. Expressing the validation scheme
in this way does provide a layer of abstraction.

Instead of checking if the value of a is a certain Python type,
it would be convenient to be able to check if the value of a is a
sequence. Likewise, instead of checking if the value of a[0] is
a certain Python type containing a non-negative value, it would
be convenient to be able to check if the value of a[0] is a
non-negative, numerical type. Both "sequence" and "non-negative,
numerical type" are examples of data types at a higher abstraction
level than actual Python types, and we will name these abstractions
application-driven data types.

In the context of scientific computing and signal processing
in particular, the most relevant and interesting application-driven
data types are numerical types. Here, an application-driven data
type is some "mental" intersection between math and computer
science in scientific computing and signal processing in particular.
For example, the set of real-valued matrices with dimensions m
times n, Rm×n, is an example of an application-driven data type. If
the user is able to test the validity of a function argument against
this application-driven data type, there is no need for the user to
consider the distinction between Python floats, numpy generics,
numpy ndarrays, and so on.

Existing Solutions

As mentioned in the introduction, there exist a number of solutions
to validating function arguments in Python relying on a wide range
of language constructs and interfaces and thereby representing

3. See https://docs.python.org/2/glossary.html#term-abstract-base-class

a large variety of validation strategies. As these strategies are a
source of inspiration for any new validation strategy, this section
is used to briefly discuss some existing solutions with a focus on
the three aspects which make up the suggested validation strategy:
1) The validation schemes that can be expressed and through that
the abstraction level of the application-driven data types. 2) The
way the interface of the implementation allows the validation
scheme to be specified. 3) The Python constructs used to allow
Python to validate the function arguments against the validation
specification. Additionally, the relevant versions of Python are
mentioned as 4) under each solution. Thus, the emphasis of this
section is not to give a complete review of all existing solutions.

PyDBC

Although the original PyDBC4 is long outdated, it represents
an approach worth mentioning. The package allows so-called
contracts to be specified using method preconditions, method
postconditions, and class invariants. Thus, function argument
validation can be performed using method preconditions. In the
following example, the function argument, a, of the function,
exemplify is validated to be a real scalar in the range [0;1]:

import dbc
__metaclass__ = dbc.DBC

class Example:
def exemplify(self, a):

pass # do something

def exemplify__pre(self, a):
assert isinstance(a, float)
assert 0 <= a <= 1

When an invalid value is passed, the following assertion error
occurs:
>>> example = Example()
>>> example.exemplify(-0.5)
AssertionError

As for validation strategy, the following observations are made:

1) As shown in the example above, the validation function,
exemplify__pre contains custom validity checks, as
PyDBC does not include any functionality for specifying
a validation scheme.

2) Without any functionality for specifying a validation
scheme, there is no fixed interface, and the user instead
writes a number of assert statements to validate the
function arguments.

3) The Python constructs used rely on object oriented
Python by using metaclasses. When the metaclass creates
the class, it rewrites the function exemplify to first
invoke the function named exemplify__pre when
exemplify is called following a fixed naming scheme.

4) PyDBC was intended for Python 2.2 and has not been
changed since 2005, but the package does work with
Python 2.7. It does, however, not work with Python 3,
but the same functionality could indeed be implemented
in Python 3.

Traits, Traitlets, and Numtraits

Traits5 is an extensive package by Enthought which provides
class attributes with the additional characteristics of customis-
able initialisation, validation, delegation, notification, and even

4. See http://www.nongnu.org/pydbc/

VALIDATING FUNCTION ARGUMENTS IN PYTHON SIGNAL PROCESSING APPLICATIONS 109

visualisation. Traitlets6 is a lightweight Traits-like module which
provides customisable validation, default values, and notification.
Finally, Numtraits7 adds to Traitlets with a numerical trait with
more versatility in validation than that of the numerical traits of
Traitlets. Thus, although hardly as intended by the developers,
function argument validation can be performed using an attribute
for each function argument. In the following example, the function
argument, a, of the function, exemplify is validated to be a real
scalar in the range [0;1]:
from numtraits import NumericalTrait
from traitlets import HasTraits

class Example(HasTraits):
_a = NumericalTrait(ndim=0, domain=(0, 1))

def exemplify(self, a):
self._a = a

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> example = Example()
>>> example.exemplify(-0.5)
traitlets.traitlets.TraitError: _a should be in \
the range [0:1]

As for validation strategy, the following observations are made:

1) The validation scheme of Traitlets requires specifying
a static Python type, allows specifying a valid range
of values for numerical types, and allows specifying
relevant properties for other specific types. Furthermore,
the validation scheme of the numerical trait of Numtraits
does not require specifying a static Python type but allows
specifying the number of dimensions and the shape of a
value.

2) As shown in the example above, the interface of the im-
plementation lets the user specify the validation scheme
using a single call for each function argument with named
arguments, named keyword arguments and in some cases
unspecified keyword arguments using **kwargs.

3) The Python constructs used rely on object oriented
Python by using descriptors which modify the retrieving
and modification of attribute values of objects. Thus,
when assigning a new value to an attribute, the relevant
descriptor validates the new value.

4) Traitlets and Numtraits work with Python 2.7 and with
Python 3.3 or above.

Annotations, Type Hints, and MyPy

PEP 31078 is a Python enhancement proposal on function an-
notations which is a feature which has recently been added to
Python. This PEP allows arbitrary annotations without assigning
any meaning to the particular annotations. PEP 4849 is a PEP on
type hints which attach a certain meaning to particular annotations
to hint the type of argument values and return values of functions.
The most important goal of this is static analysis, but runtime
type checking is mentioned as a potential goal also. For more
information, see PEP 48310 on the theory of type hints and PEP
48211 for a literature overview for type hints. MyPy12 is a static

5. See http://docs.enthought.com/traits/
6. See http://traitlets.readthedocs.org/
7. See http://github.com/astrofrog/numtraits/

type checker which, thus, does not enforce data type conformance
at runtime. In the following example, the function argument, a, of
the function, exemplify is validated to be a real scalar:
def exemplify(a: float):

pass # do something

exemplify('0')

When the script above is passed to MyPy using Python 3.5, the
following message is produced:
$ mypy example.py
example.py:4: error: Argument 1 to "exemplify" has \
incompatible type "str"; expected "float"

As for validation strategy, the following observations are made:

1) The validation scheme of MyPy requires specifying a
static Python type or a union of static Python types. This
is hardly surprising for a static type checker.

2) As mentioned, the syntax of annotations is given by PEP
3107, and the format of the type hints is given by PEP
484 making the type hints explicit and readable although
a less well-known feature of Python.

3) The Python constructs used rely only on annotations and
runs offline and separately of normal execution of Python
code.

4) PEP 484 was accepted for Python 3.5, but the syntax is
compatible with that of PEP 3107 which was accepted
for Python 3.0, and thus MyPy works with Python 3.2
or above. Furthermore, PEP 484 suggests a syntax for
Python 2.7 using comments instead of annotations, and
MyPy supports this and thus also works with Python 2.7.

PyValid

As the name suggests, PyValid13 is a Python validation package,
and it allows validation of function arguments and function return
values. In the following example, the function argument, a, of the
function, exemplify is validated to be a real scalar:
from pyvalid import accepts

@accepts(float)
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> exemplify(0)
pyvalid.__exceptions.ArgumentValidationError: The \
1st argument of exemplify() is not in a \
[<type 'float'>]

As for validation strategy, the following observations are made:

1) The validation scheme for PyValid requires specifying
one or more static Python types and acts as a runtime type
checker. Thus, in terms of validation scheme capabilities,
this is equivalent to MyPy.

2) As shown in the example above, the interface of the im-
plementation lets the user specify the validation scheme

8. See https://www.python.org/dev/peps/pep-3107/
9. See https://www.python.org/dev/peps/pep-0484/
10. See https://www.python.org/dev/peps/pep-0483/
11. See https://www.python.org/dev/peps/pep-0482/
12. See http://mypy.readthedocs.org/
13. See http://uzumaxy.github.com/pyvalid/

110 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

using a single call for an entire function with a single ar-
gument or keyword argument for each validated function
argument.

3) The Python constructs used rely on decorators by includ-
ing an accept decorator in order to precede function
execution by function argument validation.

4) PyValid works with Python 2.6 or above and with Python
3.

PyContracts

PyContracts14 is a Python package that allows declaring con-
straints on function arguments and return values. In the following
example, the function argument, a, of the function, exemplify
is validated to be a real scalar in the range [0;1]:

from contracts import contract

@contract(a='float,>=0,<=1')
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:

>>> exemplify(-0.5)
contracts.interface.ContractNotRespected: Breach \
for argument 'a' to exemplify().
Condition -0.5 >= 0 not respected
checking: >=0 for value: Instance of \
<type 'float'>: -0.5
checking: float,>=0,<=1 for value: Instance of \
<type 'float'>: -0.5
Variables bound in inner context:

As for validation strategy, the following observations are made:

1) The capabilities of PyContracts allows specifying any
conceivable validation scheme. This is achieved in part
through built-in capabilities including specifying one or
more static types in a flexible way, specifying value
ranges, and specifying flexible length/shape constraints.
And in part through custom specifications by using so-
called custom contracts.

2) As shown in the example above, the interface of the im-
plementation lets the user specify the validation scheme
using a single call for an entire function with a single
keyword argument for each validated function argument.
The validation schemes for the individual arguments are
specified using a custom string format. As the valida-
tion scheme becomes more advanced, the specification
becomes less Python-like and less readable. For example,
the following was taken from an official presentation and
allows an argument to be a list containing a maximum of
two types of objects: list(type(t)|type(u)).

3) The Python constructs used rely on decorators by includ-
ing a contract decorator in order to precede function
execution by function argument validation. Depending
on the preference of the user, the validation scheme
is either specified through arguments of the decorator,
through annotations in the form of type hints or custom
annotations, or through docstrings following a specific
format.

4) PyContracts works with Python 2 and with Python 3.

14. See http://andreacensi.github.com/contracts/

The Suggested Python Validation Strategy

This section lays out a suggestion for a Python validation strategy
for validating function arguments in signal processing applica-
tions. This strategy uses the introduced concept of application-
driven data types and the observations made on the strategies
of existing solutions. As mentioned in the previous section, the
suggested validation strategy is made up of three aspects which
are discussed separately in the following.

The Suggested Validation Schemes

As described in a previous section, we want to specify validation
schemes in terms of application-driven data types rather than in
terms of what a valid Python object is, can do, or contains.
Needless to say, a translation must still be made from application-
driven data types to Python data types, but this task is left for the
validation package according to the suggested validation strategy.
For an early implementation, any application-driven data type will
allow only a limited set of Python data types. This does, however,
not mean that the application-driven data type is limited to a few
Python data types. Rather, more Python data types may be added
along the way as long as they provide the necessary attributes
with the desired interpretation. Thus, effectively, the suggested
validation strategy can be considered less strict than static type
checking but more strict than duck type checking.

The numerical trait of the Numtraits package has an inter-
esting approach which is not too different from the concept of
application-driven data types. The numerical trait does not distin-
guish between Python data types as long as they are numerical,
and this corresponds to the most general numerical application-
driven data type able to assume any numerical value of any shape.
Furthermore, the numerical trait allows restricting the data type
to more restrictive data types by specifying a number of dimen-
sions, a specific shape, and/or a range of valid values. Indeed,
signal processing applications could benefit from having such an
application-driven data type. However, in some applications it may
be necessary to work with boolean values, integral values, real
values, or complex values only. Therefore, it should be possible
to restrict the data type to suit these cases in addition to the other
possible restrictions allowed by numerical traits.

To summarise, in Python signal processing applications, there
should be an application-driven data type representing the most
general numerical value being able to assume any numerical value
of any shape. This data type should be able to be restricted to less
general data types by specifying the mathematical set, the range
or domain of valid values, the number of dimensions, and/or the
specific shape of the data type. The suggested validation schemes
should be expressed in terms of the desired application-driven data
type.

The Suggested Interface Type

Most of the existing solutions which were mentioned in the
previous section specify the validation scheme of all function
arguments of a function in a single call to the validation package
in question. This is not the case with the traits of the Trailets and
Numtraits packages which only specify the validation scheme of
a single function argument in each call to the validation package.
From the perspective of the authors, the latter approach yields the
better readability. Therefore, the suggested interface type should
only let the user specify the validation scheme of a single function
argument in each call.

VALIDATING FUNCTION ARGUMENTS IN PYTHON SIGNAL PROCESSING APPLICATIONS 111

As for the specifics of the interface, the validation scheme
must be easy both for the programmer to state and for users to
read. The PyContracts details its own format where the validation
scheme is given by a string. However, it would be desirable to use a
more standard Python interface to ease the usages even if it means
having to be more verbose. On the other hand, the numerical
trait of the Numtraits package uses named named arguments and
keyword arguments which relate to the possible restrictions of
the application-driven data types. From the perspective of the
authors, the latter approach works well with application-driven
data types and result in logical, easy to use interfaces. Therefore,
the suggested interface should use named arguments and keyword
arguments related to the possible restrictions of the general numer-
ical application-driven data type to specify the validation scheme
of function arguments.

The Suggested Python Constructs to Use

There are a lot of Python constructs which could potentially be
used as showcased by the existing solutions. PyContracts allows
the user to specify the validation scheme through the docstring
of a function. However, most users would not expect docstrings
to be parsed to yield the validation scheme, and furthermore the
format used to specify the validation scheme would not be obvious
because of the lack of restrictions put on docstrings. Therefore,
docstrings are not suggested as a Python construct to use here.
Annotations, as used by MyPy, are relatively new to Python,
but that should not disqualify them from being used. However,
the format used would not be obvious because there are few
restrictions put on annotations so with the exception of type hints
which are insufficient for this purpose. Therefore, annotations are
not suggested as a Python construct to use here.

Next, there are the object oriented Python constructs. Meta-
classes, as used by, PyDBC, have existed for a long time. However,
these have changed over time, and so the metaclass attribute
feature of Python 2 no longer works in Python 3, and only one
metaclass is allowed per class in the more recent Python versions.
Furthermore, the behaviour of metaclasses makes them impair
the readability, especially to users that are unfamiliar with the
construct. Therefore, metaclasses are not suggested as a Python
construct to use here. Descriptors, as used by Traits, Traitlets,
and Numtraits, are another feature applicable to object oriented
Python, and these can provide flexibility and readability. However,
they are limited to object oriented Python, and furthermore it
seems unpythonic to validate function arguments by invoking
descriptors through class instance attribute assignment. Therefore,
descriptors are not suggested as a Python construct to use here.

Decorators, as used by PyValid and PyContracts, are a well-
known and general Python construct. However, it is not imme-
diately apparent if something goes on "under the hood", and
the pythonic approach is to specify the validation scheme of all
function arguments in a single decorator call, both of which affect
readability. Therefore, decorators are not suggested as a Python
construct to use here.

The suggested Python construct values explicit over implicit
and promotes readability. The suggestion is to define and explicitly
call a nested validation function with no arguments. There are
a number of obvious alternatives which are not suggested for
different reasons:

• It is not suggested to precede the function code by calls
directly to a validation package because this does not
clearly separate validation from the rest of the code.

• It is not suggested to use arguments for the validation
function because this could potentially lead to error-prone
validation if the validation function arguments are wrongly
named or ordered, or the function arguments are renamed
or reordered.

• It is not suggested to use a global rather than nested vali-
dation function because this could potentially separate the
validation from the function and thus reduce readability.

Magni Reference Implementation

A reference implementation of the suggested valida-
tion strategy is made available by the open source
Magni Python package [OPA+14] through the subpackage
magni.utils.validation. The subpackage contains the
following functions:
decorate_validation(func)
disable_validation()
validate_generic(

name, type_, value_in=None, len_=None,
keys_in=None, has_keys=None, ignore_none=False,
var=None)

validate_levels(name, levels)
validate_numeric(

name, type_, range_='[-inf;inf]', shape=(),
precision=None, ignore_none=False, var=None)

Of these, validate_generic and validate_levels are
concerned with validating objects outside the scope of the present
paper. The function, disable_validation can be used to
disable validation globally. Although discouraged, this can be
done to remove the overhead of validating function arguments.
As the name suggests, decorate_validation is a decorator,
and this should be used to decorate every validation function with
the sole purpose of being able to disable validation. Using the
suggested validation strategy with Magni, the following structure
is used for all validation adhering to the suggested Python
constructs to use:
from magni.utils.validation import decorate_validation

def func(*args, **kwargs):
@decorate_validation
def validate_input():

pass # validation calls

validate_input()

pass # the body of func

The remaining function, validate_numeric, is used to val-
idate numeric objects based on application-driven data types as
proposed by the suggested validation scheme of the validation
strategy. This is done using the interface as proposed by the
suggested interface type of the validation strategy: The type_
argument is used for specifying one or more of the boolean,
integer, floating, and complex subtype specifiers. The
range_ argument is used for specifying the set of valid values
with a minimum value and a maximum value both of which
may be included or excluded. The shape argument is used for
specifying the shape with the entry, -1 allowing an arbitrary shape
for a given dimension and any non-negative entry giving a fixed
shape for a given dimension.

The remaining arguments of validate_numeric are not
directly related to the validation scheme but rather to the sur-
rounding Python code. The precision argument is used for
specifying one or more allowed precisions in terms of bits per

112 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

value. The name argument is used for specifying which argument
of the function to validate with the particular validation call. The
ignore_none argument is a flag indicating if the validation call
should ignore None objects and thereby accept them as valid. The
var argument is irrelevant to the scope of the present paper and
the reader is referred to the documentation for more information.

Additional resources for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

Examples

As mentioned in relation to the suggested validation schemes,
there should be an application-driven data type representing the
most general numerical value being able to assume any numerical
value of any shape. The following example validates a variable
against exactly this application-driven data type. The validation
only fails when a non-numerical object is passed as argument to
func.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

all_types = ('boolean', 'integer',
'floating', 'complex')

validate_numeric(
'var', all_types, shape=None)

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:
>>> func(42)
>>> func(3.14)
>>> func(np.empty((5, 5), dtype=np.complex_))

However, when a non-numerical object is passed, the following
exception occurs:
>>> func('string')
TypeError: The value(s) of >>var<<, 'string', must \
be numeric.

In the next example, the application-driven data type is any non-
negative real scalar, i.e., R≥0.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = ('integer', 'floating')
validate_numeric(

'var', real, range_='[0;inf]')

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:
>>> func(0)
>>> func(3.14)

However, when a complex object or a negative float is passed, the
following exception occurs:

>>> func(1j)
TypeError: The value(s) of >>var.dtype<<, \
<type 'complex'>, must be in ('integer', 'floating').

>>> func(-3.14)
ValueError: The value(s) of >>min(real(var))<<, \
-3.14, must be >= 0.

Notice, that the range_ argument in the validation call of the
previous includes the values zero and infinity using [...]. One
or both of these values could be excluded using (...) or]...[
as is the case in the next example, i.e., R>0.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = ('integer', 'floating')
validate_numeric(

'var', real, range_='(0;inf)')

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:
>>> func(3.14)

However, when a zero-valued object is passed, the following
exception occurs:
>>> func(0.)
ValueError: The value(s) of >>min(real(var))<<, \
0.0, must be > 0.

In the final example, the application-driven data type is any real
matrix with its first dimension equal to 5, i.e. R5×n for any non-
negative integer n.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

real = ('integer', 'floating')
validate_numeric(

'var', real, shape=(5, -1))

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:
>>> func(np.empty((5, 5)))
>>> func(np.empty((5, 10)))

However, when an R10×5 object or an R5×5×5 object is passed,
the following exception occurs:
>>> func(np.empty((10, 5)))
ValueError: The value(s) of>>var.shape[0]<<, 10, \
must be 5.

>>> func(np.empty((5, 5, 5)))
ValueError: The value(s) of >>len(var.shape)<<, 3, \
must be 2.

Requirements

The required dependencies for magni (as of version 1.4.0) are:

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)

VALIDATING FUNCTION ARGUMENTS IN PYTHON SIGNAL PROCESSING APPLICATIONS 113

• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)

It should be noted that the requirements other than
Python and NumPy are due to magni rather than
magni.utils.validation. In addition to the above require-
ments, magni has a number of optional dependencies but none of
these are relevant to the usage of magni.utils.validation.

Quality Assurance

The Magni Python package has been developed according to best
practices for developing scientific software [WAB+14], and every
included piece of code has been reviewed by at least one person
other than its author. Furthermore, the PEP 816 style guide is
adhered to, no function has a cyclomatic complexity [McC76]
exceeding 10, the code is fully documented, and an extensive test
suite accompanies the package. More details about the quality
assurance of magni is given in [OPA+14].

Conclusions

We have argued that function arguments should be validated
according to data types at a higher abstraction level than actual
Python types, and we have named these application-driven data
types. Based on a discussion of existing validation solutions, we
have suggested a Python validation strategy including three as-
pects: 1) The validation schemes that can be expressed. 2) The way
the interface of the implementation allows the validation scheme
to be specified. 3) The Python constructs used to allow Python
to validate the function arguments. A reference implementation of
this strategy is available in the open source Magni Python package
which we have presented along with a number of examples. In
short, magni and more generally the validation strategy should
be used to abstract function argument validation from Python to
signal processing, to make validation ease to write, and to enhance
readability of validation.

Acknowledgements

This work was supported in part by the Danish Council for
Independent Research (DFF/FTP) under Project 1335-00278B/12-
134971 and in part by the Danish e-Infrastructure Cooperation
(DeIC) under Project DeIC2013.12.23.

REFERENCES

[CVS13] José Cordeiro, Maria Virvou, and Boris Shishkov. Software and
Data Technologies: 5th International Conference, ICSOFT 2010,
Athens, Greece, July 22-24, 2010. Revised Selected Papers.
Springer, 2013.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering, 9(3):90–95, May 2007.
doi:10.1109/MCSE.2007.55.

[McC76] Thomas J. McCabe. A Complexity Measure. IEEE Transactions
on Software Engineering, SE-2(4):308–320, December 1976.
doi:10.1109/TSE.1976.233837.

[Oli07] Travis E. Oliphant. Python for Scientific Computing. Computing
in Science & Engineering, 9(3):10–20, May 2007. doi:10.
1109/MCSE.2007.58.

15. See http://www.pytables.org/
16. See https://www.python.org/dev/peps/pep-0008/
17. See https://travis-ci.org/

[OPA+14] Christian Schou Oxvig, Patrick Steffen Pedersen, Thomas Arild-
sen, Jan Østergaard, and Torben Larsen. Magni: A Python Pack-
age for Compressive Sampling and Reconstruction of Atomic
Force Microscopy Images. Journal of Open Research Software,
2(1):e29, October 2014. doi:10.5334/jors.bk.

[vdWCV11] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
Computing in Science & Engineering, 13(2):22–30, March 2011.
doi:10.1109/MCSE.2011.37.

[WAB+14] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven H. D. Haddock, Kathryn D.
Huff, Ian M. Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P.
White, and Paul Wilson. Best Practices for Scientific Computing.
PloS Biology, 12(1):e1001745, January 2014. doi:10.1371/
journal.pbio.1001745.

114 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Spreading the Adoption of Python in India: the
FOSSEE Python Project

Prabhu Ramachandran‡§∗

https://youtu.be/6UnuPhTPdnM

F

Abstract—The FOSSEE (Free Open Source Software for Science and Engi-
neering Education) project (http://fossee.in) is funded by the Ministry of Human
Resources and Development, MHRD, (http://mhrd.gov.in) of the Government of
India. The FOSSEE project is based out of IIT Bombay and the goal of the
project is to eliminate the use of proprietary tools in the college curriculum.
FOSSEE promotes various open source packages. Python is one of them.

In this paper, the Python-related activities and initiatives of FOSSEE are
discussed. The group focuses on promoting the use of Python in the college
curriculum. The important activities of this group include the creation of spoken-
tutorials on Python, the creation of 400+ IPython-based textbook companions,
an online testing tool for a variety of programming languages, a course akin to
software carpentry at IIT Bombay, the organization of the SciPy India confer-
ence, and finally spreading the adoption of Python in schools and colleges. The
paper discusses how these tools may be used to teach Python in the context of
collegiate education and computational science.

Introduction

The FOSSEE project (http://fossee.in) started in 2009 with the
goal of helping minimize the use of proprietary software in the
college curriculum in India. The project is funded by the Ministry
of Human Resources and Development, MHRD (http://mhrd.gov.
in) of the Government of India. FOSSEE is part of the MHRD’s
National Mission on Education through ICT (NMEICT). NMEICT
started in 2009 as an initiative to improve the quality of education
in India. As part of this mission there have been several initiatives.
One important example is the NPTEL project (http://nptel.ac.in)
which provides content for over 900 courses at the undergraduate
and graduate level (400 web-based and 500 video-based) online.
These are proving to be extremely useful all over the country.
Other projects include the Spoken Tutorial project (http://spoken-
tutorial.org) which has also been previously presented at SciPy
2014 [kmm14]. FOSSEE is one such project that is the outcome
of the NMEICT funding.

The FOSSEE project is based out of IIT Bombay and promotes
the use of various open source packages in order to help elimi-
nate the use of proprietary packages in the curriculum. A large
number of colleges tend to unnecessarily purchase commercial
licenses when they really do not need it. The difficulty with using

* Corresponding author: prabhu@aero.iitb.ac.in
‡ Department of Aerospace Engineering
§ IIT Bombay, Mumbai, India

Copyright © 2016 Prabhu Ramachandran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

commercial packages to teach basic concepts and computational
techniques is well known:

• The packages are typically expensive, the money could be
better spent on equipment. This is especially relevant in
India.

• Students cannot legally take the software with them home
or after they complete their course.

• Academic licenses are not enough as the students end
up becoming dependent on the packages after the leave
the institution. Furthermore, the packages are even more
expensive when used in a commercial setting.

In order to help reduce the dependence on commercial pack-
ages, the FOSSEE project’s efforts are focused towards training
students and teachers to use FOSS tools for their curricular
activities. This also requires development efforts in order to either
enhance existing projects or fill in any areas where FOSS tools
are lacking. There are around ten PIs actively involved in various
sub-projects. Some of the most active projects are Scilab, Python,
eSim (an Electronic Design Automation tool), OpenFOAM, and
Osdag (open source design of steel structures).

After the initial efforts in 2009 and 2010 it was found that
some of the initiatives worked and scaled up well whereas others
did not. As a result, all of the FOSSEE sub-projects follow a sim-
ilar structure. Typically each sub-project produces the following
output:

• Generates "spoken-tutorials" that new users can use to self-
learn a particular software package.

• Organize a crowd-sourced development of "textbook com-
panions" for popular textbooks used in the curriculum.
A textbook companion is created by coding every solved
example in a text using a particular open source software
package like Scilab or Python.

• Support user questions on a forum for the packages that
are promoted.

• Develop new software that is useful in a particular domain.
• Support hardware interfacing to encourage open experi-

mentation.
• Migrate labs that use proprietary packages and help them

switch to a FOSS equivalent.
• Conduct workshops and conferences to spread the word

and teach students and teachers.

Some of these are project specific. For example, the Scilab
project is able to perform lab migrations as Scilab is a close

SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 115

equivalent to Matlab and this makes it easier for people to
switch to it from Matlab. Kannnan Moudgalya’s paper in 2014
[kmm14] discusses in detail the approach and design decisions
made by the FOSSEE and spoken-tutorials projects. In particular
the paper discusses spoken tutorials, textbook companions, and
lab migrations.

The focus of the present paper is to elucidate some the Python-
specific activities [FOSSEE-Python] that are of potential direct
interest to the SciPy community. The overarching goal of the
Python related activities is to help spread the use of Python in
the curriculum. In 2016, the scope has expanded to help spread
the use of Python in high-schools as well. The focus of this paper
is to discuss the approaches that have been taken by the FOSSEE-
Python group towards these goals. The lessons and approaches
taken by this project are potentially of benefit for similar projects
around the world.

The paper starts by discussing spoken tutorials, which are care-
fully created screencasts that are well suited for self learning. The
paper then discusses a variant of the software carpentry course that
has been offered at IIT Bombay. The subsequent section discusses
a convenient tool called Yaksh for assessing programming skills
of students. The approach taken to create a large amount of user-
created documentation in the form of "textbook companions" is
then discussed. The paper concludes with some brief information
about the SciPy India conference series which is organized by
FOSSEE and how that fits in with the overarching theme.

Spoken-tutorials

When the project started in 2009, many live workshops were
conducted to teach Python but this proved to be too time con-
suming and did not scale. There are more than 3000 colleges
in the country and live workshops cannot reach all of these
institutions. At this time it was felt that preparing self-learning
material that students can learn on their own would be much
more effective and scalable. A sister project, the spoken-tutorial
project (http://spoken-tutorial.org) pioneered the generation and
dissemination of spoken-tutorials. A spoken tutorial is basically a
carefully designed screencast for a roughly 10 minute duration or
less. Any screencast cannot qualify as a spoken-tutorial. A spoken
tutorial requires a carefully written script. Notably, a spoken
tutorial should be made such that a novice can understand it.
The spoken-tutorial project ensures that all new tutorials undergo
a novice check to make sure that this is indeed the case. This
involves asking a novice to go over the script and ensure that
they are able to reproduce the entire script and follow it. This
carefully written script allows a spoken tutorial to be dubbed into
multiple languages. A series of spoken tutorials can thus be used to
effectively teach a programming language or software package. As
such, a spoken tutorial is not a substitute for classroom instruction
of the traditional kind. It has been most effectively used to teach a
programming language or introduce a software package.

The major advantage of the spoken tutorial is that it retains a
high quality of instruction, can be used for self-learning, and scales
extremely well. In addition, these tutorials can be dubbed into
various local languages. The spoken tutorial project has trained
over a million students and teachers on a variety of software
packages. The project hosts over 700 individual spoken-tutorials.
Over 20 different Indian languages are supported.

As part of the Python initiative the FOSSEE Python group has
created about 40 spoken tutorials to teach non-CSE undergraduate

Fig. 1: An example of a Python spoken tutorial. The video can be
viewed, an outline of the material is available below the video. An
instruction sheet and installation sheet is also available. Prerequisite
videos are listed and users can also post questions on a forum.

students how to use Python for their curricular computational
tasks. A new set of around 50 tutorials is currently being recorded.
The spoken tutorials include tutorials on starting with IPython,
plotting with matplotlib, etc. Currently these are only available in
English.

Fig. 1 shows a typical Python spoken tutorial as hosted on the
spoken-tutorial website. It shows the main screencast video. Below
the video is an outline of the tutorial. Information on installation
and other instructions is also listed. Users can easily navigate to
prerequisite tutorials. In addition, users can post their questions on
the forum.

These spoken tutorials can be accessed by anyone and can
also be downloaded into a self-contained CD by users. Around
40000 users have gone over this material. Detailed statistics for
the various tutorials are available here: http://spoken-tutorial.org/
statistics/training/

The FOSSEE team generates the spoken tutorials and the
spoken tutorial team coordinates the conduct of workshops where
students use this material to teach themselves Python. FOSSEE
staff members support these workshops by attending to user
questions that may arise.

Spoken tutorials have thus become an effective way to scale
up training on open source packages. For a motivated and skilled
user, spoken-tutorials and documentation alone are often enough
to self-learn. However, this is not enough for the average user.
There are many software packages, tools, web sites and books
related to computational science. It is never easy for a student
(undergraduate or graduate) to choose the right set of packages or
practices they should follow. The next section discusses a course
that is designed and run by the FOSSEE group at IIT Bombay that
helps address this.

The SDES course

SDES is an acronym that stands for Software Development
Techniques for Engineers and Scientists. As discussed earlier,
the Python group initially focused on teaching Python at various
colleges. It was soon felt that students needed to learn how to
use Unix shells effectively, use version control, basic knowledge
of LaTeX, good software development practices in addition to
Python. Students are often unaware of the right set of tools

116 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

to learn. Most students undergo a basic computer programming
course in their first year but this is rarely enough for them to
perform their curricular tasks.

In order to fill this need, a course was designed in late 2009.
The course is titled Software Development techniques for Engi-
neers and Scientists (SDES). This course takes inspiration from the
Software Carpentry Course material [SWC]. However, the course
is tailored for undergraduate students. The course is offered at IIT
Bombay so students at the undergraduate and graduate levels could
take this as part of their course-work. Students can certainly learn
this material from several online resources, however, the existence
of this course allows students to credit this as part of their course
requirements.

The course starts with teaching students on how to use
Unix command line tools to carry out common (mostly text
processing) tasks. The course then goes on to teach students
how to automate typical tasks using basic shell-scripting. The
students are then taught version control. The course originally
used mercurial, however, this has changed to git. The students
are then taught basic and advanced Python. The emphasis is on
typical engineering/numerical computations such as those that
involve (basic) manipulation of large arrays in an efficient manner.
Good programming style is discussed along with debugging and
test driven development. They also learn LaTeX and document
creation with reStructuredText. The course material is available
from github, at http://github.com/FOSSEE/sees.

As part of the evaluation, students pick a software project and
attempt to apply all that they have learned. Students are also given
many programming assignments to test their ability to program.
We have built a convenient online testing tool called Yaksh that
is discussed in a subsequent section for this task. This makes the
examinations interesting for students and is helpful for instructors
to assess student’s understanding.

The course has been offered twice thus far and will be offered
again in the fall of 2016. The course has been well received by
students and is quite popular. The number of students is restricted
to about 60 each time. During the last delivery it was felt that the
student projects were not done well enough. A more aggressive
and systematic approach is needed to push students to work
consistently over the duration of the course, rather than in the
last minute. It was also found that it is difficult for students and
instructors to pick meaningful projects that are neither too trivial
or too difficult. For the next delivery, the plan is to encourage
students to work systematically on their projects. Studying the git
logs of the student project repositories to assess team contribution
and systematic work is one approach that is being considered.
Instead of always picking new projects, one possibility is to give
them an existing project and ask them to improve it.

The SDES course was offered as part of a 1000 teacher
training course offered in 2011 at IIT Bombay. This course had
over 600 participants who took the course and was well received.
Unfortunately, it is not clear how well this course eventually
helped teachers and if the teachers went on to teach this material
in their colleges.

Teaching the course has generally been enjoyable and re-
warding. Students seem to find the course useful and generally
continue to use the tools that they have learned. The course is
rather demanding from the perspective of assessment and a good
team of TAs is necessary. Fortunately, the FOSSEE Python team
helps in this regard.

Online test tool: Yaksh

Assessing the programming skills of students is a very important
task during training. This is necessary both from the perspective
of effective teaching as well as learning. For an instructor, testing
early and often is helpful because it provides immediate feedback
on which students need help and which of them are doing well.
For students, doing well in a test gives them confidence and doing
poorly teaches them where they should concentrate harder or get
help. Unfortunately, assessment is not usually a pleasant task.
Assessment is doubly important when learning a programming
language as in India there are students who learn how to program
but never write more than a few lines of code. Programming
requires practice and encouraging students to program is very
important.

For FOSSEE this is also important from the perspective of
being able to certify students. The Spoken Tutorial team conducts
a large number of workshops all over the country and it would
be good if the tests required that students be able to write simple
programs at least.

In 2011, the author saw Chris Boesch run a programming
contest at PyCon APAC 2011. The contest was entirely online,
and users could submit their code and obtained instant feedback.
The system was built on top of Google App Engine. This made
testing programming lively and enjoyable. The author along with
the FOSSEE team have built a Django application to do something
similar. The package is called Yaksh, is Open Source, and the
sources are available at http://github.com/FOSSEE/online_test.
The initial version of Yaksh was used to administer programming
quizzes for the online teacher training course based on the SDES
course in late 2011. More than 600 simultaneous users took their
tests on this interface. This work was presented at SciPy India
2011 [PR11].

Yaksh provides a simple interface for an instructor to create
a question paper with mutiple-choice questions (MCQ) as well
as full-fledged programming questions. A programming question
consists of a problem statement and the user writes the code on
the interface. This code is immediately checked against several test
cases and any failures are reported directly to the user by providing
a suitable traceback. By design, a programming question can be
answered many times until the user gets it completely correct. This
encourages students to try and submit their answers. An MCQ can
only be answered once for obvious reasons.

It was found that the approach of allowing multiple submis-
sions and providing instant feedback instead of the traditional
approach where a student would upload the answers on an in-
terface and obtain the grades later to be much more effective.
Instant feedback makes the process lively and entertaining for the
student. The ability to submit multiple times gives them comfort
in that they know that they can gradually fix their code. This
makes students less anxious. They also immediately know that
their answer is correct if they get it right. This makes a significant
difference. Clearly this is not enough to teach all aspects of
programming, however, this is a very useful aid.

Yaksh provides a convenient monitoring interface for the
instructor which provides, at a glance, information on the students’
performance. Each submission of a student is logged and can be
seen by the moderator. This is useful for an instructor.

Yaksh works best with Python since it has been used mostly
for Python tests but does support multiple other programming
languages like C, C++, Java, Bash, and Scilab.

SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 117

Fig. 2: The Yaksh application login screen with a video on how one
can use it.

Fig. 3: The interface for a multiple-choice question on yaksh.

Yaksh sandboxes the user code and runs the code as "nobody"
when configured to do so. The code execution can also be
performed in a docker container. This minimizes any damage a
student can do. Since all answers are logged before execution, it
is easy to find out if a student has been malicious -- this has never
happened in the current usage Yaksh.

Fig. 2 shows the login screen for Yaksh, which features a small
video that demonstrates how the interface can be used. Fig. 3
shows the interface for an MCQ and Fig. 4 shows the interface for
a programming question. The top bar shows the time remaining to
take the question. A question navigator is provided for students to
quickly move between questions.

Fig. 5 shows a typical moderator interface while monitoring a
running quiz. The interface shows the number of questions each
student has completed. On clicking on a user, all the answers they
have submitted are visible.

Installation and running a demo

Yaksh is a Python package and is distributed on PyPI. Yaksh can
be installed with pip. When installed, an executable script yaksh
is created. To setup a demo instance on can run

$ yaksh create_demo

Fig. 4: The interface for a programming question on yaksh.

Fig. 5: The moderator interface for monitoring student progress
during an exam on yaksh.

This creates a new demo Django project called yaksh_demo
with a demo database and a couple of users added. One is a
moderator and other is an examinee. It also loads a few simple
demo questions and a quiz. One can then simply run:

$ yaksh run_demo
$ sudo yaksh run_code_server

This starts up a server on the localhost and also runs the code
evaluator as nobody. The server is tested to work on Linux and
OS X but not on Windows although technically it should not be
difficult to do this. Note that a malicious user could fork bomb the
machine in this case as the service is still running on the machine.
Resource limiting is possible but not currently implemented.

The above instructions are only for a demo and are not suitable
for a production installation as a sqlite database is used in the demo
case. More detailed instructions for a production installation are
available in the repository.

118 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Design overview

In order to create a quiz the teacher/instructor (also called the
moderator) must first create a course. Users can login and register
for the course with the instructor’s approval. The moderator can
add any number of questions to yaksh through the online interface.
These can be either MCQ questions or programming questions.
The programming questions will require a set of test cases. In the
case of a Python programming question, a simple question could
be of the form:

Write a function called factorial(n) which takes
a single integer argument and returns the
factorial of the number given.

The question will also be accompanied with a few test cases of the
form:

assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(5) == 120

As many questions as desired may be created. For other languages
assertions are not easily possible but standard input/output based
questions are easily handled. More sophisticated test support is
also possible (for example one could easily support some form of
assertions for C/C++ if a template were used to generate the files).
The architecture of yaksh supports this fairly easily.

Questions could also be imported from a Python script. The
interface lets users export and import questions. The moderator
then creates a quiz and an associated question paper. A quiz
may have a pre-requisite quiz and can have a passing criterion.
Quizzes have active durations and each question paper will have
a particular time within which it must be completed. For example
one could conduct a 15 minute quiz with a 30 minute activity
window. The students can be allowed to attempt the quiz either
once or multiple times as desired. This is often useful when
teaching new users. Questions are automatically graded. A user
either gets the full marks or zero if the tests fail. In the future
yaksh will also support partial grading depending on the number
of test cases the code passes.

In terms of the internal design, yaksh is fairly simple.

• The Django app manages the questions, quizzes, users etc.
• A separate code-server process runs as "nobody" to limit

the amount of damage malicious code could have. This
process runs an XML/RPC server. The Django app creates
an XML/RPC ServerProxy instance and invokes the
code server with the user code and any additional data
(like the test cases etc.). This is executed by the server
process.

• Unfortunately, XML/RPC can only handle 2 simultaneous
connections. Therefore, a pool of these servers is created
and managed. The Django app then connects to any
available server and executes the code.

• In order to prevent issues with infinite loops, we use the
signal module to send SIGALRM in a finite amount
of time. The default is 2 seconds but this can be easily
configured.

The code server can be easily run within a docker container
and this is also supported by Yaksh. Some documentation for this
is also provided in the production README.

In addition to these features yaksh also has an experimental
web-API that allows an instructor to utilize yaksh from their
own web sites or HTML documents. An instructor could create

questions and a question paper from the yaksh interface but have
users take the test on say an Jupyter notebook interface. This is
still being developed but a proof of concept is available. In order
to do this, a user could simply add yaksh.js to their HTML and
call a few API methods to fetch as well as submit user answers.

Some experiences using yaksh

Yaksh has been used while delivering the SDES course at IIT
Bombay. This has worked quite well and is well received by
students. As mentioned before, Yaksh has also been used for the
online course with over 600 participants and worked quite well.
This was however done in 2011 and thereafter has only been used
for smaller classes.

Recently, Yaksh was used by the author to teach first year
undergraduate students Python as part of a data analysis and
interpretation course. Many students were new to programming
and a lot was learned about how well this could work.

Yaksh definitely made it much easier to assess the understand-
ing of students. Initially the students were not given tests but were
given Jupyter notebooks as well as exercises to solve at home.
The assumption was that the students would follow the material
since it was done slowly in class. This was not the case. A take-
home assignment was given using Yaksh where students would
solve simple problems (many taken from the exercise problems
that were already given). Surprisingly, many of the students were
struggled badly. Even the best students were not able to finish all
problems. This showed that a lot more practice was needed. As
a result, 7 different quizzes with a few problems each were con-
ducted. After about 5 such quizzes it was found that some students
were still having difficulties understanding basic concepts. These
were students who were completely new to programming. Around
20 poorly performing students were identified. These students
came to a special class and solved 10 problems using yaksh over
the course of 2 hours. The monitoring facility was immensely
useful as one could walk over to a struggling student and provide
assistance or point a TA in their direction. The students all
seemed to like the experience and understood the importance of
actually programming versus learning the language syntax. Their
performance in the subsequent quizzes and assignments improved
significantly.

One major lesson learned was that one should ensure that
students are tested from the get-go rather than towards the end.
This would result in a much smoother experience. Based on the
overall experience, it is clear that Yaksh is an effective tool for
students and teachers alike.

Plans

Yaksh will continue to be improved based on the needs of the
FOSSEE team and that of others. It is hoped that this is also of
use to the community. The future goals for the yaksh project are
to:

• Clean up and come up with a stable web-API.
• Support the use of Jupyter notebooks for tests.
• Support more programming languages.
• Integrate Yaksh into the spoken-tutorial website in order

to help them test students.

Textbook companions

Spoken-tutorials allow FOSSEE to reach out to a larger audience
and train students and teachers on the use of FOSS tools and

SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 119

packages. The SDES course is similar to the Software Carpentry
effort and offers a full-fledged course that readies students for
computational science. Yaksh facilitates both of these by making
it easier to test students on their programming skills.

While Python in general and the SciPy project in particular
have plenty of good online documentation, this may not always
be adequate from the perspective of a beginner. Good quality
documentation is not easy to write and requires both expertise
as well as the ability to explain things at the level of the user. This
is often difficult for a developer who knows almost everything
about the package. On the other hand it is not always easy for an
inexperienced user to write documentation either.

Students are often interested in taking internships and desire
to participate in software projects that are relevant to their area
of interest. Is it possible to engage these students in a way where
they are able to contribute meaningful documentation in an area
of their interest?

Textbook companions offer an interesting approach in this
context. As discussed in detail in [kmm14], textbook companions
are created by writing Python code for every solved example in
a textbook. Students create these textbook companions which are
then reviewed by either teachers or reviewers at FOSSEE. This
task scales very well as students are eager to take up the task.
They already know the subject matter as the textbook is part of
their curriculum. The examples are already solved, so they have to
convert the solved example into appropriate Python code. Students
are given an honorarium and a certificate after their textbooks pass
a review. Currently, there are over 530 Scilab textbook companions
[STC] created. The Python project has 416 completed books with
over 200 textbooks in progress. The Python textbook companions
are hosted online at http://tbc-python.fossee.in

The Python Textbook Companions (PTC’s) are submitted in
the form of IPython notebooks. This is important for several
reasons:

• IPython notebooks allow one to put together formatted
HTML, code, and the results in one self-contained file.

• IPython notebooks are easy to render and a HTML listing
can be generated.

• The file can also be hosted online and interactively used.
• The huge popularity of the notebook makes this a very

useful resource.

The FOSSEE group has also customized the generated HTML
such that users can leave comments on the IPython notebooks.
This is done by linking disqus comments to each rendered note-
book. The disqus API is then queried for any new comments
each day and contributors are sent a consolidated email about any
potential comments for them to address. This feature is relatively
new and needs more user testing.

The submission process and hosting of the IPython notebooks
is done using a Django web application that can be seen at
http://tbc-python.fossee.in. The code for the interface is also
available from github (https://github.com/FOSSEE/Python-TBC-
Interface). Once a textbook is reviewed it is also committed to
a git repository on github: https://github.com/FOSSEE/Python-
Textbook-Companions.

The process works as follows:

1) The student picks a few possible textbooks that have
not been completed and informs the textbook companion
coordinator.

Fig. 6: The Django application which hosts the Python textbook
companions.

2) Once a particular book is assigned to the contributor, the
student submits one sample chapter which is reviewed by
the coordinator.

3) The student then completes the entire book. Each chapter
is submitted as a separate IPython notebook.

4) The student also uploads a few screenshots of their
favorite notebooks that are displayed on the interface.

5) The submitted code is reviewed and any corrections are
made by the contributor.

6) The notebooks are then committed to the git repository.
7) The completed notebooks are hosted by the TBC web

application.

After the textbook is reviewed and accepted the student is sent
an honorarium for their work. Fig. 6 shows the main Python TBC
interface with information about the project and the editor’s picks.

Approximately 3 proposals for new textbooks are submitted
each week. Of these, around one is rejected if the book is either
a programming language book or it is already completed. Initially
many proposals were C or C++ programming books which were
being converted to Python. This has since been discontinued and
such books are no longer accepted. Of the submissions, around
70% of the submissions are from males, 40% of the submissions
are by students, another 40% from teachers, and the remaining
20% from working professionals.

Fig. 7 shows a typical textbook. The IPython notebooks for
each chapter can be viewed or downloaded. More information on
the book itself can be seen including an ISBN search link for the
student to learn more about a book, a link to the actual IPython
notebook on github and other details are also available. The entire
book can be downloaded as a ZIP file.

Upon clicking a chapter, a typical rendered HTML file is seen.
This is seen in Fig. 8. A button to edit the chapter is seen, this
will fire up a tmpnb instance which allows users to easily modify
and run the code. This makes it convenient to view, modify, and
learn the created content. In the figure, one can see an icon for
entering comments. This links to a disqus comment field at the
bottom of the page. This lists all current comments and allows
users to submit new comments on the particular chapter.

A large number of solved examples are indeed quite simple
but there are several that are fairly involved. Some of the nicer
textbooks are highlighted in the editor’s pick section.

120 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 7: A typical textbook is shown. The figure shows some screenshots
to pique the interest of the casual reader. The Jupyter notebook corre-
sponding to each chapter is listed and can be viewed or downloaded.

Fig. 8: A typical textbook chapter being rendered. The button to edit
examples of the chapter fires up a tmpnb instance so users can edit
the code and try their changes.

The Python textbook companion effort of FOSSEE has not
been formally announced and advertised in the wider SciPy
community. Once announced, the plan is to start to analyze the
usage and popularity of this resource. It is still unclear as to how
different people are using the notebooks. Some good feedback has
been received from the contributors [testimonials] to the project.
Many of them have enjoyed creating these notebooks and have
benefited by this effort. Some contributor comments are quoted in
[kmm14].

In summary, the textbook companions are of interest because:

1) They provide ready-to-use examples of how to apply a
given software package or set of tools to a particular
problem.

2) They scale well and can be easily crowd-sourced.
3) The scale of the current effort allows one to ask interest-

ing questions, for example "what are the different uses of
the FFT in science and engineering?".

4) It provides an interesting alternative to internships and
projects for undergraduate students looking to learn and
contribute something meaningful.

The texbook companions thus complement the other initiatives
of the FOSSEE-Python group.

Scipy India

The SciPy India conference provides an opportunity for those
interested in Python to learn of new developments, talk about how
they have used Python, meet other interested users/developers and
participate in the community.

The Python FOSSEE group has been organizing the SciPy
India conference since 2009. Seven conferences have been orga-
nized thus far. The conferences have traditionally been held in
December. They are largely funded by the FOSSEE project. The
project staff manage the local organization almost completely. The
conference website is at http://scipy.in

There is an attendance of about 200 people each year. A large
number of these are new users. The conference is typically well
received and many people are aware of the SciPy community
through these efforts. Each year a leading expert in the community
is invited to keynote at the conference. The first conference had
Travis Oliphant keynote and the conference in 2015 had Andreas
Kloeckner as the keynote. Several other important members of the
extended SciPy community from India and abroad have spoken at
the conference.

Originally, sprints were conducted but this did not prove very
effective. The conference now focuses on high-quality tutorials for
two days and a single day for the conference itself. Many college
professors attend the conference and many go back and encourage
their students to use the tools and participate in the future.

Plans for the future

The Python group plans to build on the existing work. The team
will continue to generate textbook companions, provide support
for the workshops conducted by the spoken-tutorial team, and
continue to work on the Yaksh interface. The existing Python
spoken tutorials will be updated and new ones will be created
as required. These spoken tutorials will also be dubbed to other
Indian languages.

In addition the Python group plans to promote the use of
Python in the CBSE (Central Board of Secondary Education)
school curriculum. The CBSE board has already included Python
as an alternative to C++ in the 11th and 12th grade exams.
Unfortunately, there is quite a bit of resistance towards this as
many teachers are unfamiliar with Python. The plan is to support
schools in this initiative over the next year. Textbook companions
will be prepared for the school initiative. Spoken-tutorials tailor-
made to the school curriculum will also be generated. This is an
exciting new development but a significant amount of work is still
necessary.

Conclusions

As discussed in this paper, the FOSSEE project has used several
interesting approaches to spread Python in India. Spoken tutorials
help deliver good-quality self-learning training material to a large
audience. The SDES course allows students to learn effective
computational skills as part of their curriculum. Yaksh is an open
source tool that can be used to effectively test the programming
skills of a student. Together, these tools and materials maybe
be effectively used by instructors to teach computational tools
and programming to a large number of students. The author’s
experience with using Yaksh while teaching students at different
levels has also been shared. It seems that testing students often on
their programming is an effective way to have them practice their
programming skills and provide quick feedback to the instructor.

SPREADING THE ADOPTION OF PYTHON IN INDIA: THE FOSSEE PYTHON PROJECT 121

Textbook companions offer an interesting alternative to doc-
umentation and scales well. The very fact that FOSSEE has
helped facilitate around 500+ textbook companions shows that
this activity scales and has potential to make a difference.

The FOSSEE Python group has helped spread the use of
Python in India. The group has also helped the other sister
FOSSEE groups with respect to any Python related support when
possible. It is hoped that the code and other material that has been
generated is of use to the wider community across the world.

Acknowledgments

FOSSEE would not exist but for the continued support of MHRD
and we are grateful to them for this. The project would not be
a success without the efforts of the many PIs of the FOSSEE
project especially Prof. Kannan Moudgalya of IIT Bombay who
also leads the spoken-tutorial project. The author wishes to thank
Asokan Pichai who helped shape the FOSSEE project over the first
few years. This work would not be possible without the efforts of
the many FOSSEE staff members. The past and present members
of the project are listed here: http://python.fossee.in/about/ the
author wishes to thank them all. The author wishes to thank the
reviewers of this manuscript for their suggestions that have made
this manuscript better.

REFERENCES

[kmm14] Kannan Moudgalya, Campaign for IT literacy through
FOSS and Spoken Tutorials, Proceedings of the 13th
Python in Science Conference, SciPy, July 2014.

[FOSSEE-Python] FOSSEE Python group website. http://python.fossee.in,
last seen on June 2nd 2016.

[STC] Scilab Team at FOSSEE, Scilab textbook companions,
http://scilab.in/Textbook_Companion_Project, May 2016.

[SWC] Greg Wilson. Software Carpentry, http://software-
carpentry.org, Seen on May 2016.

[PR11] Prabhu Ramachandran. FOSSEE: Python and Education,
Python for science and education, Scipy India 2011, 4th-
11th December 2011, Mumbai India.

[testimonials] Python texbook companion testimonials. http://python.
fossee.in/testimonials/1/ Seen on Jun 1, 2016

122 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

PySPH: a reproducible and high-performance
framework for smoothed particle hydrodynamics

Prabhu Ramachandran‡§∗

https://youtu.be/6UnuPhTPdnM

F

Abstract—Smoothed Particle Hydrodynamics (SPH) is a general purpose tech-
nique to numerically compute the solutions to partial differential equations such
as those used to simulate fluid and solid mechanics. The method is grid-free and
uses particles to discretize the various properties of interest (such as density,
fluid velocity, pressure etc.). The method is Lagrangian and particles are moved
with the local velocity.

PySPH is an open source framework for Smoothed Particle Hydrodynamics.
It is implemented in a mix of Python and Cython. It is designed to be easy to use
on multiple platforms, high-performance and support parallel execution. Users
write pure-Python code and HPC code is generated on the fly, compiled, and
executed. PySPH supports OpenMP and MPI for distributed computing, in a way
that is transparent to the user. PySPH is also designed to make it easy to perform
reproducible research. In this paper we discuss the design and implementation
of PySPH.

Background and Introduction

SPH (Smoothed Particle Hydrodynamics) is a general purpose
technique to numerically compute the solutions to partial differ-
ential equations used to simulate fluid and solid mechanics. The
method is grid-free and uses particles to discretize the various
properties of interest. The method is Lagrangian and particles are
moved with the local velocity. The method was originally devel-
oped for astrophysical problems [Luc77], [GM77] (compressible
gas-dynamics) but has since been extended to simulate incom-
pressible fluids [Mon94], solid mechanics [GMS01], free-surface
problems [Mon94] and a variety of other problems. Monaghan
[Mon05], provides a good review of the method.

The SPH method is relatively easy to implement. This has
resulted in a large number of schemes and implementations
proposed by various researchers. SPH schemes differ in the details
of how the governing equations are approximated. It is often
difficult to reproduce published results due to the variety of
implementations. While a few standard packages like SPHysics
[devb], DualSPHysics [deva], JOSEPHINE [CPR12], GADGET-
2 [Spr05] etc. exist, they are usually tailor-made for particular
applications and are not general purpose. They are all implemented
in FORTRAN (77 or 90) or C, and do not have a convenient
Python interface.

* Corresponding author: prabhu@aero.iitb.ac.in
‡ Department of Aerospace Engineering
§ IIT Bombay, Mumbai, India

Copyright © 2016 Prabhu Ramachandran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Our group has been developing PySPH (http://pysph.bitbucket.
org) over the last 5 years. PySPH is open source, and distributed
under the new BSD license. Our initial implementation was based
on Cython [BBC+11] and also featured some parallelization using
MPI. This was presented at SciPy 2010 [RK10]. Unfortunately,
this previous version of PySPH proved difficult to use as users
were forced to implement most of their code in Cython. This was
not a matter of simply writing a few high performance functions
in Cython. The PySPH library is object oriented and supporting
a new SPH formulation would require subclassing one or more
classes and this would need to be done with Cython. This made the
design more rigid as all the types needed to be pre-defined. Writing
all this in Cython meant that users had to manage compilation
and linking the Cython code during development. This made
development with PySPH inconvenient.

It was felt that we might as well have implemented the core
library in C++ and exposed a Python interface to it. A traditional
compiled language has more developer tooling around it. For
example debugging, performance tuning, profiling would all be
easier if everything were written in C or C++. Unfortunately, such
a mixed code-base would not be as easy to use, extend or maintain
as a largely pure Python library. In our experience, a pure Python
library is a lot easier for say an undergraduate student to grasp
and use over a C/C++ code. Others are also finding this to be
true [Per15]. Many of the top US universities are teaching Python
as their first language [Guo14]. This means that a Python library
would also be easier for relatively inexperienced programmers.
It is also true that a Python library would be easier and shorter
to write for the other non-high-performance aspects (which is
often a significant amount of code). So it seemed that our need
for performance was going against our desire for an easy to use
Python library that could be used by programmers who were not
C/C++ developers.

In early 2013, we redesigned PySPH so that users were able to
implement an entire simulation using pure Python. This was done
by auto-generating HPC code from the pure Python code that users
provided. This version ended up being faster than our original
Cython implementation! Since we were auto-generating code,
with a bit of additional effort it was possible to support OpenMP
as well. The external user API did not change so users did not
have to modify their code at all to benefit from this development.
PySPH has thus matured into an easy to use, yet high-performance
framework where users can develop their schemes in pure Python
and yet obtain performance close to that of a lower-level language
implementation. PySPH has always supported running on a cluster

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 123

of machines via MPI. This is seamless and a serial script using
PySPH can be run with almost no changes using MPI.

PySPH features a reasonable test-suite and continuous in-
tegration servers are used to test it on Linux and Windows.
The documentation is hosted at http://pysph.readthedocs.org. The
framework supports several of the standard SPH schemes. A suite
of about 30 examples are provided. These are shipped as part
of the sources and installed when a user does a pip install. The
examples are written in a way that makes it easy to extend and
also perform comparisons between schemes. These features make
PySPH well suited for reproducible numerical work. In fact one
of the author’s recent papers [RP16] was written such that every
figure in the paper is automatically generated using PySPH.

In this paper we discuss the use, design, and implementation
of PySPH. In the next section we provide a high-level overview of
the SPH method.

Smoothed Particle Hydrodynamics

The SPH method works by approximating the identity:

f (x) =
∫

f (x′)δ (x− x′)dx′,

where, δ is the Dirac Delta distribution. This identity is approxi-
mated using:

f (x)≈
∫

f (x′)W (x− x′,h)dx′, (1)

where W is a smooth and compact function and is called the
kernel. It is an approximate Dirac delta distribution that is
parametrized on the parameter h and W → δ as h → 0. h is
called the smoothing length or smoothing radius of the kernel.
The kernel typically will need to satisfy a few properties if this
approximation is to be accurate. Notably, its area should be unity
and if it is symmetric, it can be shown that the approximation is at
least second order in h. The above equation can be discretized as,

f (x)≈ 〈 f (x)〉= ∑
j∈N (x)

W (x− x j,h) f (x j)∆x j, (2)

where x j is the position of the particle j, ∆x j is the volume
associated with this particle. N (x) is the set of particle indices
that are in the neighborhood of x. In SPH each particle carries a
mass m and associated density ρ with it and the particle volume
is typically chosen as ∆x j = m j/ρ j. This results in the following
SPH approximation for a function,

< f (x)>= ∑
j∈N (x)

m j

ρ j
W (x− x j,h) f (x j). (3)

Derivatives of functions at a location xi are readily approximated
by taking the derivative of the smooth kernel. This results in,

∂ fi

∂xi
= ∑

j∈N (x)

m j

ρ j
(f j− fi)

∂Wi j

∂xi
. (4)

Here Wi j = W (xi − x j). Similar discretizations exist for the di-
vergence and curl operators. Given that derivatives can be ap-
proximated one can solve differential equations fairly easily. For
example the conservation of mass equation for a fluid can be
written as,

dρ
dt

=−ρ∇ ·~v, (5)

where v is the velocity of the fluid and the LHS is the material or
total derivative of the density. The equation 5 is in a Lagrangian

form, in that it represents the rate of change of density as one
is moving locally with the fluid. If an SPH discretization of this
equation were performed we would get,

dρi

dt
=−ρi ∑

j∈N (x)

m j

ρ j
~v ji ·∇iWi j, (6)

where ~v ji = ~v j −~vi. This equation is typical of most SPH dis-
cretizations. SPH can therefore be used to discretize any differen-
tial equation. This works particularly well for a variety of contin-
uum mechanics problems. Consider the momentum equation for
an inviscid fluid,

d~u
dt

=− 1
ρ

∇p (7)

A typical SPH discretization of this could be written as,

d~ui

dt
=−∑

j
m j

(
p j

ρ2
j
+

pi

ρ2
i

)
∇Wi j (8)

More details of these and various other equations can be seen in
the review by Monaghan [Mon05]. It is easy to see that equations
6 and 8 are ordinary differential equations that govern the rate of
change of the density and velocity of a fluid particle. In principle,
one can integrate these ODEs to obtain the flow solution given a
suitable initial condition and appropriate boundary conditions.

Numerical implementation

As discussed in the previous section, in an SPH scheme, the
field properties are first discretized into particles carrying them.
Partial differential equations are reduced to a system of coupled
ordinary differential equations (ODEs) and discretized using an
SPH approximation. This results in a system of ODEs for each
particle. These ODEs need to be integrated in time along with
suitable boundary and initial conditions in order to solve a partic-
ular problem. To summarize, a typical SPH computation proceeds
as follows,

• Given an initial condition, the field variables are dis-
cretized into particles carrying the various properties.

• Depending on the scheme used to integrate the ODEs, the
RHS of the ODEs needs to be computed (see equations
6 and 8). These RHS terms are called "accelerations" or
"acceleration terms".

• Once the RHS is computed, the ODE can be integrated
using a suitable scheme and the fluid properties are found
at the next timestep.

The RHS is typically computed as follows:

• Initalize the particle accelerations (i.e. the RHS terms).
• For each particle in the flow, identify the neighbors of the

particle which will influence the particle.
• For each neighbor compute the acceleration due to that

particle and increment the acceleration.

Given the total accelerations, the ODEs can be readily inte-
grated with a variety of schemes. Any general purpose abstraction
of the SPH method must hence provide functionality to:

1) Easily represent the discretized properties of particles.
This is easily done with numpy arrays representing the
property values in Python.

2) Given a particle, identify the neighbors that influence the
particle. This is typically called Nearest Neighbor Particle
Search (NNPS) in the literature.

124 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

3) Define the interactions between the particles, i.e. an easy
way to specify the inter particle accelerations. In PySPH
these are called "Equations".

4) Define how the ODEs should be integrated.

Of the above, the NNPS algorithm is usually a well-known
algorithm. For incompressible flows where the smoothing radius
of the particles, h, is constant, a simple bin-based linked list
implementation is standard. For cases where h varies, a tree-
based algorithm is typically used. Users usually do not need to
experiment or modify the NNPS. PySPH allows the rest of the
tasks to be all implemented in pure Python.

The PySPH framework

PySPH allows a user to specify the inter-particle interactions as
well as the ODE integration in pure Python with a rather simple
and low-level syntax. This is described in greater detail further
below. As discussed in the introduction, with older versions of
PySPH as discussed in [RK10], these interactions would all need
to be written in Cython. This was not very easy or convenient. It
was also rather limiting.

The current version of PySPH supports the following:

• Define a complete SPH simulation entirely in Python.
• High-performance code is generated from this high-level

Python code automatically and called. The performance
of this code is comparable to hand-written FORTRAN
solvers.

• PySPH can use OpenMP seamlessly. Users do not need to
modify their code at all to use this. This works on Linux,
OS X, and Windows, and produces good scale-up.

• PySPH also works with MPI and once again this is
transparent to the user in that the user does not have
to change code to use multiple machines. This feature
requires mpi4py and Zoltan to be installed.

• PySPH provides a built-in 3D viewer for the particle data
generated. The viewer requires Mayavi [RV11] To be
installed.

• PySPH is also open-source and currently hosted at http:
//pysph.bitbucket.org

Currently, PySPH supports the simulation of compressible
and incompressible fluid flows (with and without free-surfaces),
simple rigid-body motion, and elastic dynamics for solids. It does
not support astro-physical simulations since it lacks the tree-code
needed to simulate graviational forces. This can be added but is
not the current focus.

In the following subsection we provide a high-level overview
of PySPH and see how it can be used by a user. Subsequent
subsections discuss the design and implementation in greater
detail.

High-level overview

PySPH is tested to work with Python-2.6.x to 2.7.x and also with
Python 3.4/3.5. PySPH is a typical Python package and can be
installed fairly easily by running:

$ pip install pysph

PySPH will require a C++ compiler. On Linux, this is trivial
to get and usually pre-installed. On OS X, clang will work as
will gcc (which can be easily installed using brew). On Windows
the Visual C++ Compiler for Python will need to be installed.

Detailed instructions for all these are available from the PySPH
documentation.

If one wishes to use OpenMP,

• On Linux one needs to have libgomp installed.
• On OS X one needs to install OpenMP for clang or one

could use GCC which supports OpenMP via brew.
• On Windows, just having the Visual C++ computer for

Python will work.

If one wishes to use MPI for distributed computing, one must
install Zoltan which is typically easy to install. PySPH provides a
simple script for this. mpi4py is also needed in this case. Zoltan is
used for load-balancing and distributing the particles efficiently
on distributed machines. Unfortunately, MPI is not tested on
Windows by us currently. PySPH also provides an optional 3D
viewer and this depends on Mayavi.

In summary, PySPH is easy to install if one has a C++ compiler
installed. MPI support is a little involved due to the requirement
to install Zoltan.

Once PySPH is installed an executable called pysph is avail-
able. This is a convenient entry point for various tasks. Running
pysph -h will provide a listing of these possible tasks. For
example, the test suite can be run using:

$ pysph test

This uses nose internally and can be passed any arguments that
nosetests accepts.

PySPH installs about 30 useful examples along with the
sources and any of these examples can be readily run. For
example:

$ pysph run
1. cavity

Lid driven cavity using the Transport Velocity
formulation. (10 minutes)

[...]
Enter example number you wish to run:

Provides a listing of the examples available and prompts for a
particular one. Each example also provides a convenient (but
rough) time estimate for the example to run to completion in serial.
If the name of the example is known, one may directly specify it
as:

$ pysph run elliptical_drop

The examples will accept a large number of command line
arguments. To find these one can run:

$ pysph run elliptical_drop -h

pysph run will execute the standard example. Note that inter-
nally this is somewhat equivalent to running:

$ python -m pysph.examples.elliptical_drop

The example may therefore be imported in Python and also
extended by users. This is by design.

When the example is run using pysph run, the example
documentation is first printed and then the example is run. The
example will typically dump the output of the computations to
a directory called example_name_output, in the above case
this would be elliptical_drop_output. This output can
be viewed using the Mayavi viewer. This can be done using:

$ pysph view elliptical_drop_output

This will start up the viewer with the saved files dumped in
the directory. Figure 1 shows the viewer in action. The viewer

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 125

Fig. 1: The viewer provides a convenient interface to view data
dumped by simulations.

provides a very convenient interface to view the data. On the right
side, one has a standard Mayavi widget which also features a
Mayavi icon on the toolbar. Clicking this will open the Mayavi
UI with which one can easily change the visualization. On the
left pane there are three sub panels. On the top, one can see a
slider for the file count. This can be used to move through the
simulation in time. This can be also animated by checking the
"Play" checkbox which will iterate over the files. The "Directory"
button allows one to view data from a different output directory.
Hitting the refresh button will rescan the directory to check for
any new files. This makes it convenient to visualize the results
from a running simulation. The "Connection" tab can be used
when the visualization is in "Live mode" when it can connect to
a running simulation and view the data live. While this is very
useful in principle, it is seldom used in practice as it is a lot
more efficient to just view the dumped files and use the "Refresh"
button is convenient. Regardless, it does show another feature of
PySPH in that one can actually pause a running simulation and
query it if needed. Below this pane is a "Solver" pane which
shows the various solver parameters of interest. The "Movie" tab
allows a user to dump screenshots and easily produce a movie
if needed. At the bottom of the interface are two panels called
"Particle arrays" and "Interpolator". The particle arrays lists all the
particles and different scalar properties associated with the SPH
simulation. Selecting different scalars will display those scalars.
The interpolator tab allows a user to specify a rectilinear region on
which the particle properties may be interpolated and visualized --
for example if one wishes to see a contour of velocity magnitudes
this would be useful. Right at the bottom is a button to launch
a Python shell. This can be used for advanced scripting and is
seldom used by beginners. This entire viewer is written using
about 1024 lines of code and ships with PySPH.

PySPH output can be dumped either in the form of .npz files
(which are generated by NumPy) or HDF5 files if h5py is installed.
These files can be viewed using other tools or with Python scripts
if desired. The HDF5 in particular can be viewed more easily. In
addition, the pysph dump_vtk command can be used to dump
VTK output files that can be used to visualize the output using any
tool that supports VTK files like ParaView etc. This can use either

Mayavi or can use pyvisfile which has no dependency on VTK.
Finally, the saved data files can be loaded in Python very easily,
for example:

from pysph.solver.utils import load
data = load('elliptical_drop_100.hdf5')
if one has only npz files the syntax is the same.
data = load('elliptical_drop_100.npz')

This provides a dictionary from which one can obtain the particle
arrays and solver data:

particle_arrays = data['arrays']
solver_data = data['solver_data']
fluid = particle_arrays['fluid']
p = fluid.p

where particle_arrays is a dictionary of all the PySPH
particle arrays. solver_data is another dictionary with solver
properties and p is a NumPy array of the pressure of each particle.
Particle arrays are described in greater detail in the following
sections. Our intention here is to show that the dumped data can
be very easily loaded into Python if desired.

As discussed earlier, PySPH supports OpenMP and MPI. To
use multiple cores on a computer one can simply run an example
or script as:

$ pysph run elliptical_drop --openmp

This will use OpenMP transparently and should work for all the
PySPH examples. PySPH will honor the OMP_NUM_THREADS
environment variable to pick the number of threads. If PySPH is
installed with MPI support through Zoltan, then one may run for
example:

$ mpirun -np 4 pysph run dam_break_3d

This will run the dam_break_3d example with 4 processors.
The amount of scale-up depends on the size of the problem and
the network. OpenMP will scale fairly well for moderately sized
problems. Note that for a general PySPH script written by the user,
the command to run would simply be:

$ mpirun -np 4 python my_script.py

Similarly when using OpenMP:

$ python my_example.py --openmp

This provides a very high-level introduction to PySPH in general.
The next section discusses some essential software engineering
used in the development of PySPH. This is followed by details on
the underlying design of PySPH.

Essential software engineering

PySPH follows several of the standard software development
practices that most modern open source implementations follow.
For example:

• Our sources are hosted on bitbucket (http://pysph.
bitbucket.org). We are thinking of shifting to GitHub be-
cause GitHub has much better integration with continuous
integration services and this is a rather frustrating pain
point with bitbucket.

• We use pull requests to review all new features and bug
fixes. At this point there is only a single reviewer (the
author) but this should hopefully increase over time.

• PySPH has a reasonable set of unit tests and functional
tests. Each time a bug is found, a test case is first created

126 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

(when possible or reasonable), and then fixed. nose is used
for discovering and executing tests. One of our functional
tests runs one time step of every single example that
ships with PySPH. tox based tests are also supported. This
makes it easy to test on Python 2.6, 2.7 and 3.x.

• We use continuous integration services from http://
shippable.com for Linux, http://appveyor.com for Win-
dows and http://codeship.com for faster Linux builds.

• Our documentation is generated using Sphinx and hosted
online on http://pysph.readthedocs.io.

• Releases are pushed to the Python Package Index (PyPI).
• The pysph-users mailing list is also available where users

can post their questions. Unfortunately, the response time
is currently slow as the author does not have the time for
this but we are hoping this will improve as more graduate
students start getting involved with PySPH.

These greatly improve the quality, reliability and usability of
the software and also encourage open collaboration.

Design overview

In the previous sections a high-level description of the project
was provided. This section provides more design details of how
PySPH works internally. The general approach used in PySPH is
as follows:

1) Create particles: discretize the initial materials into parti-
cles with suitable properties.

2) Choose an appropriate kernel for the SPH approximation.
3) Create equations: write out the equations that specify the

inter-particle interactions.
4) Setup the integrator and specify the integration steps, for

example one could use an Euler scheme or a predictor-
corrector scheme and each of these involve slightly differ-
ent integration steps. These need to be specified explicitly.

PySPH allows a user to do all of these from pure Python.

1) In PySPH, particles of a particular kind are managed by a
ParticleArray instance. A particle array is assigned
a unique name and manages a collection of properties.
Each property is internally represented as a contiguous
block of memory. All properties have the same number
of elements. A particle array may also have any number
of "constants" associated with it. Each constant can be a
scalar or an array but its size is independent of the number
of particles.

2) The kernels are implemented in pure Python and
a default collection of kernels is available in
pysph.base.kernels. A new kernel class would
implement the following methods, note that the default
arguments have no meaning except that they help the code
generator use the correct types:

class MyKernel(object):
def __init__(self, dim):

...
def kernel(self, xij=[0., 0, 0], rij=1.0,

h=1.0):
...

def gradient(self, xij=[0., 0, 0], rij=1.0,
h=1.0, grad=[0, 0, 0]):

...

3) In PySPH, the equations can also be created in pure
Python and this is discussed in detail in the following.

4) The integrators are split into two parts, an integrator and
an integrator step. This is also written in pure Python and
discussed with an example further below.

A typical example is considered first to
illustrate the design. Consider the example
pysph/pysph/examples/elliptical_drop.py.
When installed, this may be imported as import
pysph.examples.elliptical_drop. This example
simulates the evolution of a fluid drop that is initially circular and
imposed an initial velocity field of the form ~V =−100xî+100y ĵ.
This problem is a simple benchmark problem that was first solved
in the context of SPH by [Mon94]. The key parts of the example
are shown below:

from numpy import array, ones_like, mgrid, sqrt

PySPH base and carray imports
from pysph.base.utils import get_particle_array
from pysph.base.kernels import Gaussian

PySPH solver and integrator
from pysph.solver.application import Application
from pysph.sph.integrator import EPECIntegrator
from pysph.sph.scheme import WCSPHScheme

class EllipticalDrop(Application):
def initialize(self):

...
def create_particles(self):

...
def create_scheme(self):

...
def post_process(self, info_file_or_dir):

...

if __name__ == '__main__':
app = EllipticalDrop()
app.run()
app.post_process(app.info_filename)

This illustrative example deliberately excludes several details to
focus on the general structure and API. There are a few common
imports at the top starting with NumPy specific imports first. The
next imports are PySPH specific:

• get_particle_array is a convenient function that
helps create a ParticleArray instance.

• The Gaussian kernel is used for the SPH simulation.
• The Application class is subclassed to create the new

example.
• The WCSPHScheme encapsulates a particular scheme, in

this case this class abstracts out the requirements for a
weakly-compressible scheme applied to incompressible
flows. Internally the WCSPH scheme is responsible to
setup the equations and the integrator. By abstracting this
into a scheme it becomes easy to reuse this instead of
spelling out the equations for each example.

The typical entry point for a user is to subclass
Application to solve their particular problem. The methods
listed above are:

• initialize, this is automatically called by
Application.__init__ and is typically not
used but sometimes useful when one wishes to have some
common attributes setup.

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 127

• create_particles generates the initial particle dis-
tribution and returns a sequence of ParticleArray
instances.

• create_scheme creates the particular scheme. A
SchemeChooser is also available which can be given
multiple schemes and allows the user to switch between
them via command line arguments.

• the post_process method is run in the end to compute
any useful quantities that may be used to check the accu-
racy of the simulation or facilitate comparisons between
different schemes.

The if __name__ block is listed to just illustrate how
this application can be used. When run is called, the command
line arguments are parsed, the various objects involved are suit-
ably configured and the simulation executed. At the end, the
post_process method is called. This also shows that a user
could potentially rewrite the post processing code and simply
rerun that part instead of re-running the simulation (which can
sometimes run for days).

We next look inside the create_particles and
create_scheme methods:

1 def create_particles(self):
2 x, y = mgrid[-1.:1.05:dx,-1.:1.05:dx]
3 x, y = x.ravel(), y.ravel()
4 m = ones_like(x)*dx*dx
5 h = ones_like(x)*hdx*dx
6 # ...
7 u = -100*x
8 v = 100*y
9

10 # remove particles outside the circle
11 indices = []
12 for i in range(len(x)):
13 dist = sqrt(x[i]*x[i] + y[i]*y[i])
14 if dist - 1 > 1e-10:
15 indices.append(i)
16

17 pa = get_particle_array(
18 x=x, y=y, m=m, rho=rho, h=h, p=p,
19 u=u, v=v, cs=cs, name='fluid')
20 pa.remove_particles(indices)
21 self.scheme.setup_properties([pa])
22 return [pa]
23

24 def create_scheme(self):
25 s = WCSPHScheme(
26 ['fluid'], [], dim=2, rho0=self.ro, c0=co,
27 h0=self.dx*self.hdx, hdx=self.hdx,
28 gamma=7.0, alpha=0.1, beta=0.0
29)
30 kernel = Gaussian(dim=2)
31 dt = 5e-6; tf = 0.0076
32 s.configure_solver(
33 kernel=kernel,
34 integrator_cls=EPECIntegrator,
35 dt=dt, tf=tf, adaptive_timestep=True,
36 cfl=0.3, n_damp=50,
37)
38 return s

The create_particles method above is straightforward.
NumPy arrays are created that set the position, mass, smoothing
radius h, the velocity etc. The arrays are all one dimensional. The
indices that are outside the circle are identified between lines 11
and 14 and these are removed in line 20. This could have also been
done with pure NumPy indexing. In Line 17 the particle array
instance is created and is called 'fluid'. Line 22 delegates to
the scheme to setup any additional properties for the particle

array and finally a list of particle arrays is returned.
The create_scheme method is fairly simple. A

WCSPHScheme is instantiated and passed arguments as defaults.
The kernel is created and this is all passed to a scheme method
called configure_solver, this also specifies the integrator
to use, the timestep to use, the time for which the simulation is
to be run etc. To someone who is familiar with SPH, these are
fairly obvious parameters. The scheme may also allow a user to
set these parameters via command line arguments. This can be
found by simply running:
$ pysph run elliptical_drop -h

The post_process method is also fairly straightforward and is
entirely optional. With just this code, one may run the example.
As soon as this is done, PySPH will generate high-performance
code, compile it, and use that code to run the example.

The scheme in this case is really doing a lot of work because
it encapsulates the creation of the equations and the integrators.
In order to understand this better, we look at a lower-level
implementation of the same example. This example also ships with
PySPH and is called elliptical_drop_no_scheme.py.
Unsurprisingly, this example can be run as:
$ pysph run elliptical_drop_no_scheme

This implementation does not use a scheme but instead cre-
ates the equations and the Solver instance directly. The ex-
ample differs from the elliptical_drop in that there is
no create_scheme method but instead there are two addi-
tional methods: - create_equations which explicitly cre-
ates the equations. - create_solver which sets up the
solver, stepper and integrators. The create_particles and
post_process etc. are all identical. The code is listed below:

def create_equations(self):
equations = [

Group(equations=[
TaitEOS(

dest='fluid', sources=None,
rho0=self.ro, c0=self.co, gamma=7.0),

], real=False),

Group(equations=[
ContinuityEquation(

dest='fluid', sources=['fluid',]),

MomentumEquation(
dest='fluid', sources=['fluid'],
alpha=self.alpha, beta=0.0,
c0=self.co),

XSPHCorrection(dest='fluid',
sources=['fluid']),

]),
]
return equations

As can be seen, the equations are simply instantiated. We look
closer at equations further below but at this stage it can be seen
that:

• Each equation has a destination dest and a list of sources.
A destination is a particle on which the acceleration is to
be computed a source is one that influences the particle.
In this problem there is only one destination and source,
"fluid". Note that the names of the arrays are used here
to determine the appropriate particle array.

• The TaitEOS is an equation of state, i.e. it does not
depend on any neighbors and is simply an equation of

128 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

the form p = (ρ −ρ0)c2 or something along those lines.
This does not require any "sources".

• Equations can be "grouped" using a Group. Each time
the acceleration is computed, all equations in a group
are evaluated for all the particles before the next group
is considered. This is important in the above case as an
equation of state is needed to compute the pressure. The
pressure must be found for all particles before the other
accelerations are evaluated.

• The other equations describe the physics of the
problem, namely, continuity and momentum. The
XSPHCorrection is an SPH-specific correction (see
[Mon05]).

• The group containing TaitEOS has an additional argu-
ment real=False this is only used when the example
is run via MPI and specifies that the equation of state be
computed for all particles local and remote.

def create_solver(self):
kernel = Gaussian(dim=2)

integrator = EPECIntegrator(fluid=WCSPHStep())

dt = 5e-6; tf = 0.0076
solver = Solver(

kernel=kernel, dim=2, integrator=integrator,
dt=dt, tf=tf, adaptive_timestep=True,
cfl=0.3, n_damp=50,
output_at_times=[0.0008, 0.0038])

return solver

The create_solver method simply instantiates a
EPECIntegrator and asks that the fluid particles be stepped
with the WCSPHStep stepper. A solver is then constructed which
combines the kernel, integrator, and any integration parameters.
The scheme automatically creates the equations and solver.
Specifying equations directly can be error prone and schemes
make this task a lot easier. Schemes also support command line
arguments which the direct example would require additional
code for.

The only thing that remains is to see how the equations and
steppers are actually implemented. Let us consider the continuity
equation (6) and see how the ContinuityEquation class is
implemented.

class ContinuityEquation(Equation):
def initialize(self, d_idx, d_arho):

d_arho[d_idx] = 0.0

def loop(self, d_idx, d_arho, s_idx,
s_m, DWIJ, VIJ):

vijdotdwij = DWIJ[0]*VIJ[0] + \
DWIJ[1]*VIJ[1] + DWIJ[2]*VIJ[2]

d_arho[d_idx] += s_m[s_idx]*vijdotdwij

In this class there are two methods:

• initialize: this is called first for every destination
particle with index d_idx.

• loop: this is called for every destination source pair.
Thus, internally all the nearest neighbors of the destination
particle are identified and looped over.

There are some simple conventions followed with the variable
names.

• d_* indicates a destination array. The name that follows
d_ is the same as the property name of the array.

• s_* indicates a source array.
• d_idx is a destination index and s_idx the source index.
• A method can take any arguments in arbitrary order and

these are automatically passed in the right order.

Clearly this seems rather low-level, however, it is simple to
write and maps almost exactly with the actual SPH discretized
equation (see equation 6).

The integrator and integrator stepper code is similarly quite
simple and low level. It is written entirely in pure Python.
More details are available in the online PySPH design overview
document.

This approach allows a user to specify new equations and
integration schemes very easily and use them to perform SPH
simulations. The Application class also has several other
convenient methods that can be overridden by the user to perform
a variety of tasks. For example:

• add_user_options can be overridden to add any user-
defined command line arguments. The argument parsing
is done using argparse. Once processed, the options are
available in self.options.

• consume_user_options is used to use any of the
parsed options. This is called after the command line ar-
guments are parsed but before the create_particles
etc.

• create_domain can be used to create a periodic do-
main.

• configure_scheme can be used to configure a created
scheme based on command line arguments. This is also
useful in conjunction with user-defined command line
arguments.

• pre_step, post_step, post_stage are conve-
nient methods which will be called before each timestep,
after each timestep and after each integration stage if these
are defined. These are convenient for a variety of user
defined actions including debugging, adaptive refinement,
checking for errors etc.

Together, these features are extremely powerful and allow a
user a great deal of flexibility.

High performance

While PySPH allows a user to write the code in pure Python,
internally, high-performance Cython code is generated,
compiled, and used to extract as much performance as
possible. This is done using Mako templates. A general
Mako template is written to compute the accelerations, this is
in pysph/sph/acceleration_eval_cython.mako.
The main module is pysph.sph.acceleration_eval
which is implemented in pure Python. A helper class
pysph.sph.acceleration_eval_cython_helper
uses all the high-level information from the user code and
provides several methods that are called from the mako template.

The user Python code is already implemented in a low-
level allowing us to directly inject the sources into the
Cython code. The pysph.base.cython_generator mod-
ule helps with the generation of Cython code from Python
code. The pysph.base.ext_module takes the generated
Cython and compiles this. The extension modules are stored
in ~/.pysph/source in a Python version and architecture
specific directory. The md5sum of the Cython code is checked and

PYSPH: A REPRODUCIBLE AND HIGH-PERFORMANCE FRAMEWORK FOR SMOOTHED PARTICLE HYDRODYNAMICS 129

if an extension for that md5sum exists the code is not recompiled.
Care is taken to look for changes in dependencies of this generated
source.

As a result of this, the code performs almost as well as a
hand-written FOTRAN code. We have compared running both 2D
and 3D problems with the SPHysics serial code. In 2D our code
is about 1.5 times slower. This is in part because by default the
PySPH implementation is 3D. In 3D, PySPH is about 1.3 times
slower. SPHysics symmetrizes the inter-particle computations, i.e.
while computing the interaction of a source on a destination, they
also compute the opposite force and store it. This appears to
provide additional performance gains. Regardless, it is clear that
PySPH is comparable in performance with SPHysics. However,
PySPH is a lot easier to use and much easier to extend.

PySPH also displays good scale-up with OpenMP. Consider
the cube example which considers a cube of a user-defined number
of particles (100000 by default), and takes 5 timesteps. One can
run pysph run cube --disable-output and compare
the time taken to run this with --openmp. On a quad-core
Macbook Pro this produces a speedup of about 4.16. This shows
that the scale up is excellent. Good scale up has been observed in
the distributed case but is not discussed here.

Reproducibility

The object-oriented API of PySPH makes it easy to extend and
use. The design allows for a large amount of code reuse.

We have found that it is extremely important to treat our
examples to be as important as the source itself and that these
should be shipped with the installation as part of the sources. This
forces us to design our examples to be reusable. This is extremely
important as:

• it forces a clean API for an end-user. This drives us to
minimize repetitive code, and simplify the API.

• the examples are all reusable. If a user wishes to try a new
scheme they need to just focus on the new scheme.

• it makes the library easier to use.

While post-processing results, the post-processed data is
dumped into a separate file. This makes it trivial to com-
pare the output of different schemes. Some simple tools in
pysph.tools.automation are provided which make it easy
to use PySPH in an automation framework.

Recently, we have used these features to make an entire publi-
cation [RP16] completely reproducible. Every figure produced in
the paper (a total of 23 in number) is produced with a single driver
script making it possible to rerun all the simulations with a single
command. This will be described in a future publication. How-
ever, it is important to note that PySPH allows for reproducible
computation with the SPH method.

Plans

In the future, the plan is to develop the following features:

• A GPU backend which should allow effective utilization
of GPUs with minimal changes to the API.

• Cleanup and potential generalization of the parallel code.
• Implement more SPH schemes.
• Better support for variable h.
• Cleanup of many of the current equations implemented.
• Support for implicit SPH schemes and other related parti-

cle methods.
• Advanced algorithms for adaptive resolution.

Conclusions

In this paper a broad overview of the SPH method was provided.
The background and context of the PySPH package was discussed.
A very high-level description of the PySPH features were provided
followed by an overview of the design. From the description it
can be seen that PySPH provides a powerful API and allows
users to focus on the specifics of the SPH scheme which they
are interested in. By abstracting out the high-performance aspects
even inexperienced programmers can use the high-level API and
produce useful simulations that run quickly and scale well with
multiple cores and processors. The paper also discusses how
PySPH facilitates reproducible research.

Acknowledgments

I would like to thank Kunal Puri, Chandrashekhar Kaushik, Pankaj
Pandey and the other PySPH developers and contributors for their
work on PySPH. I thank the department of aerospace engineering,
IIT Bombay for their continued support, excellent academic en-
vironment and academic freedom that they have extended to me
over the years.

REFERENCES

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and
K. Smith. Cython: The best of both worlds. Computing in Science
Engineering, 13(2):31 –39, March-April 2011. URL: http://www.
cython.org, doi:10.1109/MCSE.2010.118.

[CPR12] J.M. Cherfils, G. Pinon, and E. Rivoalen. JOSEPHINE: A parallel
{SPH} code for free-surface flows. Computer Physics Commu-
nications, 183(7):1468 – 1480, 2012. doi:http://dx.doi.
org/10.1016/j.cpc.2012.02.007.

[deva] DualSPHysics developers. Dualsphysics home page. URL: http:
//www.dual.sphysics.org/.

[devb] SPHysics developers. Sphysics home page. URL: https://wiki.
manchester.ac.uk/sphysics/index.php/SPHYSICS_Home_Page.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrody-
namics: Theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society, 181:375–389, 1977.

[GMS01] J.P. Gray, J. J. Monaghan, and R.P. Swift. SPH elastic dynam-
ics. Computer Methods in Applied Mechanics and Engineering,
190:6641–6662, 2001.

[Guo14] Philip Guo. Python is now the most popular introductory
teaching language at top u.s. universit ies, 2014.
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-us-
universities/fulltext.

[Luc77] L. B. Lucy. A numerical approach to testing the fission hypothesis.
The Astronomical Journal, 82(12):1013–1024, 1977.

[Mon94] J. J. Monaghan. Simulating free surface flows with SPH. Journal
of Computational Physics, 110:399–406, 1994.

[Mon05] J. J. Monaghan. Smoothed Particle Hydrodynamics. Reports on
Progress in Physics, 68:1703–1759, 2005.

[Per15] Jefferey M. Perkel. Pickup Python. Nature, 518:125–126, Febru-
ary 2015.

[RK10] Prabhu Ramachandran and Chandrashekhar Kaushik. PySPH: A
python framework for smoothed particle hydrodynamics. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 16 – 20, 2010.

[RP16] Prabhu Ramachandran and Kunal Puri. Entropically damped
artificial compressibility for SPH. Under review, 2016.

[RV11] Prabhu Ramachandran and Gaël Varoquaux. Mayavi: 3d visual-
ization of scientific data. Computing in Science and Engineering,
13(2):40–51, 2011.

[Spr05] Volker Springel. The cosmological simulation code gadget-2.
Monthly Notices of the Royal Astronomical Society, 364:1105–
1134, 2005.

130 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

An Ecological Approach to Software Supply Chain
Risk Management

Sebastian Benthall‡§∗, Travis Pinney‡¶, JC Herz∗∗‡, Kit Plummer‖‡

https://youtu.be/6UnuPhTPdnM

F

Abstract—We approach the problem of software assurance in a novel way
inspired by an analytic framework used in natural hazard risk mitigation. Exist-
ing approaches to software assurance focus on evaluating individual software
projects in isolation. We demonstrate a technique that evaluates an entire
ecosystem of software projects, taking into account the dependencey structure
between packages. Our model analytically separates vulnerability and exposure
as elements of software risk, then makes minimal assumptions about the prop-
agation of these values through a software supply chain. Combined with data
collected from package management systems, our model indicates "hot spots"
in the ecosystem of higher expected risk. We demonstrate this model using data
collected from the Python Package Index (PyPI). Our results suggest that Zope
and Plone related projects carry the highest risk of all PyPI packages because
they are widely used and their core libraries are no longer maintained.

Index Terms—risk management, software dependencies, complex networks,
software vulnerabilities, software security

Introduction

Systems that depend on complex software are open to many kinds
of risk. One typical approach to software security that mitigates
this risk is static analysis. We are developing novel methods to
manage software risk through supply chain intelligence, with a
focus on open source software ecosystems.

The Heartbleed bug in OpenSSL is an example of community
failure and of how vulnerabilities in open source software can be
a major security risk. [Wheeler2014] The recent failure of React,
Babel, and many other npm packages due to the removal of one
small dependency, left-pad, shows how dependencies can be
a risk factor for production software. [Haney2016] These high
profile examples, though quite different from each other, illustrate
how software risk traverses the supply chain. As dependencies
become more numerous and interlinked, the complexity of the
system increases, as does the scope of risk management. Open
source software projects make their source code and developer
activity data openly available for analysis. This data can be used
to mitigate software risk in ways that have not been explored.

* Corresponding author: sb@ischool.berkeley.edu
‡ Ion Channel, ionchannel.io
§ UC Berkeley School of Information
¶ travis.pinney@ionchannel.io
** jc.herz@ionchannel.io
|| kit.plummer@ionchannel.io

Copyright © 2016 Sebastian Benthall et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

With a small number of analytic assumptions about the
propagation of vulnerability and exposure through the software
dependency network, we have developed a model of ecosystem
risk that predicts "hot spots" in need of more investment. In this
paper, we demonstrate this model using real software dependency
data extracted from PyPI using Ion Channel [IonChannel].

Prior work

[Verdon2004] outline the diversity of methods used for risk
analysis in software design. Their emphasis is on architecture-
level analysis and its iterative role in software development.
Security is achieved through managing information flows through
architecturally distinct tiers of trust. They argue for a team-based
approach with diverse knowledge and experience because "risk
analysis is not a science". Contrary to this, our work develops a
scientific theory of risk analysis, building on work from computer
science and other fields.

There is a long history of security achieved through static anal-
ysis of source code. [Wagner2000] points out that the dependency
of modern Internet systems on legacy code and the sheer com-
plexity of source code involved makes manual source code level
auditing very difficult. While some complex projects are audited
by large and dedicated communities, not all software systems are
so gifted in human resources. Therefore, static analysis tools based
on firm mathematical foundations are significant for providing
computer security at scale.

[Wheeler2015] develops a risk index for determining which
open source software projects need security investments. This
work is part of the Linux Foundation (LF) Core Infrastructure
Initiative (CII) and published by the Institute for Defense Analysis.
This metric is based on their expertise in software development
analytics and an extensive literature review of scholarly and
commercial work on the subject. They then apply this metric to
Debian packages and have successfully identified projects needing
investment. This work is available on-line as the CII Census
project [CensusProject].

While software security studies general focus on the possibility
of technical failure of software systems, open source software
exposes an additional risk of community failure. Development of
a software project may cease before it reaches a state of usability
and maturity. [Schweik2012] is a comprehensive study of the
success and failure of open source projects based on large-scale
analysis of SourceForge data, as well as survey and interview
data. They define a successful project as one that performs a

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 131

useful function and has had at least three releases. They identify
several key predictive factors to project success, including data
that indicates usefulness (such as number of downloads), number
of hours contributed to the project, and communicativeness of the
project leader.

These precedents focus on individual software projects
and their susceptiblity to technical and community failure.
[Nagappan2005] and [Nagappan2007] look at dependency rela-
tionships between packages and specifically relative code churn
(changes in lines of code) between dependent packages as a cause
of system defects in Windows Server 2003.

We build on these approaches by considering security as a
function of the entire software supply chain. This supply chain
resembles a complex ecosystem more than a simple ’chain’ or
stack. We draw inspiration from a risk management strategy
approaches used in another kind of complex system, namely
disaster risk reduction and climate change adaptation research
developed by Cardona [Cardona2012] and widely used by the
World Bank’s Global Facility for Disaster Risk Reduction among
others [Yamin2013].

This framework evaluates the expected cost of low-probability
events by distinguishing three factors of risk: hazards, exposure,
and vulnerabilities. Hazards are potentially damaging factors from
the environment. Exposure refers to the inventory of elements
in places where hazards occur. Vulnerabilities are defined as the
propensity of exposed elements to suffer adverse effects when
impacted by a hazard. Expected risk is then straightforwardly
calculated using the formula:

risk = hazard ∗ vulnerability∗ exposure

We adapting this framework to cybersecurity in the software
ecosystem. There are significant differences between modeling
risk from natural hazards and modeling cybersecurity risk. Most
notably, cybersecurity threats can be deliberately adversarial, de-
tecting and exploiting specific weaknesses rather than presenting
a general hazard. In this work we focus on the interplay between
exposure and vulnerability in the software ecosystem and abstract
away the specificity of a threat model. We see an analytic treatment
of that interplay as a valuable step in tractable security analysis of
the software supply chain.

Modeling Ecological Risk in Software

Software dependency and project risk

Some previous studies of software risk [Wheeler2015] have suf-
fered from the ambiguity of how ’risk’ is used in a software devel-
opment context. Security research often contextualizes problems
within a specific threat model. But for some applications, such as
identifying software projects in need of additional investment in
order to mitigate risk from generalized and potentially unknown
threats, this kind of threat modeling is inappropriate. A general
concern with supply chain security motivates a different approach.

If we break down the sources of risk and how these affect
the need for security investments analytically, we can distinguish
between several different factors:

• Vulnerability. A software project’s vulnerability is its in-
trinsic susceptibility to attack. Common Vulnerability and
Exposure (CVE) records are good examples of specific
software vulnerabilities. But software’s vulnerability can
also be predicted from a general property, such as the

language it’s written in. (Some languages, such as C++,
are harder to write in securely and therefore generally more
vulnerable [Wheeler2015])

• Exposure. A software project’s exposure is its extrinsic
availability to attack. A direct network connection is a
source of exposure.

Vulnerability and exposure are distinct elements of a software
project’s risk. Analyzing them separately and then combining
them in a principled way gives us a better understanding of a
project’s risk.

Dependencies complicate the way we think about vulnerability
and exposure. A software project doesn’t just include the code
in its own repository; it also includes the code of all of its
dependencies, often tied to a specific version. Furthermore, a
package does not need to be installed directly to be exposed--it can
be installed as a dependency of another project, or as a transitive
dependency. Based on these observations, we can articulate two
heuristics for use of dependency topology in assessing project risk:

• If A depends on B, then a vulnerability in B implies a
corresponding vulnerability in A.

• If A depends on B, then an exposure to A implies an
exposure to B.

For example, if a web application (A) uses a generic web
application framework (B), and that web application is installed
and recieving web traffic, then there is an instance of the web
framework installed and recieving web traffic. The framework is
exposed through the web application. If there is a vulnerability
in the web application framework (such as a susceptibility to
SQL injection attacks), then the web application will inherit that
vulnerability. There are exceptions to these rules. Developers
of the web application (A) might recognize the vulnerability to
SQL injection and fix the problem without pushing the change
upstream (to B). Nevertheless, this is a principled analytic way of
relating vulnerability, exposure, and software dependency that can
be implemented as a heuristic and tested as a hypothesis.

The risk analysis framework described above is very general.
Due to this generality, the framework suffers from the ambiguity
of its terms. Depending on the application of this framework,
"vulnerability" refers to literal software vulnerabilities such as
would be reported in a CVE. When we analyze the software
ecosystem as a supply chain, we are often concerned about higher
level properties that serve as general proxies for whole classes of
error or failure.

Robustness and resilience

We find the distinction between system robustness and system
resilience helpful. We define the robustness of a system as its
invulnerability to threats and hazards, as a function of its current
state. We define the resilience of a system as its capacity to recover
quickly from injury or failure. A mature, well-tested system will
be robust. A system with an active community ready to respond to
the discovered of a new exploit will be resilient.

A system can be robust, or resilient, both, or neither. Ro-
bustness and resilience can be in tension with each other. For
example, the more churn a software project is, measured as a
function of the activity of the community and frequency of new
commits, the more likely that it will be resilient, responding to new
threat information. But it is also likely to be less robust, as new
code might introduce new software flaws. [Nagappan2005] and

132 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[Nagappan2007] find that relative code churn between dependent
packages is a significant predictor of system defects.

We refer to a system that is not robust as fragile, and a system
that is not resilient as brittle. Fragility and brittleness are two
distinct and general ways in which a component of a software
ecosystem might be vulnerable.

Computing fragility and exposure

Our risk analysis framework defines exposure and vulnerability
as abstract components of risk that can be defined depending on
the hazards and threats under consideration. In the example of
this study, we will define these variables with an interest in the
general prediction of robustness in widely used software. This
sort of analysis would be useful in determining which software
packages are in need of further investment in order to reduce risk
globally.

In the following analysis, we will define exposure to be the
number of times a package has been downloaded. We assume for
the sake of this analysis that more widely downloaded software
is more widely used and exposed to threats. This metadata is
provided by PyPI for each package directly.

We will define vulnerability specifically in terms of software
fragility, and make the assumption that frequently released soft-
ware is less fragile. While it is true that sometimes a new software
release can introduce new flaws into software, we assume that,
on average, more releases mean a more active community, more
robust development processes, and greater maturity in the project
lifecycle. Specifically for the purpose of this study we will define

f ragility(p) =
1

number_o f _releases(p)

In future work, we will revise and validate these metrics.

Implementation of risk computation

The risk analysis framework presented in the above section
Software dependency and project risk is designed to be widely
applicable, factoring risk into abstract exposure and vulnerability
factors and then making minimal assumptions about how these
factors propagate through the dependency graph.

In practice, the application of this framework will depend
on the selection of package metadata used to measure exposure
and vulnerability. Below is a Python implementation of efficient
risk computation using a directed graph representation of package
dependencies and NetworkX. [Hagberg2008] It imports data as a
graph, where packages are nodes, directed edges indicate package
dependencies, and relevant metadata are precomputed properties
of the nodes. In this code, we use a precomputed ’fragility’ metric
as the vulnerability variable, and the number of unique downloads
of each package as the exposure variable. Running this code
imports the data from a Graph Exchange XML Format (GEXF)
file, computes the ecosystem risk of each package, and exports the
data to a different file.
import networkx as nx

G = nx.read_gexf('pkg.gexf')

select proxy empirical variables for
vulnerability and exposure

vulnerability_metric = 'fragility'
exposure_metric = 'downloads'

efficiently compute ecosystem vulnerability

and assign as attribute

ecosystem_vulnerability = {}

for i in nx.topological_sort(G,reverse=True):

ecosystem_vulnerability[i] =
G.node[i][vulnerability_metric]
+ sum([ecosystem_vulnerability[j]

for j in G.neighbors(i)])

nx.set_node_attributes(G,
'ecosystem_vulnerability',
ecosystem_vulnerability)

efficiently compute ecosystem exposure
and assign as attribute

ecosystem_exposure = {}

for i in nx.topological_sort(G):

ecosystem_exposure[i] =
G.node[i][exposure_metric]
+ sum([ecosystem_exposure[j]

for j in G.predecessors(i)])

nx.set_node_attributes(G,
'ecosystem_exposure',
ecosystem_exposure)

efficiently compute ecosystem risk
and assign as attribute

ecosystem_risk= {}

for i in nx.topological_sort(G):
ecosystem_risk[i] =

G.node[i]['ecosystem_vulnerability']
* G.node[i]['ecosystem_exposure']

nx.write_gexf(G,'pkg-with-risk.gexf')

A significant problem with this implementation of risk calculation
is that if node A is accessible to node B through multiple distinct
paths, then the vulnerability (or exposure) of B will be counted
towards A’s ecosystem vulnerability (or exposure) once for each
path. A superior version of this algorithm would ensure that each
node was only counted once in ecosystem measurements. The
version of the algorithm presented above uses a heuristic measure
for performance reasons.

Removing cycles

The above algorithm has one very important limitation: it assumes
that there are no cycles in the dependency graph. This property is
necessary for the nodes to have a well-defined topological order.
However, Python package dependencies do indeed include many
cycles. An amusing example are the packages chicken and egg.
We can adapt any directed cyclic graph into a directed acyclic
graph simply by removing one edge from every cycle.

def remove_cycles(G):
cycles = nx.simple_cycles(G)

for c in cycles:
try:

if len(c) == 1:
G.remove_edge(c[0],c[0])

else:
G.remove_edge(c[0],c[1])

except:
pass

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 133

One way to improve this algorithm would be to remove as few
edges as possible in order to eliminate all cycles. Another way to
improve this algorithm would be to adapt the heuristic assumptions
that motivate this framework to make reasonable allowances for
cycle dependencies. It is unknown how these changes will effect
the results. We leave the elaboration of this algorithm for future
work.

Data collection and publication

Data for this analysis comes from two sources. For package
and release metadata, we used data requested from PyPI, the
Python Package Index. This includes the publication date and
number of unique downloads for each software release. We also
downloaded each Python release and inspected it for the presence
of a setup.py file. We then extracted package dependency
information from setup.py through its install_requires
field. This data is available in .gexf format [Benthall2016].

Python dependencies are determined through execution of
Python install scripts. Therefore, our method of discovering pack-
age dependencies via static analysis of the source code does not
capture all cases.

For each package, we consider dependencies to be the re-
cursive union of all requirements for all releases. Specifically
we collapse all releases of a package into a single node in
the dependency graph. While this loses some of the available
information, it is sufficient for this prelimenary analysis of the
PyPI ecosystem.

Empirical and Modeling Results

Our data collection process created a network with 66,536 nodes
and 72,939 edges. Over half of the nodes, 33,573, have no edge.
This isolates them from the dependency network. Of the remaining
32,963, 31,473 belong to a single giant connected component.
Complex networks often exhibit the preponderance of a single
connected component like this.

Statistical properties of the software dependency network

The PyPI package dependency network resembles classical com-
plex networks, with some notable departures.

A early claim in complex network theory by [Newman2002],
[Newman2003] is that random complex networks will exhibit
negative degree assortativity, and that social networks will exhibit
positive degree assortativity due to homophily or other effects of
group membership on network growth. [Noldus2015] notes that in
directed graphs, there are four variations on the degree assortativ-
ity metric as for each pair of adjacent nodes one can consider each
node’s in-degree and out-degree. The degree assortativity metrics
for the PyPI dependency graph are given in Table 1.

The PyPI package dependency network notably has in-in
degree assortativity of 0.19, and out-in degree assortativity of
−0.16. The in-out and out-out degree assortativities are both close
to zero. We have constructed the graph with the semantics that an
edge from A to B implies that A depends on B.

This is a strange structure because its assortativity measures
defy the assortativity patterns seen in other complex networks.
One reason is that there is much greater variation in out-degree
than in in-degree. Table 2 shows the top ten most depended on
packages. Table 3 shows the top ten packages with the most
dependencies. Three packages, requests, six, and django
have out-degree over 1000.

Fig. 1: Visualization of PyPI dependency network. Annotated depen-
dency graph (see Implementation of risk computation) was exported
as .gexf, loaded into Gephi [Bastian2009], styled using Force Atlas
layout, and colored by ecosystem risk property. This visualization
does not include singleton nodes with zero degree, which are the vast
majority of nodes. Node size is proportional to out degree. Nodes
are colored by the log (base 10) of package ecosystem risk. Red nodes
are higher risk. The large red cluster consists of projects related to the
Zope web application server, including the Plone content management
system.

Metric Value

in-in 0.19
in-out 0.05
out-in −0.16
out-out −0.04

TABLE 1: Degree assortativity metrics for the PyPI dependency
graph.

Hot spot analysis

Our analysis suggests that the riskiest packages in the Python
ecosystem are those that are part of the Zope web application
server and the Plone content management system (CMS) built
on it. The Zope community has declared that Zope is now
a legacy system and does not recommend that developers use
these projects. Therefore, our analytic findings are consistent with
community and domain knowledge regarding the resilience of
these communities. Despite these warnings, the Plone community
is still active and many web sites may still depend on this legacy
technology. This study motivates further work on the resilience of
Zope to new security threats.

The security properties of Plone have been the subject of
considerable informal debate. [Walsh2011] noted that Plone has
an order of magnitude lower number of vulnerabilites reported
in Mitre’s Common Vulnerabilities and Exposures database com-
pared to other popular CMSes like Joomla, Drupal, and Word-

134 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Package Out-Degree

requests 2125
six 1381
django 1174
pyyaml 775
zope.interface 663
lxml 619
flask 607
python-dateutil 599
zope.component 550
jinja2 507

TABLE 2: Top ten most dependencies.

Package Out-Degree

plone 92
mypypi 53
invenio 52
ztfy.sendit 48
ztfy.blog 47
smartybot 47
icemac.addressbook41
sentry 40
products.silva 38
ztfy.scheduler 37

TABLE 3: Top ten packages by number of dependencies.

press. This has lead Wikipedia [Wiki2016] to assert that Plone’s
security record is cause of its widespread adoption by government
and non-government organizations. [Byrne2013] has challenged
this conventional wisdom, noting that the high number of recorded
vulnerabilites may just as likely be due to the much greater pop-
ularity of the other CMS’s. That Drupal, Wordpress, and Joomla
are all written in PHP is another confounding factor, as PHP may

Fig. 2: Hex plot of log vulnerability and log exposure of each package,
with bin density scored on log scale. All logs are base 10. Exposure is
more widely distributed than vulnerability. Vulnerability scores for the
vast majority of packages are low. There is a fringe of packages that
are either highly vulnerable, highly exposed, or both. There is a log-
linear tradeoff between high vulnerability and high exposure. This is
most likely due to the fact that ecosystem vulnerability and ecosystem
exposure both depend on an package’s position in the dependency
network. Rendered with Matplotlib [Hunter2007].

be a language prone to security problems. Drupal, Joomla, and
Wordpress are beyond the scope of our study, which is concerned
only with the PyPI ecosystem. In our risk analysis, Plone scores
poorly compared to other Python web frameworks such as Django
and Flask. We take this as an indication that beyond its scientific
merits, our risk analysis method can provide actionable insights
into security that are relevant to practicing software engineers.

We have also identified six, a Python 2 and Python 3
compatibility library, as an ecosystem risk hot spot. The second
most depended on project in PyPI, six inherits its exposure from
all of its downstream descendants. For this reason, it is important
to ensure that six does not have any security-related flaws.

We must admit that there is another reason why the Plone
ecosystem has score highly in software risk. The Zope and Plone
packages are notably dense in their dependency connectivity. In
the original dependency network, before cycles were excised from
the graph by removing edges, many Zope and Plone packages
were implicated in large cycles of mutual dependency. Even with
many of these edges removed, it is possible that packages in this
subsystem are more likely to be linked by multiple disitinct paths.
With our present algorithm, this would result in some packages
being double counted. Due to this technical complication, we must
conclude that our results, though suggestive, are only tentative
pending future work.

Discussion and future work

We have synthesized techniques from computer security and dis-
aster risk reduction to develop a novel method of predicting risk in
the software ecosystem. This fits within the broad scope of supply
chain analysis, though we recognize that the software ecosystem
as a whole is not merely a chain, but a complex network with a
distinctive topology. We approach risk analysis as a science that
employs static analysis techniques but also looks more broadly at
developer communities and the rate and flow of their activities and
communications. This paper proposes a framework of predicting
risk in software infrastructure based on static analysis of package
dependencies, metadata about downloads and release schedules,
and minimal assumptions about the distribution of exposure and
vulnerability in software. We have demonstrated the implications
of this framework using the PyPI package ecosystem.

A major shortcoming of our analysis is the lack of validation
against a gold standard data of ground truth regarding software
risk. In future work, we will test this framework using other
data sets, including data from project issue trackers (such as
GitHub) and Common Vulnerabilities and Exposure (CVE) data.
We anticipate that linking this data with package dependencies
will require a non-trivial amount of work on entity resolution.
It is an open question to what extent this framework is useful
for assessing software robustness (absence of software errors that
can be exploited, for example) and software resilience (capacity of
software development communities to respond to known exploits).

There is also room to improve our data preprocessing in future
work. For the work in this paper, Python dependencies were dis-
covered using crude static analysis. We used a regular expression
to parse each package’s setup.py file. Python requirements are
in fact determined upon package installation by executing Python
code. We can get more accurate data by running the setup scripts
and extracting requirements from the resulting Python objects.

We simplified the dependency graph by considering any re-
quirement relation between any versions of two packages to be

AN ECOLOGICAL APPROACH TO SOFTWARE SUPPLY CHAIN RISK MANAGEMENT 135

Log Eco. Risk Log Eco. Vulnerability Log Eco. Exposure Fragility Num. Releases Downloads In Degree Out Degree

zope.app.publisher 17.54 6.95 10.59 0.04 26 232460 24 54
zope.app.form 17.54 6.89 10.64 0.04 26 265370 19 45
five.formlib 17.44 6.47 10.97 0.20 5 127280 13 10
plone 17.44 2.37 15.07 0.01 79 387614 96 152
zope.interface 17.42 10.48 6.94 0.03 31 8685819 0 841
zope2 17.41 6.40 11.01 0.03 32 241354 28 163
zope.traversing 17.32 8.40 8.92 0.04 28 367494 9 181
zope.schema 17.29 9.61 7.68 0.03 31 624429 4 399
zope.site 17.28 7.60 9.68 0.07 14 255063 9 72
zope.container 17.27 7.73 9.54 0.05 20 294873 20 119

TABLE 4: Highest risk Python packages. All logs base 10.

sufficient for an edge in the final graph. In reality, package require-
ments configurations often refer to specific versions or version
ranges in their dependencies. In order to take this into account,
we will need to reexamine our risk model and its assumptions
about vulnerability and exposure propagation. A fully dynamic
version of our risk model would also take into account how proxy
variables such as number of unique downloads change between
versions.

The research presented here deals exclusively with data about
technical organization. However, as we expand into research into
how software communities and their interactions are predictive
of software risk, we must be mindful of ethical considerations.
Though all the data we intend to use is public and more impor-
tantly known to be public in the context of software development,
study of human subjects is nevertheless sensitive. Our research
agenda depends critically on maintaining the trust of the developer
communities we study. For this reason we are dedicated to ecosys-
tems and software projects, which aggregate individual efforts, as
the fundamental unit of analysis.

Acknowledgements

We gratefully acknowledge David Lippa, Kyle Niemeyer, and J.
Edward Pickle for their helpful comments.

REFERENCES

[Bastian2009] Bastian, Mathieu, Sebastien Heymann, and Mathieu
Jacomy. "Gephi: an open source software for exploring
and manipulating networks." ICWSM 8 (2009): 361-
362.

[Benthall2016] Sebastian Benthall. (2016). PyPI Packages Annotated.
Zenodo. 10.5281/zenodo.57563

[Byrne2013] Byrne, Tony. "Is Plone Really More Secure Than Drupal
and Joomla?" Web log post. Real Story Group. N.p., 11
Feb. 2013. Web. 23 June 2016.

[Clauset2007] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-
law distributions in empirical data. arXiv:0706.1062,
June 2007.

[Mitzenmacher2003] Mitzenmacher, M. 2003. "A Brief History of Generative
Models for Power Law and Lognormal Distributions."
Internet Mathematics Vol. 1, No. 2: 226-251

[CensusProject] Census Project. (n.d.). Retrieved July 12, 2016, from
https://www.coreinfrastructure.org/programs/census-
project

[Cardona2012] Cardona, Omar-Daria, et al. "Determinants of risk: ex-
posure and vulnerability." (2012).

[Girardot2013] O. Girardot. STATE OF THE PYTHON/PYPI
DEPENDENCY GRAPH. 2013

[Hagberg2008] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena,
CA USA), pp. 11–15, Aug 2008

[Haney2016] David Haney. 2016. "NPM & left-pad: Have We For-
gotten How To Program?" http://www.haneycodes.net/
npm-left-pad-have-we-forgotten-how-to-program/

[Hunter2007] Hunter, J. D. (2007). Matplotlib: A 2D graphics envi-
ronment. Computing in science and engineering, 9(3),
90-95. http://dx.doi.org/10.5281/zenodo.44579

[IonChannel] (n.d.). Retrieved July 12, 2016, from http://ionchannel.
io/

[LaBelle2004] N. LaBelle, E. Wallingford. 2004. Inter-package
dependency networks in open-source software.

[Nagappan2005] Nagappan, N., & Ball, T. (2005, May). Use of relative
code churn measures to predict system defect density. In
Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. (pp. 284-292). IEEE.

[Nagappan2007] Nagappan, N., & Ball, T. (2007). Explaining failures
using software dependences and churn metrics. In Pro-
ceedings of the 1st International Symposium on Empir-
ical Software Engineering and Measurement.

[Newman2002] Newman, M. E. J. 2002. "Assortative mixing in net-
works."

[Newman2003] Newman, M. E. J. 2003. "Mixing patterns in networks."
Phys. Rev. E 67, 026126

[Noldus2015] Noldus, R and Mieghem, P. 2015. "Assortativity in
Complex Networks" Journal of Complex Networks. doi:
10.1093/comnet/cnv005

[Schweik2012] C. Schweik and R. English. Internet Success: A Study of
Open-Source Software Commons, The MIT Press. 2012

[Verdon2004] D. Verdon and G. McGraw, "Risk analysis in soft-
ware design," in IEEE Security & Privacy, vol.
2, no. 4, pp. 79-84, July-Aug. 2004.

[Walsh2011] Walsh, M. (2011, March 11). Gov 2.0 guide to Plone.
Retrieved June 23, 2016, from http://www.govfresh.
com/2011/03/gov-2-0-guide-to-plone/

[Wagner2000] David A. Wagner. 2000. Static Analysis and Computer
Security: New Techniques for Software Assurance.
Ph.D. Dissertation. University of California, Berkeley.
AAI3002306.

[Wiki2016] Plone (software). (2016, May 5). In Wikipedia, The
Free Encyclopedia. Retrieved 18:20, June 23, 2016,
from https://en.wikipedia.org/w/index.php?title=Plone_
(software)&oldid=718838043

[Wheeler2014] Wheeler, David A. How to Prevent the next Heart-
bleed. 2014-10-20. http://www.dwheeler.com/essays/
heartbleed.html

[Wheeler2015] D. Wheeler and S. Khakimov. Open Source Se-
curity Census: Open Source Software Projects
Needing Security Investments, Institute for De-
fense Analysis. 2015

[Yamin2013] Yamin, Luis Eduardo; Ghesquiere, Francis;
Cardona, Omar Dario; Ordaz, Mario Gustavo.
2013. Modelacion probabilista para la gestion del

136 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

riesgo de desastre. Washington DC ; World Bank.
http://documents.worldbank.org/curated/en/2013/07/
18100020/colombia-probabilistic-modeling-disaster-
risk-management-modelacion-probabilista-para-la-
gestion-del-riesgo-de-desastre

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 137

Launching Python Applications on Peta-scale
Massively Parallel Systems

Yu Feng‡§∗, Nick Hand‡

https://youtu.be/CfrRDI71vTc

F

Abstract—We introduce a method to launch Python applications at near native
speed on large high performance computing systems. The Python run-time and
other dependencies are bundled and delivered to computing nodes via a broad-
cast operation. The interpreter is instructed to use the local version of the files on
the computing node, removing the shared file system as a bottleneck during the
application start-up. Our method can be added as a preamble to the traditional
job script, improving the performance of user applications in a non-invasive
way. Furthermore, we find it useful to implement a three-tier system for the
supporting components of an application, reducing the overhead of runs during
the development phase of an application. The method launches applications on
Cray XC30 and Cray XT systems up to full machine capacity with an overhead
of typically less than 2 minutes. We expect the method to be portable to similar
applications in Julia or R. We also hope the three-tier system for the supporting
components provides some insight for the container based solutions for launch-
ing applications in a development environment. We provide the full source code
of an implementation of the method at https://github.com/rainwoodman/python-
mpi-bcast. Now that large scale Python applications can launch extremely
efficiently on state-of-the-art super-computing systems, it is time for the high
performance computing community to seriously consider building complicated
computational applications at large scale with Python.

Index Terms—Python, high performance computing, development environ-
ment, application

Introduction

The use of a scripting or interpreted programming language in
high performance computing has the potential to go beyond post-
processing and plotting results. Modern super-computers support
dynamic linking and shared libraries, and thus, are capable of
running the interpreters of a scripting programming language.
Modern interpreters of scripting languages are equipped with the
Just-In-Time (JIT) compilation technique that compiles the script
in-time to achieve performances close to C or Fortran [LPS15],
[BEKS14], [Aut06]. The Python programming language is of
particular interest due to its large number of libraries and its
wide user base. There are several Python bindings of the Message
Passing Interface (MPI)1 [DPKC11], [Mil02]. Bindings for higher
level abstractions, e.g. [Spo12] also exist, allowing one to write

* Corresponding author: yfeng1@berkeley.edu
‡ Berkeley Center for Cosmological Physics, University of California, Berkeley
CA 94720
§ Berkeley Institute for Data Science, University of California, Berkeley CA
94720

Copyright © 2016 Yu Feng et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

complex parallel applications with MPI for simulations and data
analysis.

However, it is still traditionally believed that Python does
not coexist with large scale high performance computing. The
major barrier is due to the slow and unpredictable amount of
time required to launch Python applications on such systems.
For example, it has been shown that the start-up time sometimes
increases to hours for jobs with a relative small scale (a hundred
ranks ..[#rank]). Some quantitative benchmarks can be see in
[Fro13], [Lan12b].

The issue is an interplay between the current file system
architecture on Peta-scale systems and the behavior of the Python
interpreter. Peta-scale systems are typically equipped with a shared
file system that is suitable for large band-width operations. The
meta-data requests are handled by the so-called metadata servers,
and usually, at most one master meta-data server serves all
requests to a large branch of the file system; then, the data files are
replicated to several data storage nodes [Sch03]. As an example,
the Phase-I Cray XC 40 system Cori at NERSC is connected to
5 metadata servers (MDT) [NER15]. Because the file system is a
shared resource with a limited throughput, it is relatively easy for
an application to flood the file systems with requests and nearly
bring an entire file system to a halt -- a phenomona most users to
HPC systems are very familiar with.

Unfortunately, the Python interpreter is such an application, as
has been repeatedly demonstrated in previous studies [Lan12a],
[Lan12b], [Fro13], [ERSM11]. During start-up, a Python appli-
cation will generate thousands of file system requests to locate
and import files for scripts and compiled extension modules. We
demonstrate the extent of the problematic behavior in Figure 1,
where we measure the number of file system requests associated
with several fairly commonly used Python packages on a typical
system (Anaconda 2 and 3 in this case). The measurement is
performed with strace -ff -e file. For either Python 2
or Python 3, the number of file system operations increases
linearly with the number of entries in sys.path (controlled
by the PYTHONPATH environment variable). Importing the scipy
package with 10 additional paths requires 5,000+ operations on
Python 2 and 2,000 operations on Python 3. Extrapolating to 1,000
instances or MPI ranks, the number of requests reaches 2 ~ 5
million. On a system that can handle 10,000 file system requests

1. Message Passing Interface (MPI) is the standard programming model on
high performance computing. For readers that are unfamiliar with such topics,
we recommend [Qui03] for an introduction to parallel programming and MPI.

2. A rank is defined as one of the concurrent processes of the application.

138 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

0 5 10 15 20
Length of PYTHONPATH

0

2000

4000

6000

8000

10000

12000

14000

16000
Fi

le
-S

y
st

e
m

 O
p
e
ra

ti
o
n
s

Bare Python

import numpy

import scipy

import numba

import matplotlib

Fig. 1: Number of file system requests during Python start-up. Solid
lines: Python 2. Dashed lines: Python 3. We increase the number of
entries in PYTHONPATH to simulate the number of packages installed
in user directory or loaded via modules command commonly used
on HPC systems.

per second, consuming these requests takes 200 ~ 500 seconds of
the full capacity of the entire system. Furthermore, the application
becomes extremely sensitive to the load on the shared file system:
when the file system is heavily loaded, the application will start
extremely slowly.

It is worth pointing out that although the number of requests
per rank can be significantly reduced, the total number of requests
still increases linearly with the number of MPI ranks, and will
become a burden at sufficiently large scale. For example, due to
improvements in the importing system, the number of requests per
rank is reduced by 50% in Python 3 as compared to Python 2 (seen
in Figure 1). Therefore, a plain Python 3 application will handle
twice as many ranks as Python 2 does.

In this paper, we present a solution (which we name
python-mpi-bcast) that addresses the start-up speed without
introducing a burden on the users. We have been using this method
to launch data analysis applications in computational cosmology
(e.g. [FH16]) at National Energy Research Scientific Computing
Center (NERSC).

In Section 2, we collect and overview the previous solutions
developed over the years. In Section 3, we describe our solution
python-mpi-bcast. In Section 4, we discuss the management of
the life-cycles of components. In Section 5, we demonstrate
the cleanness of python-mpi-bcast with an example script. We
conclude this paper and discuss possible extensions of this work
in Section 6.

Previous Solutions

Given the importance and wide-adoption of the Python pro-
gramming language, the application launch time issue has been
investigated by several authors. We briefly review them in this
section. These solutions either do not fully solve the problem
or introduce a burden on the users to maintain the dependency
packages.

The application delivery mechanism on a super-computer can
deliver the full binary executable to the computing nodes. In fact,

older systems can only deliver one statically linked executable
file to the computing nodes during the job launch. The support
of dynamic libraries on Cray systems was once very limited
[ZDA+12] -- a significant amount of work has been invested to
solve this limitation in the context of shared library objects (e.g.
[AA14]).

One can take advantage of the standard delivery mechanism
and launch the application at an optimal speed, by bundling the
entire support system of the Python application as one stati-
cally compiled executable. [Fro13], [PM12] both fall into this
category. We also note that the yt-project has adopted some
similar approaches for their applications [TSO+11]. While being
a plausible solution, the technical barrier of this approach is
very high. Statically compiled Python is not widely used by
the mainstream community, and special expertise is required to
patch and incorporate every dependency package for individual
applications. Although the steps are documented very well, the
effort is beyond the knowledge of a typical Python developer.

Fortunately, in recent years the support for dynamic libraries
on high performance computing systems has significantly im-
proved, as super-computing vendors began to embrace a wider
user base for general, data-intensive analysis. On these platforms,
the main bottleneck has shifted from the lack of support for
dynamic libaries to the vast number of meta-data requests to
import the full python runtime library.

A particularly interesting approach is to eliminate the meta-
data requests altogether via caching. Caching can happen at the
user level or operation system level. On the user level, mpiim-
port [Lan12b] and Scalable Python cite:scalablepython attempt
to cache the meta-data requests with an import hook. After the
hooks are enabled, the user application are supposed to run as
is. Unfortunately, these methods are not as fully opaque as they
appear to be. With import hooks, because the meta-data requests
are cached, they have to be calculated by the root rank first.
Therefore, an implicit synchronization constraint is imposed in
order to ensure the cache is evaluated before the requests from
the non-root ranks. All of the import operations must be made
either collectively or un-collectively at the same time. We find
that the collective importing scheme breaks site.py in the Python
standard library and the un-collective importing scheme breaks
most MPI-enabled scripts. At the system level, users can file a
ticket to mark a branch of the file system as immutable, allowing
the computing nodes to cache the requests locally. This requires
special requirements from the administrators, and in practice the
relief has been limited.

Finally, one can locally mount a full application image on the
computing node via a container-based solution [JCGB15]. The
loopback mount adds a layer of caching to reduce the number of
requests to the global file system. The drawback of the container-
based solution is due to the requirement that the entire application
is built as one image. Each time the application code is modified,
the entire image needs to be re-generated before the job is ready to
run. On super computing systems, it takes a long (and fluctuating)
amount of time to build a non-trivial software package. Some
of our support libraries (e.g. pfft-python) usually takes 10 to 20
minutes to rebuild from scratch. This waiting time can become an
additional burden during code development. Furthermore, the user
may need special privileges on the computing nodes in order to
mount the images, requiring changes in the system security policy
that can be challenging to implement for administration reasons;
though we note that shifter has solved this problem at NERSC.

LAUNCHING PYTHON APPLICATIONS ON PETA-SCALE MASSIVELY PARALLEL SYSTEMS 139

Our Solution: python-mpi-bcast

In this section, we show that the shared file system bottleneck can
be solved with a much simpler approach that maintains a high
level of compatibility with the main stream usage of the Python
programming language.

Compatibility is maintained if one uses the vanilla C im-
plementation of Python without any modifications to the import
mechanism. A large number of file system requests during appli-
cation start-up will be made, but we will reroute all shared file
system requests to local file systems on the computing nodes,
away from the limited shared file-system.

This is possible because the package search path of a Python
interpreter is fully customizable via a few environment variables,
a feature widely used in the community to provide support for
’environments’ [LMR15], [Con15]. With python-mpi-bcast, we
make use of this built-in relocation mechanism to fully bypass
the scalability bottleneck of the shared file system. We note that
none of the previous solutions make extensive use of this feature.

Because all file operations for importing packages are local
after the re-routing, the start-up time of a Python application
becomes identical to that of a single rank, regardless of the number
of ranks used.

The only additional cost of our approach results from the
delivery of the packages to the local file systems. In order to
efficiently deliver the packages, we bundle the packages into tar
files. The MPI broadcast function is used for the delivery. The tar
files are uncompressed automatically with the tool bcast.c that
could be linked into a static executable.

We will describe the steps in the following subsections:

1) Create bundles for dependencies and the application.
2) Deliver the bundles via broadcasting. The destination

shall be a local file system on the computing nodes. (e.g.
/dev/shm or /tmp)

3) Reroute Python search path (including shared library
search path) to the delivery destination, bypassing the
shared file system.

4) Start the Python application the usual way.

Creating bundles

We define a bundle as a compressed tar file that contains the full
file system branch of a package or several packages, starting from
the relative Python home directory. Three examples are:

1) The bundle file of a conda environment consists of all files
in the bin, lib, include, and share directories of the environment.
We provide a script (tar-anaconda.sh) for generating such a bundle
from a conda environment. The size of a bundle for a typical conda
environment is close to 300 MB.

2) The bundle file of a PIP installed package consists of all files
installed by the pip command. We provide a wrapper command
bundle-pip for generating a single bundle from a list of PIP
packages.

3) The bundle file of basic system libraries includes those
shared library files that are loaded by the dynamic linker for the
Python interpreter. We provide three sample job scripts to generate
these bundles for three Cray systems: XC30, XC40, and XT. The
system bundle addresses the shared library bottleneck investigated
in [ZDA+12] (DLFM) but without requiring an additional wrapper
of the system dynamic linker.

The bundles only need to be updated when the dependencies
of an application are updated.

Variable Action

PYTHONHOME Set to broadcast destination
PYTHONPATH Purge
PYTHONUSERBASE Purge
LD_LIBRARY_PATH Prepended by /lib of the broadcast destination

TABLE 1: Environment Variable used in python-mpi-bcast

Delivery via broadcasting

Before launching the user application, the bundles built in the
previous step must be delivered to the computing nodes -- we
provide a tool for this task. On Cray systems, we make use of the
memory file system mounted at /dev/shm. On a system with
local scratch, /tmp may be used as well, although this has not
been tested.

We use the broadcast function of MPI for the delivery. The tool
first elects one rank per node to receive and deploy the bundles to
a local storage space. The bundle is then uncompressed by the
elected rank per computing node.

The new files are marked globally writable. Therefore, even if
some of the files are not properly purged from a node, they can
be overwritten by a different user when the same node is allocated
to a new job. We note that this may pose a security risk in shared
systems.

When several bundles are broadcast in the same job, the later
ones will overwrite the former ones. This overwriting mechanism
provides a way to deliver updates as additional bundles.

We also register an exit handler to the job script that purges the
local files to free up the local file system. This step is necessary
on systems where the local storage space is not purged after a job
is completed.

Rerouting file system requests

We list the environment variables that are relevant to the relocation
in Table 1. After the relocation, all of the file system requests
(meta-data and data) are rerouted to the packages in the local file
system. As a result, the start-up time of the interpreter drops to
that of a single rank.

We note that the variable PYTHONUSERBASE is less well-
known, documented only in the site package, but not in the
Python command-line help or man pages. If the variable is
not set, Python will search for packages from the user’s home
directory $HOME/.local/. Unfortunately, the home file-system
is typically the slowest one in a Peta-scale system. This directory
is not part of the application, therefore we purge this variable
by setting it to an invalid location on the local file system, the
root of the broadcast destination. We also purge PYTHONPATH
in the same manner, since all packages are located at the same
place. The variable PYTHONPATH can be very long on systems
where each Python package is provided as an individual module
of the modules system. This negtively impacts the performance
of launching Python applications, as we see in Figure 1, which
clearly shows that the length of PYTHONPATH has a huge impact
on the number of file system operations that occur during start-up.

Launching the Python application

We launch the Python application via the standard python-mpi
wrapper provided by mpi4py. We emphasize that no modifica-

140 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Python Runtime

Scientific Python stack

Python Interpreter

Application

specific

dependencies

App.

code

Tier 3
Small overhead
Extremely unstable

Tier 2
Regular overhead
Unstable

Tier 1
Large overhead
Stable

Fig. 2: Three tiers of bundles. The most stable component (bottom of
the pyramid, Tier 1) takes the most effort to build. The least stable
component (top of the pyramid, Tier 3), takes the least effort to
bundle. The split into three tiers allows the developers to save time in
maintaining the bundles.

tions to the python-mpi wrapper or to the user application are
needed in our approach.

It is important to be aware that Python prepends the parent
directory of the start-up script to the search path. If the start-up
script of the application resides on a shared file system, the access
to this directory will slow down the application launch. As an
alternative, the application script (along with the full directory
tree) can also be bundled and delivered via python-mpi-bcast
before the launch. This is demonstrated in the example in Section
5, and we will discuss this case in more detail in the next section.

On a Cray system, the Python interpreter (usually
python-mpi) must reside in a location that is accessible by the
job manager node, because it will be delivered via the standard
application launch process.

Three-tiers of bundles

Building bundles takes time and shifts the focus of the developer
from application development to interfacing with the system. We
therefore recommend to organize the components of an application
into a three-tier system to minimize the redundant efforts required
to to create bundles. The three-tier system is illustrated in Figure
2, and we describe the rationale and definitions in the following
sections.

Tier 1 components

Tier 1 components consist of the Python interpreter, standard
runtime libraries, and stable dependencies (dependencies that
changes infrequently, for example, numpy, scipy, mpi4py, h5py).
On a conda based Python distribution, the Tier 1 components
map to the packages included in a conda environment. These
components provide a basic Python computing environment, take
the most time to install, yet barely change during the life-cycle of
a project. Most super-computing facilities already maintain some
form of these packages with the modules system, e.g. NCSA has
a comprehensive set of Python packages [Ms14], and NERSC has
the anaconda 2 and 3 based Python distribution.

It is straightforward to create bundles of these pre-installed
components. We provide the bundle command with python-mpi-
bcast for creating a bundle from a pre-installed ’modules’ path. It
is a good practice to create one bundle for each ’modules’ path.
The process can be time consuming, even though it does not invole

compiling any source code packages. For example, creating a Tier
1 bundle from a full binary anaconda installation typically takes 5
minutes at NERSC facilities.

Tier 2 components

Tier 2 components consist of unstable dependencies of the appli-
cation. These include packages used or developed specifically for
the particular application, which are usually neither part of the
conda distribution nor deployed at the computing system by the
facility. Tier 2 components update frequently during the life-cycle
of a project.

The difference in update-frequency means that Tier 2 compo-
nents should not be bundled with the Tier 1 components. Since
Tier 2 components are usually much smaller and thus faster to
bundle than Tier 1 components, bundling them separately reduces
the overhead for running and testing the application live at the
supercomputing facility.

We provide a pip wrapper script bundle-pip with python-
mpi-bcast to build bundles for the Tier 2 components. A good
practice is to create a single bundle for all of the Tier 2 components
with one invocation to the tar-pip.sh wrapper.

Tier 3 components

Tier 3 components are the application itself and other non-package
dependencies. These include the main script and files in the same
directory as the main script. The Tier 3 components change most
frequently among the three tiers during the life cycle of a project.
As Tier 3 components mature and receive less frequent changes
they should be migrated into Tier 2, following the usual software
refactoring practices.

We implement two strategies for Tier 3 components. The
simple strategy is to leave these files at the original location
in the shared file system. In this case, Python will prepend the
parent directory of the main script to the search path, not fully
bypassing the shared file system. We find that the extra cost due to
this additional search is usually small. However, when the system
becomes highly congested (an ironic example is when another user
attempts to start a large Python job without using our solution),
the start-up time can observe a significant slow down.

A consistently reliable start-up time is obtained if Tier 3
components are also bundled and delivered to the local file system
(mirror strategy). The location of the main script in the job script
should be modified to reflect this change. Because the Tier 3 com-
ponents are the most lightweight, typically consisting of only a few
files, a good practice is to create the bundle automatically in the job
script, without requiring the developer to manually create a bundle
before every job submission. We provide a helper command mirror
that implementes the strategy. The mirror strategy is demonstrated
in the next section with examples.

Example Scripts

Generic Cray Systems

In this section, we show an example SLURM job script on a Cray
XC 30 system. The script demonstrates the non-invasive nature
of our method. After the bundles are built, a few extra lines are
added to the job script to enable python-mpi-bcast and deliver the
three tiers of components. The user application does not need to be
specifically modified for python-mpi-bcast. We emphasize that the
job script runs in the user’s security context, without any special
requirements from the facility.

LAUNCHING PYTHON APPLICATIONS ON PETA-SCALE MASSIVELY PARALLEL SYSTEMS 141

Script without NERSC integration
Modify and adapt to use on a general
HPC system

#! /bin/bash
#SBATCH -n 2048
#SBATCH -p debug

export PBCAST=/usr/common/contrib/bccp/python-mpi-bcast

source $PBCAST/activate.sh \
/dev/shm/local "srun -n 1024"

Tier 1 : anaconda
bcast -v $PBCAST/2.7-anaconda.tar.gz \

$HOME/fitsio-0.9.8.tar.gz

Tier 2 : commonly used packages
e.g. installed in $PYTHONUSERBASE
bcast-userbase

Tier 3 : User application
mirror /home/mytestapp/ \

testapp bin

Launch
time srun -n 1024 python-mpi

/dev/shm/local/bin/main.py

Integration with NERSC Facilities

On the NERSC systems where python-mpi-bcast was
originally developed, we also provide a default installation of
python-mpi-bcast that is integrated with the modules
system and the Anaconda based Python installations. The full
integration source code is hosted together in the main python-
mpi-bcast repository and can be easily adapted to other systems.

The following script provides an example for using
python-mpi-bcast in a pre-configured system. Note that the
Python runtime environment (along with shared libraries from the
Cray Linux Environment) are automatically delivered. The impact
on the user application is limited to two lines in the job script: one
line for enabling python-mpi-bcast and the other line to mirror the
application to a local file system with the mirror command.
#! /bin/bash
#SBATCH -N 2048
#SBATCH -p debug

select the Python environment
module load python/3.4-anaconda

NERSC integration
PBCAST=/usr/common/contrib/bccp/python-mpi-bcast
source $PBCAST/nersc/activate.sh

Directly deliver the user application
mirror /home/mytestapp/ \

testapp bin

launch the mirrored application
time srun -n 1024 python-mpi \

/dev/shm/local/bin/main.py

Benchmark and Performance

In Figure 3 and 4, we show the measurement of wall clock time
of python-mpi-bcast for a dummy Python 2 application on the
Cray XC30 system Edison at NERSC and the Cray XT system
BlueWaters at NCSA. The dummy application imports the scipy
package on all ranks before exiting. We point out that in the
benchmark it is important to import Python packages as done in

101 102 103 104 105 106

Number of Ranks

100

101

102

103

W
a
ll

ti
m

e
 [

se
c]

import scipy

bcast

bcast/MPI_Bcast

bcast/tar xzvf

total

Fig. 3: Time measurements of python-mpi-bcast on Edison, a Cray XC
30 system at NERSC. We perform tests launching a dummy Python 2
application (that imports scipy) with up to 127,440 MPI ranks. The
total time in the bcast job step is shown in stars. The two major time
consuming components of bcast, the call to MPI_Bcast (×) and the
call to the tar command, are also shown (+). Note that large jobs
incur a large overhead in the job step such that the sum of the latter
differs from the job step times. The total time of the job step that
launches the dummy application is shown in squares. The total time
of both job steps is shown in diamonds.

a real application, because most of the metadata requests are to
locate the Python scripts of packages rather than dynamic libraries
associated with extension modules. Therefore, a benchmark based
on performance of simulating dynamic libraries [LAdS+14]
does not properly represent the true launch time of a realistic
Python application. We do not perform another set of benchmarks
for Python 3, but note that the stream-lined import system in
Python 3 could perform better than Python 2. [van02]

The job includes two steps: the first involves the statically
linked bcast program that delivers the bundles to the computing
nodes (which does not involve Python), and the second launches
the Python application.

The bcast step consists of two major components, a call to
MPI_Bcast and a call to libarchive[Tim09] to inflate the
tar ball. We observe that the scaling in the MPI_Bcast function
is consistent with the expected O[logN] scaling of a broadcast
algorithm. The call to inflate the tar ball remains roughly constant,
but shows fluctuations for larger runs on the XC30 system. This is
likely because the job has hit a few nodes that are in a non-optimal
state, which is a common effect in jobs running near the capacity
of the system.

As a further evidence, the fluctuation in the large jobs corre-
lates with an increase in the time spent in the ’tar’ stage of the
bcast time step, as seen by comparing the tests with 49,152 ranks
(2048 nodes), 98,304 ranks(4096 nodes), and 127,440 ranks (5310
nodes).

The time spent in the Python application (second job step)
increases slowly as well, but the increase becomes more significant

142 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

101 102 103 104 105 106

Number of Ranks

100

101

102

103
W

a
ll

ti
m

e
 [

se
c]

import scipy

bcast

bcast/MPI_Bcast

bcast/tar xzvf

total

Fig. 4: Time measurements of python-mpi-bcast on BlueWaters. a
Cray XT system at NCSA. We perform tests launching a dummy Python
2 application (that imports scipy) with up to 127,440 MPI ranks. The
total time in the bcast job step is shown in stars. The two major time
consuming components of bcast, the call to MPI_Bcast (×) and the
call to the ’tar’ command, are also shown (+). Note that large jobs
incur a large overhead in the job step such that the sum of the latter
differs from the job step times. The total time of the job step that
launches the dummy application is shown in squares. The total time
of both job steps is shown in diamonds.

as the size of the job approaches the capacity of the system. An
additional cause of the increase can be attributed to the remaining
few requests to the shared file system for unbundled shared
libraries and Python configuration files that are not rerouted. For
example, the configuration of mpi4py package is hard coded on
the shared file system.

For jobs with less than 1024 nodes, the timing is close to
1 minute. In any case, the largest test on Edison that employs
127,440 MPI ranks (5310 nodes), spent 4 minutes in total for
launching the application. We note that the slightly smaller job
that employs 98,304 ranks (4096 nodes) spent less than 2 minutes
in total.

Conclusions

We introduce python-mpi-bcast, a solution to start native
Python applications on large, high-performance computing sys-
tems.

We summarize and review a set of previous solutions devel-
oped over the years and with varying usage in the community.
Their limitations in terms of practical usability and efficiency are
discussed.

Our solution python-mpi-bcast does not suffer from any
of the drawbacks of previous solutions. Using our tool, the runtime
environment of the Python application on Peta-scale systems is
fully compatible with the the mainstream Python environment.
The entire solution can be added as a preamble to a user job
script to enhance the speed and reliability of launching Python

applications on any scales, from a single rank to thousands of
ranks.

Our solution makes use of the established infrastructure of
the mainstream Python community to reroute support packages of
an application from the shared file system to local file systems
per node via bundles. The solution is compatible with Python 2
and 3 at the same time. Almost all accesses to the shared file
system are eliminated, which avoids the main bottleneck typically
encountered during the start-up stage of a Python application.
We have performed tests up to 127,440 ranks on a Cray XC 30
system (limited by the available cores on the Edison system at
NERSC) and on a Cray XT system BlueWaters at NCSA. There
is no fundamental reason that the method does not scale to even
larger jobs, given that the only non-local operation is a broadcast
operation.

We introduce a three-tier bundling system that reflects the
evolutionary nature of an application. Different components of
an application are bundled separately, reducing the preparation
overhead for launching an application during the development
stage. The three-tier system is an improvement from the all-in-
one approaches such as [Fro13] or [JCGB15]. We in fact advocate
adopting a similar system in general-purpose, images-based ap-
plication deployment infrastructure (e.g. in cloud computing). We
note that a large burden from the users can be further removed if
the computing facilities maintain the Tier 1 bundle(s) in parallel
with their existing modules system. Further integration into
the job system is also possible to provide a fully opaque user
experience.

Finally, with few modifications, python-mpi-bcast can
be easily generalized to support applications written in other
interpreted languages such as Julia and R. In addition, we highly
welcome reimplementing the stratagies documented in the pa-
per as an extension of the Conda package distribution system,
and provide the full source code of python-mpi-bcast at
https://github.com/rainwoodman/python-mpi-bcast.

Given that large-scale Python applications can be launched
extremely efficiently on state-of-the-art super-computing systems,
it is the time for the high-performance computing community to
begin serious development of complex computational applications
at large scale with Python.

Acknowledgment
The original purpose of this work was to improve the data

analysis flow of cosmological simulations. The work is developed
on the Edison system and Cori Phase I system at National Energy
Research Super-computing Center (NERSC), under allocations for
the Baryon Oscillation Spectroscopic Survey (BOSS) program
and the Berkeley Institute for Data Science (BIDS) program. We
also performed benchmark on the Blue Waters system at National
Center for Super-computing Applications (NCSA) as part of the
NSF Peta-apps program (NSF OCI-0749212) for the BlueTides
simulation. The authors thank Zhao Zhang of Berkeley Institute
of Data Science, Fernando Perez of Berkeley Institute of Data
Science, Martin White of Berkeley Center for Cosmology, Rollin
Thomas of Lawrence Berkeley National Lab, Aron Ahmadia
of Continuum Analysis Inc., for insightful discussions over the
topic.

REFERENCES

[AA14] William Scullin Aron Ahmadia, Jed Brown. Joint anl/ksl col-
laboration on collective file system module (with glibc dynamic

LAUNCHING PYTHON APPLICATIONS ON PETA-SCALE MASSIVELY PARALLEL SYSTEMS 143

library interception), 2014. URL: https://github.com/ahmadia/
collfs.

[Aut06] V8 Project Authors. V8 javascript engine, 2006. URL: https:
//chromium.googlesource.com/v8/v8.git.

[BEKS14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia:
A Fresh Approach to Numerical Computing. ArXiv e-prints,
November 2014. arXiv:1411.1607.

[Con15] Continuum Analytics, Inc. Conda, 2015. URL: http://conda.
pydata.org/docs/.

[DPKC11] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and
Alejandro Cosimo. Parallel distributed computing us-
ing python. Advances in Water Resources, 34(9):1124
– 1139, 2011. New Computational Methods and Soft-
ware Tools. URL: http://www.sciencedirect.com/science/article/
pii/S0309170811000777, doi:http://dx.doi.org/10.
1016/j.advwatres.2011.04.013.

[ERSM11] Jussi Enkovaara, Nichols A. Romero, Sameer Shende, and
Jens J. Mortensen. Gpaw - massively parallel electronic
structure calculations with python-based software. Proce-
dia Computer Science, 4:17 – 25, 2011. Proceedings
of the International Conference on Computational Science,
ICCS 2011. URL: http://www.sciencedirect.com/science/article/
pii/S1877050911000615, doi:http://dx.doi.org/10.
1016/j.procs.2011.04.003.

[FH16] Yu Feng and Nick Hand, 2016. URL: https://github.com/bccp/
nbodykit.

[Fro13] Bradley M. Froehle, 2013. URL: https://github.com/bfroehle/
slither.

[JCGB15] Doug Jacobsen, Shane Canon, Lisa Gerhardt, and Deborah Bard.
Shifter: Bringing linux containers to hpc, 2015. URL: https://
www.nersc.gov/research-and-development/user-defined-image.

[LAdS+14] Gregory L. Lee, Dong H. Ahn, Bronis R. de Supinski, John
Gyllenhaal, and Patrick Miller. The python dynamic benchmark,
2014. URL: https://codesign.llnl.gov/pynamic.php.

[Lan12a] Asher Langton. Email communication to the mpi4py forum.,
2012. URL: https://groups.google.com/forum/#!topic/mpi4py/h_
GDdAUcviw.

[Lan12b] Asher Langton. An mpi-aware import module for python, 2012.
URL: https://github.com/langton/MPI_Import.

[LMR15] Jannis Leidel, Carl Meyer, and Brian Rosner. Virtual python
environment builder, 2015. URL: https://pypi.python.org/pypi/
virtualenv.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM
’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM. URL:
http://doi.acm.org/10.1145/2833157.2833162, doi:10.1145/
2833157.2833162.

[Mil02] Patrick Miller. pympi – an introduction to parallel python using
mpi. 2002.

[Ms14] Colin MacLean and NCSA staff. bwpy: Python on bluewaters,
2014. URL: https://bluewaters.ncsa.illinois.edu/python.

[NER15] NERSC. Cori system specifications, 2015. URL: https://www.
nersc.gov/users/computational-systems/cori/cori-phase-i/.

[PM12] Bradley M. Froehle Pat Marion, Aron Ahmadia. Import with-
out a filesystem: scientific python built-in with static linking
and frozen modules, 2012. URL: http://conference.scipy.org/
scipy2013/presentation_detail.php?id=129.

[Qui03] Michael J. Quinn. Parallel Programming in C with MPI and
OpenMP. McGraw-Hill Education Group, 2003.

[Sch03] Philip Schwan. Lustre: Building a File System for 1,000-node
Clusters. In Proceedings of the 2003 Linux Symposium, July
2003.

[Spo12] William F. Spotz. Pytrilinos: Recent advances in the python
interface to trilinos. Sci. Program., 20(3):311–325, July 2012.
URL: http://dx.doi.org/10.1155/2012/965812, doi:10.1155/
2012/965812.

[Tim09] Tim Kientzle and contributors. libarchive: Multi-format archive
and compression library. http://libarchive.org, 2009.

[TSO+11] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skill-
man, T. Abel, and M. L. Norman. yt: A Multi-code Analysis
Toolkit for Astrophysical Simulation Data. Astrophysical Jour-
nal Supplement, 192:9–+, January 2011. arXiv:1011.3514,
doi:10.1088/0067-0049/192/1/9.

[van02] van Rossum, Just and Moore, Paul . Pep 302 – new import hooks.
2002. URL: https://www.python.org/dev/peps/pep-0302/.

[ZDA+12] Zhengji Zhao, Mike Davis, Katie Antypas, Yushu Yao, Rei Lee,
and Tina Butler. Shared library performance on hopper. Cray
User Group, 2012. URL: https://cug.org/proceedings/attendee_
program_cug2012/includes/files/pap124.pdf.

