
106 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Accelerating Scientific Python with Intel Optimizations

Oleksandr Pavlyk‡∗, Denis Nagorny‡†, Andres Guzman-Ballen‡†, Anton Malakhov‡†, Hai Liu‡†, Ehsan Totoni‡†, Todd
A. Anderson‡†, Sergey Maidanov‡†

F

Abstract—It is well-known that the performance difference between Python and
basic C code can be up 200x, but for numerically intensive code another speed-
up factor of 240x or even greater is possible. The performance comes from
software’s ability to take advantage of CPU’s multiple cores, single instruction
multiple data (SIMD) instructions, and high performance caches. The article
describes optimizations, included in Intel® Distribution for Python*, aimed to
automatically boost performance of numerically intensive code. This paper is
intended for Python programmers who want to get the most out of their hardware
but do not have time or expertise to re-code their applications using techniques
such as native extensions or Cython.

Index Terms—numpy,scipy,scikit-learn,numba,simd,parallel,optimization,performance

Introduction

Scientific software is usually algorthmically rich and compute
intensive. The expressiveness of Python language as well as abun-
dance of quality packages offering implementations of advanced
algorithms allow scientists and engineers alike to code their
software in Python. The ability of this software to solve realistic
problems in a reasonable time is often hampered by inefficient
use of hardware resources. Intel Distribution for Python [IDP]
attempts to enable scientific Python community with optimized
computational packages, such as NumPy*, SciPy*, Scikit-learn*,
Numba* and PyDAAL across a range of Intel® processors, from
Intel® Core™ CPUs to Intel® Xeon® and Intel® Xeon Phi™
processors. This paper offers a detailed report about optimization
that went into the Intel® Distribution for Python*, which might
be interesting for developers of SciPy tools.

Fast Fourier Transforms

Intel® Distribution for Python* offers a thin layered interface
for the Intel® Math Kernel Library (Intel® MKL) that allows
efficient access to native FFT optimizations from a range of
NumPy and SciPy functions. The optimizations are provided for
real and complex data types in both single and double precision.
Update 2 improves performance of both one-dimensional and
multi-dimensional transforms, for in-place and out-of-place modes
of operation. As a result, Python performance may improve up to
60x over Update 1 and is now close to performance of native
C/Intel MKL.

* Corresponding author: Oleksandr.Pavlyk@intel.com
‡ Intel Corporation
† These authors contributed equally.

Copyright © 2017 Oleksandr Pavlyk et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Thanks to Intel® MKL’s flexibility in its supports for arbi-
trarily strided input and output arrays1 both one-dimensional and
multi-dimensional complex Fast Fourier Transforms along distinct
axes can be performed directly, without the need to copy the
input into a contiguous array first (the cost of copying, whose
complexity is O(n), is not negligible compared to the cost of
computing the transform, whose complexity is O (n logn), and
copying, being memory bound, does not scale well with the
number of available cores). Furthermore, input strides can be
arbitrary, including negative or zero, as long strides remain an
integer multiple of array’s item size, otherwise a copy will be
made.

The wrapper supports both in-place and out-of-place
modes, enabling it to efficiently power both numpy.fft and
scipy.fftpack submodules. In-place operations are only per-
formed where possible.

Direct support for multivariate transforms along distinct array
axis. Even when multivariate transform ends up being computed as
iterations of one-dimensional transforms, all subsequent iterations
are performed in place for efficiency.

The update also provides dedicated support for complex FFTs
on real inputs, such as np.fft.fft(real_array), by lever-
aging corresponding functionality in MKL2.

Dedicated support for specialized real FFTs, which only store
independent complex harmonics. Both numpy.fft.rfft and
scipy.fftpack.rfft storage modes are natively supported
via Intel® MKL.

1. https://software.intel.com/en-us/mkl-developer-reference-c-dfti-input-
strides-dfti-output-strides#10859C1F-7C96-4034-8E66-B671CE789AD6

2. https://software.intel.com/en-us/mkl-developer-reference-c-
dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#
CONJUGATE_EVEN_STORAGE

mailto:Oleksandr.Pavlyk@intel.com
https://software.intel.com/en-us/mkl-developer-reference-c-dfti-input-strides-dfti-output-strides#10859C1F-7C96-4034-8E66-B671CE789AD6
https://software.intel.com/en-us/mkl-developer-reference-c-dfti-input-strides-dfti-output-strides#10859C1F-7C96-4034-8E66-B671CE789AD6
https://software.intel.com/en-us/mkl-developer-reference-c-dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#CONJUGATE_EVEN_STORAGE
https://software.intel.com/en-us/mkl-developer-reference-c-dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#CONJUGATE_EVEN_STORAGE
https://software.intel.com/en-us/mkl-developer-reference-c-dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#CONJUGATE_EVEN_STORAGE

ACCELERATING SCIENTIFIC PYTHON WITH INTEL OPTIMIZATIONS 107

command fft(arg) fft(arg,
axis=0)

fft2(arg) fftn(arg)

arg.shape (3 ·106,) (1860, 1420) (275, 274, 273) (275, 274, 273)
arg.strides (10 ·16,) C-contiguous F-contiguous (16,274 ·275 ·16,275 ·16)
repetitions 16 16 8 8
IDP 2017.0.3 0.162±0.01 0.113±0.01 8.87±0.08 0.86±0.01
IDP 2017.0.1 0.187±0.06 1.046±0.03 10.3±0.1 12.38±0.03
pip numpy 2.333±0.01 1.769±0.02 29.94±0.03 34.455±0.007

TABLE 1: Table of total times of repeated executions of FFT computations using np.fft functions for arrays of complex doubles in different
Python distributions on Intel (R) Xeon (R) E5-2698 v3 @ 2.30GHz with 64GB of RAM.

command fft(arg) fft(arg) fft2(arg) fft2(arg) fftn(arg) fftn(arg)

overwrite_x False True False True False True
arg.shape (3 ·106,) (3 ·106,) (1860, 1420) (1860, 1420) (273, 274, 275) (273, 274, 275)
IDP
2017.0.3

cd 1.40±0.02 0.885±0.005 0.090±0.001 0.067±0.001 0.868±0.007 0.761±0.001
cs 0.734±0.004 0.450±0.002 0.056±0.001 0.041±0.0002 0.326±0.003 0.285±0.002

IDP
2017.0.1

cd 1.77±0.02 1.760±0.012 2.208±0.004 2.219±0.002 22.77±0.38 22.7±0.5
cs 5.79±0.14 5.75±0.02 1.996±0.1 2.258±0.001 27.12±0.05 26.8±0.25

pip
numpy

cd 26.06±0.01 23.51±0.01 4.786±0.002 3.800±0.003 67.69±0.12 81.46±0.01
cs 28.4±0.1 11.9±0.05 5.010±0.003 3.77±0.02 69.49±0.02 80.54±0.07

TABLE 2: Table of times of repeated execution of scipy.fftpack functions with overwrite_x=True (in-place) and
overwrite_x=False (out-of-place) on a C-contiguous arrays of complex double and complex singles.

Arithmetic and transcendental expressions

One of the great benefits of the Intel® Distribution for Python*
is the performance boost gained from leveraging SIMD and
multithreading in (select) NumPy’s UMath arithmetic and tran-
scendental operations across the range of Intel® CPUs, from
Intel® Core™ to Intel® Xeon™ & Intel® Xeon Phi™. With stock
Python as our baseline, we demonstrate the scalability of Intel®
Distribution for Python* by using functions that are intensively
used in financial math applications and machine learning:

One can see that stock Python (pip-installed NumPy from
PyPI) on Intel® Core™ i5 performs basic operations such as
addition, subtraction, and multiplication just as well as Intel®
Python, but not on Intel® Xeon™ and Intel® Xeon Phi™, where
Intel® Distribution for Python* provides over 10x speedup. This
can be explained by the fact that basic arithmetic operations in
stock NumPy are hard-coded AVX intrinsics (and thus already
leverage SIMD, but do not scale to other instruction set archi-
tectures (ISA), e.g. AVX-512). These operations in stock Python
also do not leverage multiple cores (i.e. no multi-threading of
loops under the hood of NumPy exist with such operations). Intel
Python’s implementation allows for this scalability by utilizing

both respective Intel® MKL VML CPU-dispatched and multi-
threaded primitives under the hood, and Intel® SVML intrinsics -
a compiler-provided short vector math library that vectorizes math
functions for both IA-32 and Intel® 64-bit architectures on sup-
ported operating systems. Depending on the problem size, NumPy
will choose one of the two approaches. On small array sizes,
Intel® SVML outperforms VML due to high library call overhead,
but for larger problem sizes, VML’s ability to both vectorize math

108 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

functions and multi-thread loops offsets the overhead.
Specifically, on Intel® Core™ i5 processor the Intel® Dis-

tribution for Python delivers greater performance in numerical
evaluation of transcendental functions (log, exp, erf, etc.) due to
utilization of both SIMD and multi-threading. We do not see any
visible benefit of multi-threading basic operations (as shown on
the graph) unless NumPy arrays are very large (not shown on
the graph). On Intel® Xeon™ processor, the 10x-1000x boost is
explained by leveraging both (a) AVX2 instructions to evaluate
transcendentals and (b) multiple cores (32 in our setup). Even
greater scalability of Intel® Xeon Phi™ relative to Intel® Xeon™
is explained by larger number of cores (64 in our setup) and wider
vector registers.

The following charts provide another view of Intel® Distri-
bution for Python performance versus stock Python on arithmetic
and transcendental vector operations in NumPy by measuring how
close UMath performance is to the respective native MKL call:

Again on Intel® Core™ i5 the stock Python performs well on
basic operations (due to hard-coded AVX intrinsics and because
multi-threading from Intel® Distribution for Python does not add
much on basic operations) but does not scale on transcendentals
(loops with transcendentals are not vectorized in stock Python).
Intel® Distribution for Python delivers performance close to native
speeds (90% of MKL) on relatively big problem sizes.

To demonstrate the benefits of vectorization and multi-
threading in a real-world application, we chose to use the Black
Scholes model, used to estimate the price of financial derivatives,
specifically European vanilla stock options. A Python implemen-
tation of the Black Scholes formula gives an idea of how NumPy
UMath optimizations can be noticed at the application level:

One can see that on Intel® Core™ i5 the Black Scholes
Formula scales nicely with Intel Python on small problem sizes but
does not perform well on bigger problem sizes, which is explained
by small cache sizes. Stock Python does marginally scale due to
leveraging AVX instructions on basic arithmetic operations, but
it is a whole different story on Intel® Xeon™ and Intel® Xeon

Phi™. Using Intel® Distribution for Python to execute the same
Python code on server processors, much greater scalability on
much greater problem sizes is observed. Intel® Xeon Phi™ scales
better due to bigger number of cores and as expected, while the
stock Python does not scale on server processors due to the lack
of AVX2/AVX-512 support for transcendentals and no utilization
of multiple cores.

Memory management optimizations

Update 2 introduces extensive optimizations in NumPy memory
management operations. As a dynamic language, Python manages
memory for the user. Memory operations, such as allocation, de-
allocation, copy, and move, affect performance of essentially all
Python programs. Specifically, Update 2 ensures NumPy allocates
arrays that are properly aligned in memory (their address is
a multiple of a specific factor, usually 64) on Linux, so that
NumPy and SciPy compute functions can benefit from respective
aligned versions of SIMD memory access instructions. This is
especially relevant for Intel® Xeon Phi™ processors. The most
significant improvements in memory optimizations in Update 2

ACCELERATING SCIENTIFIC PYTHON WITH INTEL OPTIMIZATIONS 109

comes from replacing original memory copy and move operations
with optimized implementations from Intel® MKL. The result:
improved performance because these Intel® MKL routines are
optimized for both a range of Intel® CPUs and multiple CPU
cores.

Faster Machine Learning with Scikit-learn

Scikit-learn is well-known library that provides a lot of al-
gorithms for many areas of machine learning. Having limited
developer resources this project prefers universal solutions and
proven algorithms. For performance improvement scikit-learn
uses Cython and underlying BLAS/LAPACK libraries through
SciPy and Numpy. OpenBLAS and MKL uses threaded based
parallelism to utilize multicores of modern CPUs. Unfortunately
BLAS/LAPACK’s functions are too low level primitives and their
usage is often not very efficient comparing to possible high-level
parallelism. For high-level parallelism scikit-learn uses multipro-
cessing approach that is not very efficient from technical point
of view. On the other hand Intel provides Intel® Data Analytics
Acceleration Library (Intel® DAAL) that helps speed up big
data analysis by providing highly optimized algorithmic building
blocks for all stages of data analytics (preprocessing, transforma-
tion, analysis, modeling, validation, and decision making) in batch,
online, and distributed processing modes of computation. It is
originally written in C++ and provides Java and Python bindings.
DAAL is heavily optimized for all Intel® Architectures including
Intel® Xeon Phi™, but it is not at all clear how to use DAAL
binding from Python. DAAL bindings for python are generated
automatically and reflects original C++ API very closely. This
makes its usage quite complicated because of its use of non
pythonic idioms and scarce documentation.

In order to combine the power of well optimized native code
with the familiar to machine learning community API the Intel
Distribution for Python includes fruits of efforts of scikit-learn
optimization. Thus beginning with version 2017.0.2 the Intel Dis-
tribution for Python includes scikit-learn with daal4sklearn sub-
module. Specifically, daal4sklearn optimizes Principal Compo-
nent Analysis (PCA), Linear and Ridge Regressions, Correlation
and Cosine Distances, and K-Means in scikit-learn using Intel®
DAAL. Speedups may range from 1.5x to 160x.

There is no direct matching between scikit-learn’s and In-
tel® DAAL’s APIs. Moreover, they aren’t fully compatible for
all inputs, therefore in those cases where daal4sklearn detects
incompatibility it falls back to original sklearn’s implementation.

Scikit-learn uses multiprocessing approach to parallelize com-
putations. The unfortunate consequence of this choice may be
a large memory footprint as each cloned process has access to
its own copy of all input data. This precludes scikit-learn from
effectivly utilizing many-cores architectures as Intel® Xeon Phi™
for big workloads. On the other hand DAAL internally uses
multi-threading approach sharing the same data across all cores.
This allows to DAAL to use less memory and to process bigger
workloads which especially important for ML algorithms.

Daal4sklearn is enabled by default and provides a simple API
to toggle these optimizations:
from sklearn.daal4sklearn import dispatcher
dispatcher.disable()
dispatcher.enable()

Several benchmarks [sklearn_benches] were prepared to demon-
strate performance that can be achieved with Intel® DAAL. A

fragment from the benchmark used to measure performance of
K-means is given below.

problem_sizes = [
(10000, 2), (10000, 25), (10000, 50),
(50000, 2), (50000, 25), (50000, 50),
(100000, 2), (100000, 25), (100000, 50)]

X={}
for rows, cols in problem_sizes:

X[(rows, cols)] = rand(rows, cols)

kmeans = KMeans(n_clusters=10, n_jobs=args.proc)

@st_time
def train(X):

kmeans.fit(X)

for rows, cols in problem_sizes:
print (rows, cols, end=' ')
X_local = X[(rows, cols)]
train(X_local)
print('')

Using all 32 cores of Intel® Xeon® processor E5-2698 v3 IDP’s
K-Means can be more than 50 times faster than the python
included with Ubuntu 14.04. P below means the number of CPU
cores used.

We compared the similar runs for other algorithms and nor-
malized results by results obtained with DAAL in C++ without
python to estimate overhead from python wrapping.

You can find some benchmarks [sklearn_benches]

Numba vectorization

Wikipedia defines SIMD as:

Single instruction, multiple data (SIMD), is a class
of parallel computers in Flynn’s taxonomy. It describes
computers with multiple processing elements that per-
form the same operation on multiple data points si-
multaneously. Thus, such machines exploit data level
parallelism, but not concurrency: there are simultane-
ous (parallel) computations, but only a single process
(instruction) at a given moment. Most modern CPU
designs include SIMD instructions in order to improve
the performance of multimedia use.

To utilize power of CPU’s SIMD instructions compilers need
to implement special optimization passes, so-called code vec-
torization. Modern optimizing compilers implement automatic
vectorization - a special case of automatic parallelization, where
a computer program is converted from a scalar implementation,
which processes a single pair of operands at a time, to a vector
implementation, which processes a single operation on multiple
pairs of operands at once.

110 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

rows cols IDP,s P=1 IDP,s P=32 System,s P=1 System,s P=32 Vs System,P=1 Vs System,P=32

10000 2 0.01 0.01 0.38 0.27 28.55 36.52
10000 25 0.05 0.01 1.46 0.57 27.59 48.22
10000 50 0.09 0.02 2.21 0.87 23.83 40.76
50000 2 0.08 0.01 1.62 0.57 20.57 47.43
50000 25 0.67 0.07 14.43 2.79 21.47 38.69
50000 50 1.05 0.10 24.04 4.00 22.89 38.52
100000 2 0.15 0.02 3.33 0.87 22.30 56.72
100000 25 1.34 0.11 33.27 5.53 24.75 49.07
100000 50 2.21 0.17 63.30 8.36 28.65 47.95

TABLE 3

According Numba’s project page Numba is an Open Source
NumPy-aware optimizing compiler for Python. It uses the remark-
able LLVM compiler infrastructure to compile Python syntax to
machine code. And it is quite expected that Numba tries to use
all these features to improve performance especially for scientific
applications.

LLVM implemented auto-vectorization for simple cases sev-
eral years ago but there remain sigificant problems with vector-
ization of elementary transcendental math functions. To enable
proper vectorization support a special vectorized implementation
of math functions such as sin, cos, exp is needed.

The Intel® C++ Compiler provides short vector math library
(SVML) intrinsics implementing vectorized mathematical func-
tions. These intrinsics are available for IA-32 and Intel® 64
architectures running on supported operating systems.

The SVML intrinsics are vector variants of corresponding
scalar math operations using __m128, __m128d, __m256,
__m256d, and __m256i data types. They take packed vector
arguments, simultaneously perform the operation on each element
of the packed vector argument, and return a packed vector result.
Due to low overhead of the packing for aligned contiguously
laid out data, vector operations may offer speed-ups over scalar
operations which are proportional to the width of the vector
register.

For example, the argument to the _mm_sin_ps intrinsic is
a packed 128-bit vector of four 32-bit precision floating point
numbers. The intrinsic simultaneously computes values of the sine
function for each of these four numbers and returns the four results
in a packed 128-bit vector, all within about the time of scalar
evaluation of only one argument.

Using SVML intrinsics is faster than repeatedly calling the
scalar math functions. However, the intrinsics may differ from the
corresponding scalar functions in accuracy of their results.

Besides intrinsics available with Intel® compiler there is
opportunity to call vectorized implementations directly from svml
library by their names.

Beginning with version 4.0 LLVM features (experimental)
model of autovectorization using SVML library, so a full stack
of technologies is now available to exploit in-core parallelization
of python code. To enable the autovectorization feature in Numba,
included in the Intel® Distribution for Python*, user needs to
set NUMBA_INTEL_SVML environmental variable to a non-zero
value, prompting Numba to load SVML library and to pass an
appropriate option to LLVM.

Let’s see how it works with a small example:

import math
import numpy as np
from numba import njit

def foo(x,y):
for i in range(x.size):

y[i] = math.sin(x[i])
foo_compiled = njit(foo)

Inspite of the fact that numba generates call for usual sin
function, as seen in the following excerpt from the generated
LLVM code:

label 16:
$16.2 = iternext(value=$phi16.1) ['$16.2',

'$phi16.1']
$16.3 = pair_first(value=$16.2) ['$16.2',

'$16.3']
$16.4 = pair_second(value=$16.2) ['$16.2',

'$16.4']
del $16.2 []
$phi19.1 = $16.3 ['$16.3',

'$phi19.1']
del $16.3 []
branch $16.4, 19, 48 ['$16.4']

label 19:
del $16.4 []
i = $phi19.1 ['$phi19.1',

'i']
del $phi19.1 []
$19.2 = global(math: <module 'math'\
from '/path_stripped/lib-dynload/\
math.cpython-35m-x86_64-...,.so'>) ['$ 19.2']
$19.3 = getattr(attr=sin,

value=$19.2) ['$19.2',
'$19.3']

del $19.2 []
$19.6 = getitem(index=i, value=x) ['$19.6',

'i', 'x']
$19.7 = call $19.3($19.6) ['$19.3',

'$19.6',
'$19.7']

del $19.6 []
del $19.3 []
y[i] = $19.7 ['$19.7',

'i', 'y']
del i []
del $19.7 []
jump 16 []

We can see direct use of the SVML-provided vector implementa-
tion of sine function:

leaq 96(%rdx), %r14
leaq 96(%rsi), %r15
movabsq $__svml_sin4_ha, %rbp
movq %rbx, %r13
.p2align 4, 0x90

ACCELERATING SCIENTIFIC PYTHON WITH INTEL OPTIMIZATIONS 111

.LBB0_13:
vmovups -96(%r14), %ymm0
vmovups -64(%r14), %ymm1
vmovups %ymm1, 32(%rsp)
vmovups -32(%r14), %ymm1
vmovups %ymm1, 64(%rsp)
vmovups (%r14), %ymm1
vmovups %ymm1, 128(%rsp)
callq *%rbp
vmovups %ymm0, 96(%rsp)
vmovups 32(%rsp), %ymm0
callq *%rbp
vmovups %ymm0, 32(%rsp)
vmovups 64(%rsp), %ymm0
callq *%rbp
vmovups %ymm0, 64(%rsp)
vmovupd 128(%rsp), %ymm0
callq *%rbp
vmovups 96(%rsp), %ymm1
vmovups %ymm1, -96(%r15)
vmovups 32(%rsp), %ymm1
vmovups %ymm1, -64(%r15)
vmovups 64(%rsp), %ymm1
vmovups %ymm1, -32(%r15)
vmovupd %ymm0, (%r15)
subq $-128, %r14
subq $-128, %r15
addq $-16, %r13
jne .LBB0_13

Thanks to enabled support of high accuracy SVML functions in
LLVM this jitted code sees more than 4x increase in performance.

svml enabled:

%timeit foo_compiled(x,y)
1000 loops, best of 3: 403 us per loop

svml disabled:

%timeit foo_compiled(x,y)
1000 loops, best of 3: 1.72 ms per loop

Auto-parallelization for Numba

In this section, we introduce a new feature in Numba that automat-
ically parallelizes NumPy programs. Achieving high performance
with Python on modern multi-core CPUs is challenging since
Python implementations are generally interpreted and prohibit
parallelism. To speed up sequential execution, Python functions
can be compiled to native code using Numba, implemented with
the LLVM just-in-time (JIT) compiler. All a programmer has to
do to use Numba is to annotate their functions with Numba’s
@jit decorator. However, the Numba JIT will not parallelize
NumPy functions, even though the majority of them are known
to have parallel semantics, and thus cannot make use of multiple
cores. Furthermore, even if individual NumPy functions were
parallelized, a program containing many such functions would
likely have lackluster performance due to poor cache behavior.
Numba’s existing solution is to allow users to write scalar kernels
in OpenCL style, which can be executed in parallel. However,
this approach requires significant programming effort to rewrite
existing array code into explicit parallelizable scalar kernels and
therefore hurts productivity and may be beyond the capabilities of
some programmers. To achieve both high performance and high
programmer productivity, we have implemented an automatic par-
allelization feature as part of the Numba JIT compiler. With auto-
parallelization turned on, Numba attempts to identify operations
with parallel semantics and to fuse adjacent ones together to form

kernels that are automatically run in parallel, all fully automated
without manual effort from the user.

Our implementation supports the following parallel operations:

1) Common arithmetic functions between NumPy arrays,
and between arrays and scalars, as well as NumPy ufuncs.
They are often called element-wise or point-wise array
operations:

• unary operators: + - ~
• binary operators: + - * / /? % | >> ^ << & **

//
• comparison operators: == != < <= > >=
• NumPy ufuncs that are supported in Numba’s

nopython mode.
• User defined DUFunc through @vectorize.

2) NumPy reduction functions sum and prod, although
they have to be written as numpy.sum(a) instead of
a.sum().

3) NumPy dot function between a matrix and a vector, or
two vectors. In all other cases, Numba’s default imple-
mentation is used.

4) Multi-dimensional arrays are also supported for the above
operations when operands have matching dimension and
size. The full semantics of NumPy broadcast between
arrays with mixed dimensionality or size is not supported,
nor is the reduction across a selected dimension.

5) NumPy array created from list comprehension is turned
into direct array allocation and initialization without in-
termediate list.

6) Explicit parallelization via prange that turns a for-loop
into a parallel loop.

As an example, consider the following Logistic Regression
function:

@jit(parallel=True)
def logistic_regression(Y, X, w, iters):

for i in range(iters):
w += np.dot(

Y / (1.0 + np.exp(Y * np.dot(X, w))),
X)

return w

We will not discuss details of the algorithm, but instead focus on
how this program behaves with auto-parallelization:

1) Input Y is a vector of size N, X is an N x D matrix, and
w is a vector of size D.

2) The function body is an iterative loop that updates vari-
able w. The loop body consists of a sequence of vector
and matrix operations.

3) The inner dot operation produces a vector of size N,
followed by a sequence of arithmetic operations either
between a scalar and vector of size N, or two vectors both
of size N.

4) The outer dot produces a vector of size D, followed by
an inplace array addition on variable w.

5) With auto-parallelization, all operations that produce ar-
ray of size N are fused together to become a single parallel
kernel. This includes the inner dot operation and all
point-wise array operations following it.

6) The outer dot operation produces a result array of
different dimension, and is not fused with the above
kernel.

112 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Here, the only thing required to take advantage of parallel
hardware is to set the parallel=True option for @jit, with
no modifications to the logistic_regression function it-
self. If we were to give an equivalent parallel implementation
using Numba’s @guvectorize decorator, it would require a
pervasive change that rewrites the code to extract kernel com-
putation that can be parallelized, which is both tedious and
challenging.

We measure the performance of automatic parallelization over
three workloads, comparing auto-parallelization with Numba’s
sequential JIT and Python 3.6, normalized to the sequential (1-
thread) speed of Numba.

Auto-parallelization proves to be an effective optimization for
these benchmarks, achieving speedups from 5.9x to 11.8x over
sequential Numba on 12-core Intel® Xeon® X5680 @3.33GHz
with 64GB RAM. The benchmarks are available as part of
Numba’s source distribution [numba].

Our future plan is to support array range selection, enable auto-
parallelization of more NumPy functions, as well as to add new
features such as iterative stencils. We also plan to implement more
optimizations that help make parallel programs run fast, improving
both performance and productivity for Python programmers in the
scientific domain.

Summary

The Intel® Distribution for Python is powered by Anaconda* and
conda build infrastructures that give all Python users the benefit
of interoperability within these two environments and access
to the optimized packages through a simple conda install
command. Intel® Distribution for Python* delivers significant
performance optimizations for many core algorithms and Python
packages, while maintaining the ease of downloading and instal-
lation.

REFERENCES

[fft_bench] http://github.com/intelpython/fft_benchmark
[sklearn_benches] https://github.com/dvnagorny/sklearn_benchs
[numba] https://github.com/numba/numba
[IDP] Intel |R| Distribution for Python*

http://github.com/intelpython/fft_benchmark
https://github.com/dvnagorny/sklearn_benchs
https://github.com/numba/numba
http://software.intel.com/en-us/distribution-for-python

	Introduction
	Fast Fourier Transforms
	Arithmetic and transcendental expressions
	Memory management optimizations
	Faster Machine Learning with Scikit-learn
	Numba vectorization
	Auto-parallelization for Numba
	Summary
	References

