
PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017) 89

Optimised finite difference computation from symbolic
equations

Michael Lange‡∗, Navjot Kukreja‡, Fabio Luporini‡, Mathias Louboutin¶, Charles Yount§, Jan Hückelheim‡, Gerard J.
Gorman‡

https://youtu.be/KinmqFTEs94

F

Abstract—Domain-specific high-productivity environments are playing an in-
creasingly important role in scientific computing due to the levels of abstraction
and automation they provide. In this paper we introduce Devito, an open-
source domain-specific framework for solving partial differential equations from
symbolic problem definitions by the finite difference method. We highlight the
generation and automated execution of highly optimized stencil code from only
a few lines of high-level symbolic Python for a set of scientific equations, before
exploring the use of Devito operators in seismic inversion problems.

Index Terms—Finite difference, domain-specific languages, symbolic Python

Introduction

Domain-specific high-productivity environments are playing an
increasingly important role in scientific computing. The level of
abstraction and automation provided by such frameworks not only
increases productivity and accelerates innovation, but also allows
the combination of expertise from different specialised disciplines.
This synergy is necessary when creating the complex software
stack needed to solve leading edge scientific problems, since
domain specialists as well as high performance computing experts
are required to fully leverage modern computing architectures.
Based on this philosophy we introduce Devito [Lange17], an open-
source domain-specific framework for solving partial differential
equations (PDE) from symbolic problem definitions by the finite
difference method.

Symbolic computation, where optimized numerical code is
automatically derived from a high-level problem definition, is
a powerful technique that allows domain scientists to focus on
algorithmic development rather than implementation details. For
this reason Devito exposes an API based on Python (SymPy)
[Meurer17] that allow users to express equations symbolically,
from which it generates and executes optimized stencil code via
just-in-time (JIT) compilation. Using latest advances in stencil
compiler research, Devito thus provides domain scientists with
the ability to quickly and efficiently generate high-performance

* Corresponding author: michael.lange@imperial.ac.uk
‡ Imperial College London
¶ The University of British Columbia
§ Intel Corporation

Copyright © 2017 Michael Lange et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

kernels from only a few lines of Python code, making Devito
composable with existing open-source software.

While Devito was originally developed for seismic imaging
workflows, the automated generation and optimization of stencil
codes can be utilised for a much broader set of computational
problems. Matrix-free stencil operators based on explicit finite
difference schemes are widely used in industry and academic
research, although they merely represent one of many approaches
to solving PDEs [Baba16], [Liu09], [Rai91]. In this paper we
therefore limit our discussion of numerical methods and instead
focus on the ease with which these operators can be created
symbolically. We give a brief overview of the design concepts
and key features of Devito and demonstrate its API using a set of
classic examples from computational fluid dynamics (CFD). Then
we will discuss the use of Devito in an example of a complex
seismic inversion algorithm to illustrate its use in practical scien-
tific applications and to showcase the performance achieved by the
auto-generated and optimised code.

Background

The attraction of using domain-specific languages (DSL) to solve
PDEs via a high-level mathematical notation is by no means
new and has led to various purpose-built software packages
and compilers dating back to 1962 [Iverson62], [Cardenas70],
[Umetani85], [Cook88], [VanEngelen96]. Following the emer-
gence of Python as a widely used programming language in
scientific research, embedded DSLs for more specialised domains
came to the fore, most notably the FEniCS [Logg12] and Firedrake
[Rathgeber16] frameworks, which both implement the unified
Form Language (UFL) [Alnaes14] for the symbolic definition of
finite element problems in the weak form. The increased level of
abstraction that such high-level languages provide decouples the
problem definition from its implementation, thus allowing domain
scientists and mathematicians to focus on more advanced methods,
such as the automation of adjoint models as demonstrated by
Dolfin-Adjoint [Farrell13].

The performance optimization of stencil computation on reg-
ular cartesian grids for high-performance computing applications
has also received much attention in computer science research
[Datta08], [Brandvik10], [Zhang12], [Henretty13], [Yount15]. The
primary focus of most stencil compilers or DSLs, however, is
the optimization of synthetic problems which often limits their

https://youtu.be/KinmqFTEs94
mailto:michael.lange@imperial.ac.uk

90 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

applicability for practical scientific applications. The primary
consideration here is that most realistic problems often require
more than just a fast and efficient PDE solver, which entails
that symbolic DSLs embedded in Python can benefit greatly from
native interoperability with the scientific Python ecosystem.

Design and API

The primary objective of Devito is to enable the quick and effec-
tive creation of highly optimised finite difference operators for use
in a realistic scientific application context. As such, its design is
centred around composability with the existing Python software
stack to provide users with the tools to dynamically generate
optimised stencil computation kernels and to enable access to the
full scientific software ecosystem. In addition, to accommodate
the needs of "real life" scientific applications, a secondary API
is provided that enables users to inject custom expressions, such
as boundary conditions or sparse point interpolation routines, into
the generated kernels.

The use of SymPy as the driver for the symbolic generation
of stencil expressions and the subsequent code-generation are at
the heart of the Devito philosophy. While SymPy is fully capable
of auto-generating low-level C code for pre-compiled execution
from high-level symbolic expressions, Devito is designed to com-
bine these capabilities with automatic performance optimization
based on the latest advances in stencil compiler technology. The
result is a framework that is capable of automatically generating
and optimising complex stencil code from high-level symbolic
definitions.

The Devito API is based around two key concepts that allow
users to express finite difference problems in a concise symbolic
notation:

• Symbolic data objects: Devito’s high-level symbolic ob-
jects behave like sympy.Function objects and provide
a set of shorthand notations for generating derivative
expressions, while also managing user data. The rationale
for this duality is that many stencil optimization algorithms
rely on data layout changes, mandating that Devito needs
to be in control of data allocation and access.

• Operator: An Operator creates, compiles and exe-
cutes a single executable kernel from a set of SymPy
expressions. The code generation and optimization process
involves various stages and accepts a mixture of high-
level and low-level expressions to allow the injection of
customised code.

Fluid Dynamics Examples

In the following section we demonstrate the use of the Devito API
to implement two examples from classical fluid dynamics, before
highlighting the role of Devito operators in a seismic inversion
context. Both CFD examples are based in part on tutorials from
the introductory blog "CFD Python: 12 steps to Navier-Stokes"1

by the Lorena A. Barba group. We have chosen the examples
in this section for their relative simplicity to concisely illustrate
the capabilities and API features of Devito. For a more complete
discussion on numerical methods for fluid flows please refer to
[Peiro05].

1. http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/

Linear Convection

We will demonstrate a basic Devito operator definition based on
a linear two-dimensional convection flow (step 5 in the original
tutorials)2. The governing equation we are implementing here is:

∂u
∂ t

+ c
∂u
∂x

+ c
∂u
∂y

= 0 (1)

A discretised version of this equation, using a forward difference
scheme in time and a backward difference scheme in space might
be written as

un+1
i, j = un

i, j− c
∆t
∆x

(un
i, j−un

i−1, j)− c
∆t
∆y

(un
i, j−un

i, j−1) (2)

where the subscripts i and j denote indices in the space dimensions
and the superscript n denotes the index in time, while ∆t, ∆x, ∆y
denote the spacing in time and space dimensions respectively.

The first thing we need is a function object with which we can
build a timestepping scheme. For this purpose Devito provides
so-called TimeData objects that encapsulate functions that are
differentiable in space and time. With this we can derive symbolic
expressions for the backward derivatives in space directly via
the u.dxl and u.dyl shorthand expressions (the l indicates
"left" or backward differences) and the shorthand notation u.dt
provided by TimeData objects to derive the forward derivative
in time.
from devito import *

c = 1.
u = TimeData(name='u', shape=(nx, ny))

eq = Eq(u.dt + c * u.dxl + c * u.dyl)

[In] print eq
[Out] Eq(-u(t, x, y)/s + u(t + s, x, y)/s

+ 2.0*u(t, x, y)/h - 1.0*u(t, x, y - h)/h
- 1.0*u(t, x - h, y)/h, 0)

The above expression results in a sympy.Equation object that
contains the fully discretised form of Eq. 1, including placeholder
symbols for grid spacing in space (h, assuming ∆x = ∆y) and
time (s). These spacing symbols will be resolved during the code
generation process, as described in the code generation section. It
is also important to note here that the explicit generation of the
space derivatives u_dx and u_dy is due to the use of a backward
derivative in space to align with the original example. A similar
notation to the forward derivative in time (u.dt) will soon be
provided.

In order to create a functional Operator object, the expres-
sion eq needs to be rearranged so that we may solve for the
unknown un+1

i, j . This is easily achieved by using SymPy’s solve
utility and the Devito shorthand u.forward which denotes the
furthest forward stencil point in a time derivative (un+1

i, j).

from sympy import solve

stencil = solve(eq, u.forward)[0]

[In] print(stencil)
[Out] (h*u(t, x, y) - 2.0*s*u(t, x, y)

+ s*u(t, x, y - h) + s*u(t, x - h, y))/h

The above variable stencil now represents the RHS of Eq. 2,
allowing us to construct a SymPy expression that updates un+1

i, j and
build a devito.Operator from it. When creating this operator

2. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/
cfd/test_01_convection_revisited.ipynb

http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/cfd/test_01_convection_revisited.ipynb
http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/cfd/test_01_convection_revisited.ipynb

OPTIMISED FINITE DIFFERENCE COMPUTATION FROM SYMBOLIC EQUATIONS 91

we also supply concrete values for the spacing terms h and s via
an additional substitution map argument subs.
op = Operator(Eq(u.forward, stencil),

subs={h: dx, s:dt})

Set initial condition as a smooth function
init_smooth(u.data, dx, dy)

op(u=u, time=100) # Apply for 100 timesteps

Using this operator we can now create a similar example
to the one presented in the original tutorial by initialising the
data associated with the symbolic function u, u.data with an
initial flow field. However, to avoid numerical errors due to the
discontinuities at the boundary of the original "hat function", we
use the following smooth initial condition provided by [Krakos12],
as depicted in Figure 1.

u0(x,y) = 1+u
(

2
3

x
)
∗u

(
2
3

y
)

The final result after executing the operator for 5s (100 timesteps)
is depicted in Figure 2. The result shows the expected displace-
ment of the initial shape, in accordance with the prescribed
velocity (c = 1.0), closely mirroring the displacement of the
"hat function" in the original tutorial. It should also be noted
that, while the results show good agreement with expectations
by visual inspection, they do not represent an accurate solution
to the linear convection equation. In particular, the low order
spatial discretisation introduces numerical diffusion that causes a
decrease in the peak velocity. This is a well-known issue that could
be addressed with more sophisticated solver schemes as discussed
in [LeVeque92].

Fig. 1: Initial condition of u.data in the 2D convection example.

Fig. 2: State of u.data after 100 timesteps in convection example.

92 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Laplace equation

The above example shows how Devito can be used to create finite
difference stencil operators from only a few lines of high-level
symbolic code. However, the previous example only required a
single variable to be updated, while more complex operators might
need to execute multiple expressions simultaneously, for example
to solve coupled PDEs or apply boundary conditions as part of the
time loop. For this reason devito.Operator objects can be
constructed from multiple update expressions and allow mutiple
expression formats as input.

Nevertheless, boundary conditions are currently not provided
as part of the symbolic high-level API. For exactly this reason,
Devito provides a low-level, or "indexed" API, where custom
SymPy expressions can be created with explicitly resolved grid
accesses to manually inject custom code into the auto-generation
toolchain. This entails that future extensions to capture different
types of boundary conditions can easily be added at a later stage.

To illustrate the use of the low-level API, we will use the
Laplace example from the original CFD tutorials (step 9), which
implements the steady-state heat equation with Dirichlet and
Neuman boundary conditions3. The governing equation for this
problem is

∂ 2 p
∂x2 +

∂ 2 p
∂y2 = 0 (3)

The rearranged discretised form, assuming a central difference
scheme for second derivatives, is

pn
i, j =

∆y2(pn
i+1, j + pn

i−1, j)+∆x2(pn
i, j+1 + pn

i, j−1)

2(∆x2 +∆y2)
(4)

Using a similar approach to the previous example, we can con-
struct the SymPy expression to update the state of a field p. For
demonstration purposes we will use two separate function objects
of type DenseData in this example, since the Laplace equation
does not contain a time-dependence. The shorthand expressions
pn.dx2 and pn.dy2 hereby denote the second derivatives in x
and y.
Create two separate symbols with space dimensions
p = DenseData(name='p', shape=(nx, ny),

space_order=2)
pn = DenseData(name='pn', shape=(nx, ny),

space_order=2)

Define equation and solve for center point in `pn`
eq = Eq(a * pn.dx2 + pn.dy2)
stencil = solve(eq, pn)[0]
The update expression to populate buffer `p`
eq_stencil = Eq(p, stencil)

Just as the original tutorial, our initial condition in this example is
p = 0 and the flow will be driven by the boundary conditions

p = 0 at x = 0

p = y at x = 2
∂ p
∂y

= 0 at y = 0, 1

To implement these BCs we can utilise the .indexed prop-
erty that Devito symbols provide to get a symbol of type
sympy.IndexedBase, which in turn allows us to use matrix
indexing notation (square brackets) to create symbols of type
sympy.Indexed instead of sympy.Function. This notation

3. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/
cfd/test_05_laplace.ipynb

allows users to hand-code stencil expressions using explicit rel-
ative grid indices, for example p[x, y] - p[x-1, y] / h
for the discretized backward derivative ∂u

∂x . The symbols x and y
hereby represent the respective problem dimensions and cause the
expression to be executed over the entire data dimension, similar
to Python’s : operator.

The Dirichlet BCs in the Laplace example can thus be im-
plemented by creating a sympy.Eq object that assigns either
fixed values or a prescribed function, such as the utility symbol
bc_right in our example, along the left and right boundary of
the domain. To implement the Neumann BCs we again follow the
original tutorial by assigning the second grid row from the top and
bottom boundaries the value of the outermost row. The resulting
SymPy expressions can then be used alongside the state update
expression to create our Operator object.
Create an additional symbol for our prescibed BC
bc_right = DenseData(name='bc_right', shape=(nx,),

dimensions=(x,))
bc_right.data[:] = np.linspace(0, 1, nx)

Create explicit boundary condition expressions
bc = [Eq(p.indexed[x, 0], 0.)]
bc += [Eq(p.indexed[x, ny-1], bc_right.indexed[x])]
bc += [Eq(p.indexed[0, y], p.indexed[1, y])]
bc += [Eq(p.indexed[nx-1, y], p.indexed[nx-2, y])]

Build operator with update and BC expressions
op = Operator(expressions=[eq_stencil] + bc,

subs={h: dx, a: 1.})

After building the operator, we can now use it in a time-
independent convergence loop that minimizes the L1 norm of
p. However, in this example we need to make sure to explicitly
exchange the role of the buffers p and pn. This can be achieved
by supplying symbolic data objects via keyword arguments when
invoking the operator, where the name of the argument is matched
against the name of the original symbol used to create the operator.

The convergence criterion for this example is defined as the
relative error between two iterations and set to ‖p‖1 < 10−4.
The corresponding initial condition and the resulting steady-state
solution, depicted in Figures 3 and 4 respectively, agree with
the original tutorial implementation. It should again be noted
that the chosen numerical scheme might not be optimal to solve
steady-state problems of this type, since implicit methods are often
preferred.
l1norm = 1
counter = 0
while l1norm > 1.e-4:

Determine buffer order
if counter % 2 == 0:

_p, _pn = p, pn
else:

_p, _pn = pn, p

Apply operator
op(p=_p, pn=_pn)

Compute L1 norm
l1norm = (np.sum(np.abs(_p.data[:])

- np.abs(_pn.data[:]))
/ np.sum(np.abs(_pn.data[:])))

counter += 1

Seismic Inversion Example

The primary motivating application behind the design of Devito
is the solution of seismic exploration problems that require highly
optimised wave propagation operators for forward modelling and

http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/cfd/test_05_laplace.ipynb
http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/cfd/test_05_laplace.ipynb

OPTIMISED FINITE DIFFERENCE COMPUTATION FROM SYMBOLIC EQUATIONS 93

Fig. 3: Initial condition of pn.data in the 2D Laplace example.

Fig. 4: State of p.data after convergence in Laplace example.

adjoint-based inversion. Obviously, the speed and accuracy of the
generated kernels are of vital importance. Moreover, the ability to
efficiently define rigorous forward modelling and adjoint operators
from high-level symbolic definitions also implies that domain
scientists are able to quickly adjust the numerical method and
discretisation to the individual problem and hardware architecture
[Louboutin17a].

In the following example we will show the generation of
forward and adjoint operators for the acoustic wave equation
and verify their correctness using the so-called adjoint test
[Virieux09]4. This test, also known as dot product test, verifies
that the implementation of an adjoint operator indeed computes
the conjugate transpose of the forward operator.

The governing wave equation for the forward operator is
defined as

m
∂ 2u
∂ t2 +η

∂u
∂ t
−∇

2u = q

where u denotes the pressure wave field, m is the square slowness,
q is the source term and η denotes the spatially varying dampening
factor used to implement an absorbing boundary condition.

On top of fast stencil operators, seismic inversion ker-
nels also rely on sparse point interpolation to inject the mod-
elled wave as a point source (q) and to record the pres-

4. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/
seismic/tutorials/test_01_modelling.ipynb

sure at individual point locations. To accommodate this, De-
vito provides another symbolic data type PointData, which
allows the generation of sparse-point interpolation expressions
using the "indexed" low-level API. These symbolic objects pro-
vide utility routines pt.interpolate(expression) and
pt.inject(field, expression) to create symbolic ex-
pressions that perform linear interpolation between the sparse
points and the cartesian grid for insertion into Operator kernels.
A separate set of explicit coordinate values is associated with the
sparse point objects for this purpose in addition to the function
values stored in the data property.

Adjoint Test

The first step for implementing the adjoint test is to build a forward
operator that models the wave propagating through an isotropic
medium, where the square slowness of the wave is denoted as
m. Since m, as well as the boundary dampening function eta,
is re-used between forward and adjoint runs the only symbolic
data object we need to create here is the wavefield u in order
to implement and rearrange our discretised equation eqn to
form the update expression for u. It is worth noting that the
u.laplace shorthand notation used here expands to the set of
second derivatives in all spatial dimensions, thus allowing us to use
the same formulation for two-dimensional and three-dimensional
problems.

In addition to the state update of u, we are also inserting two
additional terms into the forward modelling operator:

• src_term injects a pressure source at a point location
according to a prescribed time series stored in src.data
that is accessible in symbolic form via the symbol src.
The scaling factor in src_term is coded by hand but can
be automatically inferred.

• rec_term adds the expression to interpolate the wave-
field u for a set of "receiver" hydrophones that measure
the propagated wave at varying distances from the source
for every time step. The resulting interpolated point data
will be stored in rec.data and is accessible to the user
as a NumPy array.

def forward(model, m, eta, src, rec, order=2):
Create the wavefeld function
u = TimeData(name='u', shape=model.shape,

time_order=2, space_order=order)

Derive stencil from symbolic equation
eqn = m * u.dt2 - u.laplace + eta * u.dt
stencil = solve(eqn, u.forward)[0]
update_u = [Eq(u.forward, stencil)]

Add source injection and receiver interpolation
src_term = src.inject(field=u,

expr=src * dt**2 / m)
rec_term = rec.interpolate(expr=u)

Create operator with source and receiver terms
return Operator(update_u + src_term + rec_term,

subs={s: dt, h: model.spacing})

After building a forward operator, we can now implement the
adjoint operator in a similar fashion. Using the provided symbols
m and eta, we can again define the adjoint wavefield v and
implement its update expression from the discretised equation.
However, since the adjoint operator needs to operate backwards in
time there are two notable differences:

http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/seismic/tutorials/test_01_modelling.ipynb
http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/seismic/tutorials/test_01_modelling.ipynb

94 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

• The update expression now updates the backward sten-
cil point in the time derivative vn−1

i, j , denoted as
v.backward. In addition to that, the Operator is
forced to reverse its internal time loop by providing the
argument time_axis=Backward

• Since the acoustic wave equation is self-adjoint without
dampening, the only change required in the governing
equation is to invert the sign of the dampening term eta

* u.dt. The first derivative is an antisymmetric operator
and its adjoint minus itself.

Moreover, the role of the sparse point objects has now
switched: Instead of injecting the source term, we are now in-
jecting the previously recorded receiver values into the adjoint
wavefield, while we are interpolating the resulting wave at the
original source location. As the injection and interpolations are
part of the kernel, we also insure that these two are adjoints of
each other.
def adjoint(model, m, eta, srca, rec, order=2):

Create the adjoint wavefeld function
v = TimeData(name='v', shape=model.shape,

time_order=2, space_order=order)

Derive stencil from symbolic equation
Note the inversion of the dampening term
eqn = m * v.dt2 - v.laplace - eta * v.dt
stencil = solve(eqn, u.forward)[0]
update_v = [Eq(v.backward, stencil)]

Inject the previous receiver readings
rec_term = rec.inject(field=v,

expr=rec * dt**2 / m)

Interpolate the adjoint-source
srca_term = srca.interpolate(expr=v)

Create operator with source and receiver terms
return Operator(update_v + rec_term + srca_term,

subs={s: dt, h: model.spacing},
time_axis=Backward)

Having established how to build the required operators we can
now define the workflow for our adjoint example. For illustration
purposes we are using a utility object Model that provides the
core information for seismic inversion runs, such as the values for
m and the dampening term eta, as well as the coordinates of the
point source and receiver hydrophones. It is worth noting that the
spatial discretisation and thus the stencil size of the operators is
still fully parameterisable.
Create the seismic model of the domain
model = Model(...)

Create source with Ricker wavelet
src = PointData(name='src', ntime=ntime,

ndim=2, npoint=1)
src.data[0, :] = ricker_wavelet(ntime)
src.coordinates.data[:] = source_coords

Create empty set of receivers
rec = PointData(name='rec', ntime=ntime,

ndim=2, npoint=101)
rec.coordinates.data[:] = receiver_coords

Create empty adjoint source symbol
srca = PointData(name='srca', ntime=ntime,

ndim=2, npoint=1)
srca.coordinates.data[:] = source_coords

Create symbol for square slowness
m = DenseData(name='m', shape=model.shape,

space_order=order)

Fig. 5: Shot record of the measured point values in rec.data after
the forward run.

m.data[:] = model # Set m from model data

Create dampening term from model
eta = DenseData(name='eta', shape=shape,

space_order=order)
eta.data[:] = model.dampening

Execute foward and adjoint runs
fwd = forward(model, m, eta, src, rec)
fwd(time=ntime)
adj = adjoint(model, m, eta, srca, rec)
adj(time=ntime)

Test prescribed against adjoint source
adjoint_test(src.data, srca.data)

The adjoint test is the core definition of the adjoint of a linear
operator. The mathematical correctness of the adjoint is required
for mathematical adjoint-based optimizations methods that are
only guarantied to converged with the correct adjoint. The test
can be written as:

< src, ad joint(rec)>=< f orward(src), rec >

The adjoint test can be used to verify the accuracy of the forward
propagation and adjoint operators and has been shown to agree for
2D and 3D implementations [Louboutin17b]. The shot record of
the data measured at the receiver locations after the forward run is
shown in Figure 5.

Automated code generation

The role of the Operator in the previous examples is to generate
semantically equivalent C code to the provided SymPy expres-
sions, complete with loop constructs and annotations for per-
formance optimization, such as OpenMP pragmas. Unlike many
other DSL-based frameworks, Devito employs actual compiler
technology during the code generation and optimization process.
The symbolic specification is progressively lowered to C code
through a series of passes manipulating abstract syntax trees
(AST), rather than working with rigid templates. This software
engineering choice has an invaluable impact on maintainability,
extensibility and composability.

Following the initial resolution of explicit grid indices into the
low-level format, Devito is able to apply several types of auto-
mated performance optimization throughout the code generation
pipeline, which are grouped into two distinct sub-modules:

OPTIMISED FINITE DIFFERENCE COMPUTATION FROM SYMBOLIC EQUATIONS 95

• DSE - Devito Symbolic Engine: The first set of optimiza-
tion passes consists of manipulating SymPy equations with
the aim to decrease the number of floating-point operations
performed when evaluating a single grid point. This initial
optimization is performed following an initial analysis of
the provided expressions and consists of sub-passes such
as common sub-expressions elimination, detection and
promotion of time-invariants, and factorization of common
finite-difference weights. These transformations not only
optimize the operation count, but they also improve the
symbolic processing and low-level compilation times of
later processing stages.

• DLE - Devito Loop Engine: After the initial symbolic
processing Devito schedules the optimised expressions in
a set of loops by creating an Abstract Syntax Tree (AST).
The loop engine (DLE) is now able to perform typical
loop-level optimizations in mutiple passes by manipulating
this AST, including data alignment through array annota-
tions and padding, SIMD vectorization through OpenMP
pragmas and thread parallelism through OpenMP pragmas.
On top of that, loop blocking is used to fully exploit the
memory bandwidth of a target architecture by increasing
data locality and thus cache utilization. Since the effec-
tiveness of the blocking technique is highly architecture-
dependent, Devito can determine optimal block size
through runtime auto-tuning.

Performance Benchmark

The effectiveness of the automated performance optimization
performed by the Devito backend engines can be demonstrated
using the forward operator constructed in the above example. The
following performance benchmarks were run with for a three-
dimensional grid of size 512× 512× 512 with varying spatial
discretisations resulting in different stencil sizes with increasing
operational intensity (OI). The benchmark runs were performed
on on a Intel(R) Xeon E5-2620 v4 2.1Ghz "Broadwell" CPU with
a single memory socket and 8 cores per socket and the slope of
the roofline models was derived using the Stream Triad benchmark
[McCalpin95].

The first set of benchmark results, shown in Figure 6, high-
lights the performance gains achieved through loop-level opti-
mizations. For these runs the symbolic optimizations were kept at
a "basic" setting, where only common sub-expressions elimination
is performed on the kernel expressions. Of particular interest are
the performance gains achieved by increasing the loop engine
mode from "basic" to "advanced", to insert loop blocking and
explicit vectorization directives into the generated code. Due
to the improved memory bandwidth utilization the performance
increased to between 52% and 74% of the achievable peak. It
is also worth noting that more aggressive optimization in the
"speculative" DLE mode (directives for non-temporal stores and
row-wise data alignment through additional padding) did not yield
any consistent improvements due to the low OI inherent to the
acoustic formulation of the wave equation and the subsequent
memory bandwidth limitations of the kernel.

On top of loop-level performance optimizations, Figure 7
shows the achieved performance with additional symbolic opti-
mizations and flop reductions enabled. While the peak perfor-
mance shows only small effects from this set of optimizations
due to the inherent memory bandwidth limitations of the kernel, it
is interesting to note a reduction in operational intensity between

2 4 8 16 32

Operational intensity (Flops/Byte)

8

16

32

64

128

256

512

1024

8

9

20

30

40

50

60

70

80

90

200

300

400

500

600

700

800

900

P
e
rf

o
rm

a
n
ce

 (
G

Fl
o
p
s/

s)

15.8 s

21.8 s

27.4 s

33.4 s

S
O

=
1

2

57%

11.1 s

S
O

=
4

74%
8.8 s

S
O

=
8

63%

10.2 s

S
O

=
1

6

52%

12.3 s

Acoustic[(512, 512, 512),TO=[2]], with varying <DSE,DLE>, on bdwb_ss

<basic,basic>

<basic,advanced>

<basic,speculative>

Fig. 6: Performance benchmarks for loop-level optimizations with
different spatial orders (SO). The symbolic optimisations (DSE) have
been kept at level ’basic’, while loop optimisation levels (DLE) vary.

1 2 4 8 16 32

Operational intensity (Flops/Byte)

16

32

64

128

256

512

1024

20

30

40

50

60

70

80

90

200

300

400

500

600

700

800

900
P
e
rf

o
rm

a
n
ce

 (
G

Fl
o
p
s/

s)

S
O

=
4

64%

10.1 s

S
O

=
8

61%

10.5 s

S
O

=
1

2

57%

11.1 s

S
O

=
1

6

53%

12.3 s

Acoustic[(512, 512, 512),TO=[2]], with varying <DSE,DLE>, on bdwb_ss

<advanced,advanced>

Fig. 7: Performance benchmarks with full symbolic and loop-level
optimizations for different spatial orders (SO).

equivalent stencil sizes in Figures 6 and 7. This entails that, despite
only marginal runtime changes, the generated code is performing
less flops per stencil point, which is of vital importance for
compute-dominated kernels with large OI [Louboutin17a].

Integration with YASK

As mentioned previously, Devito is based upon actual compiler
technology with a highly modular structure. Each backend trans-
formation pass is based on manipulating an input AST and return-
ing a new, different AST. One of the reasons behind this software
engineering strategy, which is clearly more challenging than a
template-based solution, is to ease the integration of external tools,
such as the YASK stencil optimizer [Yount16]. We are currently
in the process of integrating YASK to complement the DLE, so
that YASK may replace some (but not all) DLE passes.

The DLE passes are organized in a hierarchy of classes
where each class represents a specific code transformation pipeline

96 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

based on AST manipulations. Integrating YASK becomes then a
conceptually simple task, which boils down to three actions:

1) Adding a new transformation pipeline to the DLE.
2) Adding a new array type, to ease storage layout trans-

formations and data views (YASK employs a data layout
different than the conventional row-major format).

3) Creating the proper Python bindings in YASK so that
Devito can drive the code generation process.

It has been shown that real-world stencil codes optimised
through YASK may achieve an exceptionally high fraction of
the attainable machine peak [Yount15], [Yount16]. Further, ini-
tial prototyping (manual optimization of Devito-generated code
through YASK) revealed that YASK may also outperform the loop
optimization engine currently available in Devito, besides ensuring
seamless performance portability across a range of computer
architectures. On the other hand, YASK is a C++ based framework
that, unlike Devito, does not rely on symbolic mathematics and
processing; in other words, it operates at a much lower level of
abstraction. These observations, as well as the outcome of the
initial prototyping phase, motivate the on-going Devito-YASK
integration effort.

Discussion

In this paper we present the finite difference DSL Devito and
demonstrate its high-level API to generate two fluid dynamics
operators and a full seismic inversion example. We highlight
the relative ease with which to create complex operators from
only a few lines of high-level Python code while utilising highly
optimised auto-generated C kernels via JIT compilation. On top
of purely symbolic top-level API based on SymPy, we show how
to utilise Devito’s secondary API to inject custom expressions
into the code generation toolchain to implement Dirichlet and
Neumann boundary conditions, as well as the sparse-point inter-
polation routines required by seismic inversion operators.

Moreover, we demonstrate that Devito-generated kernels are
capable of exploiting modern high performance computing archi-
tectures by achieving a significant percentage of machine peak.
Devito’s code-generation engines achieve this by automating well-
known performance optimizations, as well as domain-specific
optimizations, such as flop reduction techniques - all while
maintaining full compatibility with the scientific software stack
available through the open-source Python ecosystem.

Limitations and Future Work

The examples used in this paper have been chosen for their
relative simplicity in order to concisely demonstrate the current
features of the Devito API. Different numerical methods may
be used to solve the presented examples with greater accuracy
or achieve more realistic results. Nevertheless, finite difference
methods play an important role and are widely used in academic
and industrial research due to the relative ease of implementation,
verification/validation and high computational efficiency, which is
of particular importance for inversion methods that require fast
and robust high-order PDE solvers.

The interfaces provided by Devito are intended to create high-
performance operators with relative ease and thus increase user
productivity. Several future extensions are planned to enhance the
high-level API to further ease the construction of more complex
operators, including explicit abstractions for symbolic boundary

conditions, perfectly matched layer (PML) methods and staggered
grids. Devito’s secondary low-level API and use of several inter-
mediate representations are intended to ease the gradual addition
of new high-level features.

Moreover, the addition of YASK as an alternative backend
will not only provide more advanced performance optimisation,
but also an MPI infrastructure to allow Devito to utilise distribute
computing environments. Further plans also exist for integration
with linear and non-linear solver libraries, such as PETSc, to
enable Devito to handle implicit formulations.

Acknowledgements

This work was financially supported in part by EPSRC grant
EP/L000407/1 and the Imperial College London Intel Parallel
Computing Centre. This research was carried out as part of the
SINBAD project with the support of the member organizations
of the SINBAD Consortium. Part of this work was supported
by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Applied Mathematics
and Computer Science programs under contract number DE-
AC02-06CH11357.

REFERENCES

[Alnaes14] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and
G. N. Wells, “Unified Form Language: a domain-specific lan-
guage for weak formulations of partial differential equations”,
ACM Transactions on Mathematical Software (TOMS), vol.
40, no. 2, p. 9, 2014. https://dx.doi.org/10.1145/2566630

[Baba16] Y. Baba and V. Rakov, "The Finite-Difference Time Domain
Method for Solving Maxwell’s Equations", in "Electromag-
netic Computation Methods for Lightning Surge Protection
Studies", 2016, pp. 43–72, Wiley, ISBN 9781118275658.
http://dx.doi.org/10.1002/9781118275658.ch3

[Brandvik10] T. Brandvik and G. Pullan, “Sblock: A framework for ef-
ficient stencil-based pde solvers on multi-core platforms”, in
"Proceedings of the 2010 10th IEEE International Conference
on Computer and Information Technology", IEEE Computer
Society, 2010, pp. 1181–1188. http://dx.doi.org/10.1109/CIT.
2010.214

[Cardenas70] Cárdenas, A. F. and Karplus, W. J.: PDEL — a language for
partial differential equations, Communications of the ACM,
13, 184–191, 1970.

[Cook88] Cook Jr, G. O.: ALPAL: A tool for the development of
large-scale simulation codes, Tech. rep., Lawrence Livermore
National Lab., CA (USA), 1988.

[Datta08] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Sten-
cil computation optimization and auto-tuning on state-
of-the-art multicore architectures”, in Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, IEEE
Press, 2008, pp. 4:1–4:12. http://dl.acm.org/citation.cfm?id=
1413370.1413375

[Farrell13] Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M.
E.: Automated Derivation of the Adjoint of High-Level Tran-
sient Finite Element Programs, SIAM Journal on Scientific
Computing, 35, C369–C393, 2013. http://dx.doi.org/10.1137/
120873558

[Henretty13] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ra-
manujam, and P. Sadayappan, “A stencil compiler for short-
vector simd architectures,” in Proceedings of the 27th Inter-
national ACM Conference on International Conference on
Supercomputing, ACM, 2013, pp. 13–24. http://doi.acm.org/
10.1145/2464996.2467268

[Iverson62] Iverson, K.: A Programming Language, Wiley, 1962.
[Krakos12] J.A. Krakos, "Unsteady Adjoint Analysis for Output Sensitiv-

ity and Mesh Adaptation", PhD thesis, 2012. https://dspace.
mit.edu/handle/1721.1/77133

[Lange17] Lange, M., Luporini, F., Louboutin, M., Kukreja, N., Pan-
dolfo, V., Kazakas, P., Velesko, P., Zhang, S., Peng, P., and
Gorman, G. Dylan McCormick. 2017, June 7. opesci/devito:
Devito-3.0.1. Zenodo. https://doi.org/10.5281/zenodo.823172

https://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1002/9781118275658.ch3
http://dx.doi.org/10.1109/CIT.2010.214
http://dx.doi.org/10.1109/CIT.2010.214
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dx.doi.org/10.1137/120873558
http://dx.doi.org/10.1137/120873558
http://doi.acm.org/10.1145/2464996.2467268
http://doi.acm.org/10.1145/2464996.2467268
https://dspace.mit.edu/handle/1721.1/77133
https://dspace.mit.edu/handle/1721.1/77133
https://doi.org/10.5281/zenodo.823172

OPTIMISED FINITE DIFFERENCE COMPUTATION FROM SYMBOLIC EQUATIONS 97

[LeVeque92] LeVeque, R. J., "Numerical Methods for Conservation Laws",
Birkhauser-Verlag (1992).

[Liu09] Y. Liu and M. K. Sen, “Advanced Finite-Difference Method
for Seismic Modeling,” Geohorizons, Vol. 14, No. 2, 2009,
pp. 5-16.

[Logg12] Logg, A., Mardal, K.-A., Wells, G. N., et al.: Automated
Solution of Differential Equations by the Finite Element
Method, Springer, doi:10.1007/978-3-642-23099-8, 2012.

[Louboutin17a] Louboutin, M., Lange, M., Herrmann, F. J., Kukreja, N.,
and Gorman, G.: Performance prediction of finite-difference
solvers for different computer architectures, Computers
Geosciences, 105, 148—157, https://doi.org/10.1016/j.cageo.
2017.04.014, 2017.

[Louboutin17b] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, F. Her-
rmann, P. Velesko, and G. Gorman: Code generation from
symbolic finite-difference for geophysical exploration. In
preparation for Geoscientific Model Development (GMD),
2017.

[McCalpin95] McCalpin, J. D., "Memory Bandwidth and Machine Balance
in Current High Performance Computers", IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995.

[Meurer17] Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev
SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S,
Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F,
Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ,
Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cim-
rman R, Scopatz A. (2017) SymPy: symbolic computing in
Python. PeerJ Computer Science 3:e103 https://doi.org/10.
7717/peerj-cs.103

[Peiro05] J. Peiró, S. Sherwin, "Finite Difference, Finite Element and
Finite Volume Methods for Partial Differential Equations", in
"Handbook of Materials Modeling, pp. 2415—2446, ISBN
978-1-4020-3286-8, 2005. http://dx.doi.org/10.1007/978-1-
4020-3286-8_127.

[Rai91] M. M. Rai and P. Moin. 1991. "Direct simulations of turbu-
lent flow using finite-difference schemes", J. Comput. Phys.
96, 1 (October 1991), 15-53. http://dx.doi.org/10.1016/0021-
9991(91)90264-L

[Rathgeber16] Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini,
F., McRae, A. T. T., Bercea, G., Markall, G. R., and Kelly,
P. H. J.: "Firedrake: automating the finite element method
by composing abstractions", ACM Trans. Math. Softw.,
43(3):24:1–24:27, 2016. http://dx.doi.org/10.1145/2998441.

[Umetani85] Umetani, Y.: DEQSOL A numerical Simulation Language
for Vector/Parallel Processors, Proc. IFIP TC2/WG22, 1985,
5, 147–164, 1985.

[VanEngelen96] R. Van Engelen, L. Wolters, and G. Cats, “Ctadel: A gen-
erator of multi-platform high performance codes for pde-
based scientific applications,” in Proceedings of the 10th
international conference on Supercomputing. ACM, 1996, pp.
86–93.

[Virieux09] Virieux, J. and Operto, S., "An overview of full-waveform
inversion in exploration geophysics", GEOPHYSICS, 74,
WCC1–WCC26, 2009. http://dx.doi.org/10.1190/1.3238367

[Yount15] C. Yount, "Vector Folding: Improving Stencil Performance
via Multi-dimensional SIMD-vector Representation," 2015
IEEE 17th International Conference on High Performance
Computing and Communications, 2015 IEEE 7th Interna-
tional Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded
Software and Systems, New York, NY, 2015, pp. 865-870.
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27

[Yount16] C. Yount, J. Tobin, A. Breuer and A. Duran, "YASK —
Yet Another Stencil Kernel: A Framework for HPC Sten-
cil Code-Generation and Tuning," 2016 Sixth International
Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing (WOLFHPC),
Salt Lake City, UT, 2016, pp. 30-39. https://doi.org/10.1109/
WOLFHPC.2016.08

[Zhang12] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning
of 3d stencil codes on gpu clusters,” in Proceedings of the
Tenth International Symposium on Code Generation and
Optimization, ACM, 2012, pp. 155–164. http://doi.acm.org/
10.1145/2259016.2259037

https://doi.org/10.1016/j.cageo.2017.04.014
https://doi.org/10.1016/j.cageo.2017.04.014
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1007/978-1-4020-3286-8_127
http://dx.doi.org/10.1007/978-1-4020-3286-8_127
http://dx.doi.org/10.1016/0021-9991(91)90264-L
http://dx.doi.org/10.1016/0021-9991(91)90264-L
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1190/1.3238367
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.1109/WOLFHPC.2016.08
http://doi.acm.org/10.1145/2259016.2259037
http://doi.acm.org/10.1145/2259016.2259037

	Introduction
	Background
	Design and API
	Fluid Dynamics Examples
	Linear Convection
	Laplace equation

	Seismic Inversion Example
	Adjoint Test

	Automated code generation
	Performance Benchmark
	Integration with YASK

	Discussion
	Limitations and Future Work

	Acknowledgements
	References

