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Abstract—Increased prevalence of smartphones and wearable devices has
facilitated the collection of triaxial accelerometer data for numerous Human
Activity Recognition (HAR) tasks. Concurrently, advances in the theory and
implementation of long short-term memory (LSTM) recurrent neural networks
(RNNs) has made it possible to process this data in its raw form, enabling
on-device online analysis. In this two-part experiment, we have first amassed
the results from thirty studies and reported their methods and key findings
in a meta-analysis style review. We then used these findings to guide our
development of a start-to-finish data analysis pipeline, which we implemented
on a commonly used open-source dataset in a proof of concept fashion. The
pipeline addresses the large disparities in model hyperparameter settings and
ensures the avoidance of potential sources of data leakage that were identified
in the literature. Our pipeline uses a heuristic-based algorithm to tune a baseline
LSTM model over an expansive hyperparameter search space and trains the
model on standardized windowed accelerometer signals alone. We find that we
outperform other baseline models trained on this data and are able to compete
with benchmark results from complex models trained on higher-dimensional
data.

Index Terms—Neural Network, Human Activity Recognition, Recurrent Neural
Network, Long Short-Term Memory, Accelerometer, Machine Learning, Data
Analysis, Data Science, Hyperparameter Optimization, Hyperparameter

Introduction

Human Activity Recognition (HAR) is a time series classification
problem in which a classifier attempts to discern distinguishable
features from movement-capturing on-body sensors [KHC10].
The most common sensor for HAR tasks is the accelerometer,
which measures high-frequency (30-200Hz) triaxial time series
recordings, often containing noise, imprecision, missing data,
and long periods of inactivity between meaningful segments
[RDML05], [BI04], [OR16]. Consequently, attempts to use tra-
ditional classifiers typically require significant preprocessing and
technical engineering of hand crafted features from raw data,
resulting in a barrier to entry for the field and making online
and on-device data processing impractical [GRX16], [MS10],
[GBGG16], [RDML05], [OR16].
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The limitations of classical methods in this domain have been
alleviated by concurrent theoretical and practical advancements in
artificial neural networks (ANNs), which are more suited for com-
plex non-linear data. While convolutional neural networks (CNNs)
are attractive for their automated feature extraction capabilities
during convolution and pooling operations [SS17], [REBS17],
[FFH+16], [SKP18], [ZSO17], [GRX16], [OR16], [GBGG16],
recurrent neural networks (RNNs) are specifically designed to
extract information from time series data due to the recurrent
nature of their data processing and weight updating operations
[WZ89]. Furthermore, whereas earlier implementations of RNNs
experienced problems when processing longer time series (tens
to hundreds of time steps), the incorporation of a multi-gated
memory cell in long short-term memory recurrent neural networks
(LSTMs) [HS97] along with other regularization schemes helped
alleviate these issues.

As RNN usage continues, numerous studies have emerged
to address various aspects of understanding and implementing
these complex models, namely regarding the vast architectural and
hyperparameter combinations that are possible [GSS02], [RG17],
[PW17], [KJFF15], [MKS17]. Unfortunately, these pioneering
studies tend to focus on tasks other than HAR, leaving the
time series classification tasks of HAR without domain-specific
architecture guidance.

In a meta-analysis style overview of the use of LSTM RNNs
for HAR experiments across 30 reports (discussed below), we
found a general lack of consensus regarding the various model
architectures and hyperparameters used. Often, a given pair of
experiments explored largely or entirely non-overlapping ranges
for a single hyperparameter. Key architectural and procedural
details are often not included in the reports, making reproducibility
impossible. The analysis pipelines employed are often lacking
detail and sources of data leakage, where information from the
testing data is exposed to the model during training, appear to
be overlooked in certain cases. Without clear justifications for
model implementations and deliberate, reproducible data analy-
sis pipelines, objective model comparisons and inferences from
results cannot be made. For these reasons, the current report
seeks to summarize the previous implementations of LSTMs for
HAR research available in literature and outline a structured data
analysis pipeline for this domain. We implement a truncated
version of our pipeline, optimizing a baseline LSTM over an
expansive hyperparameter search space, and obtain results on par
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with benchmark studies. We suspect that our efforts will encourage
scientific rigor in the field going forward and initiate more granular
exploration of the field as we understand these powerful data
analysis tools within this domain.

Background

This section is intended to give the reader a digestible introduction
to ANNs, RNNs, and the LSTM cell. The networks will be
discussed as they relate to multi-class classification problems as is
the task in HAR.

Artificial Neural Networks The first ANN architecture was
proposed by Drs. Warren McCulloch and Walter Pitts in 1943 as a
means to emulate the cumulative semantic functioning of groups
of neurons via propositional logic [MP43], [Ger17]. Frank Rosen-
blatt subsequently developed the Perceptron in 1957 [Ros57]. This
ANN variation carries out its step-wise operations via mathemat-
ical constructs known as linear threshold units (LTUs). The LTU
operates by aggregating multiple weighted inputs and feeding this
summation u through an activation function f (u) or step function
step(u), generating an interpretable output ỹ (e.g. 0 or 1) [Ger17].

ỹ = f (u)

= f (w · x)

where · is the dot product operation from vector calculus. x is
a single instance of the training data, containing values for all n
attributes of the data. As such, w is also of length n, and the entire
training data set for all m instances is a matrix X of dimensions m
by n (i.e., m x n).

A 2-layer ANN can be found in Figure 1 A. Each attribute
in instance x(i) represents a node in the perceptron’s input layer,
which simply provides the raw data to the the output layer - where
the LTU resides. To represent k target classes, k LTU nodes are
included in the output layer, each corresponding to a single class
in y. Each LTU’s prediction ỹ indicates the predicted probability
that the training instance belongs to the corresponding class. The
LTU output with the largest value - max(ỹ) - is taken as the overall
predicted class for the instance of the data being analyzed. Taken
over the entire dataset, each LTU has a prediction vector ỹk length
m and the entire output layer produces a prediction matrix Ỹ with
dimensions m x k. Additionally, each LTU contains its own weight
vector wk of length n (i.e., a fully-connected network), resulting in
a weight matrix W of dimensions n x k.

ANNs often contain complex architectures with additional
layers, which allow for nonlinear transformations of the data and
increase the flexibility and robustness of the model. If we look
at a simple three-layer neural network (see Figure 1 B), we see
input and output layers as described above, as well as a layer in
the middle, termed a hidden layer. This layer acts much like the
output layer, except that its outputs z for each training instance are
fed into the output layer, which then generates predictions ỹ from
z alone. The complete processing of all instances of the dataset, or
all instances of a portion of the dataset called a mini-batch, through
the input layer, the hidden layer, and the output layer marks the
completion of a single forward pass.

For the model to improve, the outputs generated by this
forward pass must be evaluated and the model updated in an
attempt to improve the model’s predictive power on the data.
An error term (e.g., sum of squared error (sse)) is calculated by
comparing individual predictions ỹk to corresponding ground truth
target values in yk. Thus, an error matrix E is generated containing

Fig. 1: A. A two-layer network and associated dimensions of the
components. B. A three-layer network showing a single data instance
x(i) being fed in as input.

error terms over all k classes for all m training instances. This
error matrix is used as an indicator for how to adjust the weight
matrix in the output layer so as to yield more accurate predictions,
and the corrections made to the output layer give an indication
of how to adjust the weights in the hidden layer. This process
of carrying the error backward from the output layer through the
hidden layer(s) is known as backpropagation. One forward pass
and subsequent backpropagation makes up a single epoch, and the
training process consists of many epochs repeated in succession to
iteratively improve the model.

The iterative improvements to the model are known as opti-
mization, and many methods exist to carry this process out. The
common example is stochastic gradient descent (SGD), which
calculates the gradient of the error - effectively the steepness of
E’s location as it "descends" toward lower error - and adjusts the
weight matrices at each layer in a direction opposite this gradient.
The change to be applied to the weight matrices is mediated via a
learning rate η [Mil18].

E = Y − f (XW )

optimization:
minW‖E‖F

hsseW =
1
2

k−1

∑
c=0

(yc− f (X ·wc)) · (yc− f (X ·wc))

∂hsse
∂wk

= X ∗ [ f ′(X ·wk)∗ ek]∗η =−X ∗δk ∗η

where f (...) represents the activation function, minW represents
the objective function of minimizing with respect to W , and
‖E‖F stands for the Frobenius norm on the error matrix E.
hsseW represents the halved (for mathematical convenience) sum
of squared error, calculated for all k nodes in the output layer.
f ′(...) represents the derivative of the activation function over the
term in the parentheses.

Looking at our three-layer neural network depicted in Figure
1, a single epoch would proceed as follows:

1) Conduct a forward pass, compute ỹ and compare with y
to generate the error term:

zh = f1(ah · x)
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ỹk = f2(bk · z)

ek = yk− ỹk

2) Backpropagate the error regarding the correction needed
for ỹ.

3) Backpropagate the correction to the hidden layer.
4) update weight matrices A and B via δ y and δ z:

bhk = bhk− zhδ
y
k ∗η

= bhk−
∂hsse
∂bhk

∗η

a jh = a jh− x jδ
z
h ∗η

= a jh−
∂hsse
∂a jh

∗η

sse is commonly used as the error term for regression problems,
whereas squared error or cross entropy is typical for classification
problems.

cross entropy =−
m

∑
i=1

k

∑
c=1

yic∗ log( fc(xi))

The high flexibility of neural networks increases the chances of
overfitting, and there are various ways to avoid this. Early stopping
is a technique that monitors the change in performance on a
validation set (subset of the training set) and stops training once
improvement slows sufficiently. Weight decay helps counter large
updates to the weights during backpropagation and slowly shrinks
the weights toward zero in proportion to their relative sizes.
Similarly, the dropout technique "forgets" a specified proportion
of the outputs from a layer’s neurons by not passing those values
on to the next layer. Standardizing the input is important, as it
encourages all inputs to be treated equally during the forward pass
by scaling and mitigating outliers’ effects [Ger17], [Mil18].

Other hyperparameters tend to affect training efficiency and
effectiveness and tend to differ with different datasets and types of
data. Hammerla, et. al. found learning rate η to be an important
hyperparameter in terms of its effect on performance [HHP16].
Too small a learning rate and the model will exhibit slow conver-
gence during training, while too large a value will lead to wild
oscillations during optimization [Mil18]. Hammerla, et. al. also
find the number of units per layer n to be important, and Miller
adds that too many hidden units is better than too few, leading
to sparse layers of weight matrices versus restricting flexibility of
the model, respectively. Bias helps account for irreducible error
in the data and is implemeneted via a node whose inputs are
always 1’s (top node in the input layer of Figure 1 A). Reimers
and Gurevych emphasize the importance of weight initialization
for model performance in their survey of the importance of
hyperparameter tuning for using LSTMs for language modeling
[RG17]. Jozefowicz, et. al. cite the initialization of the forget gate
bias to 1 as a major factor in LSTM performance [JZS15].

Recurrent Neural Networks (RNNs) The recurrent neuron,
developed by Drs. Ronald Williams and David Zipser in 1989
[WZ89], is extremely useful in training a model on sequence
data. Recurrent neurons address temporal dependencies along the
temporal dimension of time series data by sending their outputs
both forward to the next layer and "backward throught time,"
looping the neuron’s output back to itself as input paired with new
input from the previous time step. Thus, a component of the input
to the neuron is an accumulation of activated inputs from each

Fig. 2: The recurrent neuron from three perspectives. A. A single
recurrent neuron, taking input from X, aggregating this input over all
timesteps in a summative fashion and passing the summation through
an activation function at each timestep. B. The same neuron unrolled
through time, making it resemble a multilayer network with a single
neuron at each layer. C. A recurrent layer containing five recurrent
nodes, each of which processes the entire dataset X through all time
point.

previous time step. Figure 2 depicts a recurrent neuron as part of
a recurrent layer. Recurrent layers are placed between input layers
and output layers and can be used in succession with densely
connected and convolutional layers.

Instead of a single weight vector as in ANN neurons, RNN
neurons have two sets of weights, one (wx) for the new inputs
xt and one (wy) for the outputs of the previous time step y(t−1),
yielding matrices Wx and Wy when taken over the entire layer.
The portion of the neuron which retains a running record of the
previous time steps is the memory cell or just the cell [Ger17].

Outputs of the recurrent layer:

y(t) = φ(Wx · x(t)+Wy ·Y(t−1)+b)

where φ is the activation function and b is the bias vector of length
n (the number of neurons).

The hidden state, or the state, of the cell (h(t)) is the informa-
tion that is kept in memory over time.

To train these neurons, we "unroll" them after a complete
forward pass to reveal a chain of linked cells the length of time
steps t in a single input. We then apply standard backpropagation
to these links, calling the process backpropagation through time
(BPTT). This works relatively well for very short time series,
but once the number of time steps increases to tens or hundreds
of time steps, the network essentially becomes very deep during
BPTT and problems arise such as very slow training and exploding
and vanishing gradients [Ger17]. Various hyperparameter and
regularization schemes exist to alleviate exploding/vanishing gra-
dients, including gradient clipping [PMB13], batch normalization,
dropout, and the long short-term memory (LSTM) cell originally
developed by Sepp Hochreiter and Jurgen Schmidhuber in 1997
[HS97].

Long Short-Term Memory (LSTM) RNNs The LSTM cell
achieves faster training and better long-term memory than vanilla
RNN neurons by maintaining two state vectors, the short-term
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Fig. 3: The inner mechanisms of an LSTM cell. From outside the cell,
information flows similarly as with a vanilla recurrent cell, except that
the state now exists as two parts, one for long-term memory (c(t)) and
the other for short-term memory (h(t)). Inside the cell, four different
sub-layers and associated gates are revealed.

state h(t) and the long-term state c(t), mediated by a series of inner
gates, layers, and other functions. These added features allow the
cell to process the time series in a deliberate manner, recognizing
meaningful input to store long-term and later extract when needed,
and forget unimportant information or that which is no longer
needed [Ger17].

As can be seen in Figure 3, when the forward pass advances
by one time step, the new time step’s input enters the LSTM
cell and is copied and fed into four independent fully-connected
layers (each with its own weight matrix and bias vector), along
with the short-term state from the previous time step, h(t−1). The
main layer is g(t), which processes the inputs via tanh activation
function. In the basic recurrent cell, this is sent straight to the
output; in the LSTM cell, part of this is incorporated in the long-
term memory as decided by the input gate. The input gate also
takes input from another layer, i(t), which processes the inputs
via the sigmoid activation function σ (as do the next two layers).
The third layer, f(t), processes the inputs, combines them with
c(t−1), and passes this combination through a forget gate which
drops a portion of the information therein. Finally, the fourth
fully-connected layer o(t) processes the inputs and passes them
through the output gate along with a copy of the updated long-
term state c(t) after its additions from f(t), deletions by the forget
gate, further additions from the filtered g(t)-i(t) combination and a
final pass through a tanh activation function. The information that
remains after passing through the output gate continues on as the
short-term state h(t).

i(t) = σ(W )xi · x(t)+Whi ·h(t−1)+bi

f(t) = σ(W )x f · x(t)+Wh f ·h(t−1)+b f

o(t) = σ(W )xo · x(t)+Who ·h(t−1)+bo

g(t) = σ(W )xg · x(t)+Whg ·h(t−1)+bg

c(t) = f(t)⊗ c(t−1)+ i(t)⊗g(t)

y(t) = h(t) = o(t)⊗ tanh(c(t))

where ⊗ represents element-wise multiplication [Ger17].

Related Works

The following section outlines the nuanced hyperparameter com-
binations used by 30 studies available in literature in a meta-
analysis style survey. Published works as well as pre-published
and academic research projects were included so as to gain insight
into the state-of-the-art methodologies at all levels and increase
the volume of works available for review. It should be noted that
the following summaries are not necessarily entirely exhaustive
regarding the specifications listed. Additionally, many reports did
not include explicit details of many aspects of their research.

The survey of previous experiments in this field provided
blueprints for constructing an adequate search space of hyper-
parameters. We have held our commentary on the findings of this
meta-study until the Discussion section.

Experimental Setups Across the 30 studies, each used a unique
implementation of LSTMs for the research conducted therein.
Data sets used include the OPPORTUNITY Activity Recogni-
tion dataset [OR16], [RVCK17], [GRX16], [ZYCG17], [Bro17],
[GP17], UCI HAR dataset [U18], [ZYCG17], PAMAP2 [OR16],
[Set18], [GP17], [ZYH+18], Skoda [OR16], [GP17], WISDM
[CZZZ16], [U18], and various study-specific and/or internally-
collected datasets [MMB+18]. Activity classes include “Activities
of Daily Life” (ADL; e.g., opening a drawer, climbing stairs,
walking, or sitting down), smoking [Ber17], cross-country skiing
[REBS17], eating [KDD17], nighttime scratching [MAR+16],
driving [CFF+17], and so on.

Data analysis pipelines employed include cross validation
[LBMG15], repeating trials [SS16], and various train-validation-
test splitting procedures [SS17], [WA17], [HDJS18]. Most studies
used the Python programming language and implemented LSTMs
via third-party libraries such as Theano Lasagne, RNNLib, and
Keras with TensorFlow.

Preprocessing Some reports kept preprocessing to a minimum,
e.g., linear interpolation to fill missing values [OR16], per-channel
normalization [OR16], [HDJS18], and standardization [CZZZ16],
[ZYCG17]. Zhao, et. al. standardized the data to have 0.5 standard
deviation [ZYCG17] as opposed to the typical unit standard
deviation, citing Wiesler, et. al. as supporting this nuance for deep
learning implementations [WRSN14].

More advanced noise reduction strategies include ker-
nel smoothing [GRX16], removing the gravity component
[MAR+16], applying a low-pass filter [LBMG15], removing the
initial and last 0.5 seconds [HDJS18]. Moreau, et. al. grouped to-
gether segments of data from different axes, tracking the dominant
direction of motion across axes [MAR+16].

For feeding the data into the models, the sliding window
technique was commonly used, with window sizes ranging from
32 [MMB+18] to 5000 [ZYCG17] milliseconds (ms); typically
50% of the window size was used as the step size [REBS17],
[SS17], [Bro17], [OR16]. Guan and Plotz ran an ensemble of
models, each using a random sampling of a random number
of frames with varying sample lengths and starting points. This
method is similar to the bagging scheme of random forests and
was implemented to increase robustness of the model [GP17].

Architectures Numerous architectural and hyperparameter
choices were made among the various studies. Most studies
used two LSTM layers [OR16], [CZZZ16], [KDD17], [RVCK17],
[U18], [ZYCG17], [GP17], [HDJS18], [MMB+18], while oth-
ers used a single layer [WA17], [Bro17], [SS16], [CFF+17],
[ZWYM16], [ZYH+18], [SKP18], three layers [ZWYM16], or
four layers [MP17].
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The number of units (i.e., nodes, LSTM cells) per layer range
from 3 [MAR+16] to 512 [Set18]. Several studies used different
numbers of units for different circumstances – e.g., three units per
layer for unilateral movement (one arm) and four units per layer
for bilateral movement (both arms) [MAR+16] or 28 units per
layer for the UCI HAR dataset (lower dimensionality) versus 128
units per layer for the Opportunity dataset [ZYCG17]. Others used
different numbers of units for different layers of the same model
– e.g., 14-14-21 for a 3-layer model [ZWYM16].

Almost all of the reports used the sigmoid activation for the
recurrent connections within cells and the tanh activation function
for the LSTM cell outputs, as these are the activation functions
used the original paper [HS97]. Other activation functions used for
the cell outputs include ReLU [ZYCG17], [HDJS18] and sigmoid
[ZYH+18].

Several studies designed or utilized novel LSTM architec-
tures that went beyond the simple tuning of hyperparameters.
Architectures tested include the combination of CNNs with
LSTMs such as ConvLSTM [GRX16], DeepConvLSTM [OR16],
[SS17], [Bro17], and the multivariate fully convolutional LSTM
network (MLSTM-FCN) [KMDH18]; innovations regarding the
connections between hidden units including the bidirectional
LSTM (b-LSTM) [REBS17], [Bro17], [MAR+16], [LBMG15],
[HHP16], hierarchical b-LSTM [LC12], deep residual b-LSTM
(deep-res-bidir LSTM) [ZYCG17], and LSTM with peephole con-
nections (p-LSTM) [REBS17]; and other nuanced architectures
such as ensemble deep LSTM [GP17], weighted-average spatial
LSTM (WAS-LSTM) [ZYH+18], deep-Q LSTM [SKP18], the
multivariate squeeze-and-excite fully convolutional network AL-
STM (MALSTM-FCN) [KMDH18], and similarity-based LSTM
[FFH+16]. Note that the term “deep” indicates the use of multiple
layers of hidden connections - generally three or more LSTM
layers qualifies as "deep".

The use of densely-connected layers before or after the LSTM
layers was also common. Kyritsis, et. al. added a dense layer with
ReLU activation after the LSTM layers, Zhao, et. al. included
a dense layer with tanh activation after the LSTMs, and Musci,
et. al. used a dense layer before and after its two LSTM layers
[KDD17], [ZWYM16], [MMB+18]. The WAS-LSTM, deep-Q
LSTM, and the similarity-based LSTM used a combination of
dense and LSTM hidden layers.

Training Weight initialization strategies employed include
random orthogonal initialization [OR16], [SS17], fixed random
seed [Set18], the Glorot uniform initialization [Bro17], random
uniform initialization on [-1, 1] [MAR+16], or using a random
normal distribution [HDJS18]. For mini-batch training, reported
batch sizes range from 32 [RVCK17], [Set18] to 450 [Ber17]
training examples (e.g., windows) per batch.

Loss functions for monitoring training include categorical
cross-entropy [OR16], [MP17], [CZZZ16], [SS17], [KDD17],
[Set18], [Bro17], [HDJS18], [ZYH+18], F1 score loss [GP17],
mean squared error (MSE) [CFF+17], and mean absolute error
[ZWYM16]. During back propagation, various updating rules
– e.g. RMSProp [OR16], [Set18], [Bro17], Adam [MP17],
[KDD17], [Bro17], [HDJS18], [ZYH+18], and Adagrad [SS16],
[HHP16] – and learning rates – 10^-7 [SS16], 10^-4 [SS17],
[GP17], 2e-4 [MAR+16], 5e-4 [LBMG15], and 10^-2 [OR16] are
used.

Regularization techniques employed include weight decay of
90% [OR16], [SS17]; update momentum of 0.9 [MAR+16], 0.2
[LBMG15], or the Nesterov implementation [SS16]; dropout (e.g.,

50% [OR16], [SS17] or 70% [ZWYM16]) between various layers;
batch normalization [ZYCG17]; or gradient clipping using the
norm [ZYCG17], [HDJS18], [ZYH+18]. Broome chose to test
the stateful configuration for its baseline LSTM [Bro17]. In this
configuration, unit memory cell weights are maintained between
each training example instead of resetting them to zero after each
forward pass.

The number of epochs specified ranged from 100 [Bro17] to
10,000 [HDJS18]. Many studies chose to use early stopping to pre-
vent overfitting [JWHT17]. Various patience schemes, specifying
how many epochs with no improvement above a given threshold
the model should allow, were chosen.

Performance Measures Various performance measures were
used to assess the performance of the model, including the F1
score - used by most [OR16], [Bro17], [GRX16], [ZYCG17],
[Bro17], classification error [REBS17], accuracy [SS17], [Set18],
and ROC [MAR+16], [HDJS18].

As this meta-analysis style overview has shown, there are
many different model constructions being employed for HAR
tasks. The work by the aforementioned studies as well as others
have laid the groundwork for this field of research.

Experimental Setup

We implemented a truncated version of our Pipeline, and have
made code available for running the entire Pipeline on the UCI
HAR Dataset at https://github.com/xtianmcd/accelstm.

Data Although many studies use the gyroscope- and
magnetometer-supplemented records from complex inertial sig-
nals, accelerometer data is the most ubiquitous modality in this
field and training models on this data alone helps illuminate
the robustness of the model and requires lower computational
complexity (i.e., more applicable to online and on-device clas-
sifications). As such, this report trains its models on triaxial
accelerometer data alone.

The primary dataset used for our experiments is the Human
Activity Recognition Using Smartphones Data Set (UCI HAR
Dataset) from Anguita, et. al. [AGO+13].

UCI HAR Dataset Classes (6) include walking, climbing stairs,
descending stairs, sitting, standing, and laying down. Data was
collected from built-in accelerometers and gyroscopes (not used
in our study) in smartphones worn on the waists of participants.

A degree of preprocessing was applied to the raw signals them-
selves by the data collectors. The accelerometer data (recorded
at 50Hz) was preprocessed to remove noise by applying a third
order low pass Butterworth filter with corner frequecy of 20Hz
and a median filter. A second filter was then applied to the total
accelerometer signal (T) to remove the gravity component, leaving
the isolated body accelerometer signal (B). The accelerometer
signals for both B and T were provided as pre-split single-axis
windowed signals divided into separate files; see Figure 4 A.
Windows contained 2.56 seconds (128 time steps) of data and
had a step size of 50% of the window size. A 70:30 train-to-test
split was used, splitting one of the participants between the two
sets.

Preprocessing We kept preprocessing to a minimum. We
first attempted to “undo” as much of the preprocessing already
performed on the data and reformat the data for feeding it into
the network. We did this to establish a baseline format for
the data at the start of the Pipeline so that data from differ-
ent datasets can be used. The code for this procedure can be

https://github.com/xtianmcd/accelstm
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Fig. 4: Depiction of the "undoing" procedure to return the data in
the UCI HAR Dataset to its unprocessed form. A. Data is provided
as train/test-split single-axis windowed acccelerometer signals. B.
Combine train and test sets. C. Remove windows; reformat labels
and subject include’s accordingly. D. Axes are combined into a three-
dimensional time series; one-hot labels are generated. E. 3-D time
series and labels are grouped by subject to emulate subject-wise data
acquisition.

found in the GitHub repository linked above in the file accel-
stm/src/data/HAR_get_data.py. First, we re-combined the training
and testing sets (Figure 4 B). We effectively removed the windows
by concatenating together time points from every other window,
reforming contiguous time series (Figure 4 C). We then combined
each axis-specific time series to form the desired triaxial data
format, where each time point consists of the accelerometer values
along the x-, y-, and z-axes as a 3-dimensional array (Figure 4 D).
We generated one-hot labels in that step as well. We kept track
of the participant to which each record belonged (Figure 4 E) so
that no single participant was later included in both training and
testing sets.

We used an 80:20 training-to-testing split (Figure 5 A-D),
and subsequently standardized the data by first fitting the stan-
dardization parameters (i.e., mean and standard deviation) to the
training data and then using these parameters to standardize the
training and testing sets separately (Figure 5 E1). This sequenced
procedure prevents exposing any summary information about
the testing set to the model before training, i.e., data leakage.
Finally, a fixed-length sliding window was applied (Figure 5 E2),
the windows were shuffled to avoid localization during training
(Figure 5 F), and the data was ready to feed into the LSTM neural
network.

Training All model training code can be found in the GitHub
repository linked above in the folder accelstm/src/models. Train-
ing the model was broken up into two sections, the first of
which consisted of hyperparameter optimization. We employed
a heuristic-based search, namely the tree-structured Parzen (TPE)
expected improvement (EI) algorithm, in order to more efficiently
navigate the vast hyperparameter search space. EI algorithms
estimate the ability of a supposed model x to outperform some
performance standard y∗, and TPE aims to assist this expectation
by heuristically modeling the search space without requiring

Fig. 5: Outline of the proposed data analysis pipeline. A. The data
should start as raw tri-axial data files separated into individual
records; one record per individual. B. Shuffle the records. C. Partition
the records into k equal groupings for the k-fold cross validation.
D. Concatenate the records end-to-end within the train and test sets
(for feeding in to the LSTM). E. Standardize the data, careful to
avoid data leakage; subsequently window the data. F. Shuffle the
windowed data sets. G. If in Part 1 of the Pipeline, optimize the
model’s hyperparameters; if in Part 2, train the optimized model on
the training data. H. Predict outcomes for the testing data using the
trained model and score the results.

exhaustive exploration thereof. TPE iteratively substitutes equally-
weighted prior distributions over hyperparameters with Gaussians
centered on the examples seen over time. This re-weighting of the
search space allows TPE to estimate p(y) and p(x|y) - regarding
the performance y from suggested model x - ultimately allowing
the EI algorithm to estimate p(y|x) of model M via Bayes Theorem
[BBBK11].

EIy∗(x) :=
∫

∞

−∞

max(y∗− y,0)pM(y|x)dy

becomes

EIy∗(x) =
∫ y∗

−∞

max(y∗− y,0)pM(y|x)dy

=
∫ y∗

−∞

p(x|y)p(y)
p(x)

dy

=
γy∗l(x)

∫ y∗
−∞

p(y)dx
yl(x)+(1− γ)g(x)

∝ (γ +
g(x)
l(x)

(1− γ))−1

where
γ = p(y∗ < y)

p(x|y) = l(x) if y < y∗

= g(x) if y≥ y∗

and p(a|b) is the conditional probability of a given event b.
The ranges of hyperparameters were devised to include all

ranges explored by the various reports reviewed in the above
section of this paper, as well as any other well-defined range or
setting used in the field, yielding an immense search space with
trillions of possible combinations. The hyperparameters included
in the search space are listed in Table 1. Due to constraints in
the Python package used for hyperparameter optimization (i.e.,
hyperas from hyperopt), a subsequent tuning of the window size,
stride length and number of layers needed to be performed on the
highest performing combination of all other hyperparameters via
randomized grid search. This step was omitted in the current proof
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of concept experiment, but the code for carrying out the grid search
can be found in the file accelstm/src/models/more_opt.py. Thus,
for initial optimization and the final cross validation (detailed
below), data was partitioned using a window size of 128 with
50% stride length and fed into a 2-layer LSTM network.

For the second portion of the experiment, the Pipeline is
completed via 5-fold cross validation, where the folds were made
at the participant level so that no single participant’s data ended
up in both training and testing sets.

Languages and Libraries All models were written in the
Python programming language. The LSTMs were built and run us-
ing the Keras library and TensorFlow as the backend heavy lifter.
Hyperas from Hyperopt was used to optimize the network. Scikit
learn provided the packages for cross validation, randomized grid
search, and standardization of data. Numpy and Pandas were used
to read and reformat the data among various other operations.

Results

During preliminary testing, we found that the model performed
better on the total raw accelerometer signal (T) compared to the
body-only data with the gravity-component (B) removed. As such,
we used the total accelerometer signal (T) in our experiment.

The hyperparameter optimization explored a search space
with trillions of possible parameter combinations. Due to time
constraints, we stopped the search after six full days (hundreds
of training iterations), during which time the suggested models’
accuracies on test sets had ranged from 12.66% to 94.96%. The
algorithm found several high-performing models and had used at
least once all the values possible for each activation function,
initialization strategy, regularization strategy, learning rate, and
optimizer in the search space. The algorithm had tested models
that both used and omitted batch normalization and bias, and it
had tested dropout values between 0.005 and 0.991, batch sizes
between 35 and 441 samples per batch, and from 10 to 508 units
at both of the two layers.

Due to limited time to run our experiments, we conducted part
two of the experiment concurrently with part one using a baseline
LSTM architecture we felt would be a good starting point based on
notes throughout the literature. The hyperparameter settings used
in the model are as follows: window size, 128 time steps; step
size, 50% of window size; number of layers, 2; units (layer1),
128; units (layer2), 114; batch size, 64; cell activation, tanh;
recurrent activation, sigmoid; dropout, 0.5; weight initialization,
Glorot Uniform; regularization, None; optimizer, RMSProp; bias,
yes. We ran 5-fold CV on the model and computed the overall and
class-wise F1 scores and accuracies. Cross validation yielded an
average accuracy of 90.97% and F1 score of 0.90968, with a single
best run of 95.25% accuracy and 0.9572 F1 score. We include the
single best run for comparison with other reports, many of which
do not report evidence of using cross validation or repeated trials.

Discussion

The execution of HAR research in various settings from the
biomedical clinic early on [BMT+01], [RDML05], [BTvHS98] to
current-day innovative settings such as the automobile [CFF+17],
the bedroom [MAR+16], the dining room [KDD17], and out-
door sporting environments [REBS17] justifies the time spent
expanding this area of research. As LSTM models are increasingly
demonstrated to have potential for HAR research, the importance
of deliberate and reproducible works is paramount.

Review of Previous Works A survey of the literature revealed a
lack of cohesiveness regarding the use of LSTMs for accelerome-
ter data and the overall data analysis pipeline. We grew concerned
with possible sources of data leakage. Test set data should come
from different participants than those used for the training data
[HTF17], and no information from the test set should be exposed
to the model before training.

We were surprised to see some of the more advanced prepro-
cessing techniques being employed. Much of the appeal of non-
linear models such as neural networks is their ability to learn from
raw data itself and independently perform smoothing and feature
extraction on noisy data through parameterized embeddings of the
data. For example, Karpathy’s 2015 study of LSTMs for language
modeling showed specific neurons being activated when quotes
were opened and deactivated when the quotes were closed, while
others were activated by parenthetical phrases, marked the end of
sentences, and so on [KJFF15]. Additionally, these preprocessing
methods are more computationally expensive and less realistic for
online and on-device implementations than is desired. The im-
proved performance of the model on the total accelerometer signal
(T) versus the body-only signal (B) with the gravity component
removed demonstrates the promising potential of non-linear data-
dependent models for classifying complex noisy data and supports
our claim that extensive preprocessing is not necessary.

We do feel standardization is justified for this data due to
its complexity and poor signal-to-noise ratio. Standardization is
often important for data-dependent models such as LSTMs since
the presence of outliers and skewed distributions may distort the
weight embeddings [JWHT17].

Hyperparameter Optimization and Data Analysis Pipeline We
structured our experiments with the objective of maintaining sim-
plicity, relying as much as possible on the baseline model itself,
maximizing generalizability and reproducibility of our methods
and results, and unifying the existing methods and results in
literature.

We saw very promising results from the hyperparameter opti-
mization portion of the experiment. The TPE algorithm, although
not run to completion in this experiment, was able to navigate
the search space and find several well-performing models. We
chose to err on the side of caution by using very granular ranges
over the numerical hyperparameters, and as a result we ran out of
time even using the heuristic-based TPE algorithm. We suggest
further experiments to reduce the search space by using less
granular ranges over the numeric hyperparameters, and exploring
more advanced heuristic search methods. Doing so will decrease
the search time and allow completion of the entire Pipeline in
a more reasonable amount of time. Nonetheless, the TPE’s so-
far-best model at the time of termination and our baseline model
from Part 2 outperformed other baseline LSTMs trained on higher
dimensional data from the same dataset [U18], [ZYCG17]; see
Table 2.

We also compare our performance with other benchmark ex-
periments on the UCI HAR dataset. Compared with more complex
LSTMs trained using more features, our averaged cross validation
results scored competitively with the b-LSTM (91.09%), the
residual LSTM (91.55%), and the deep res-bidir-LSTM (93.57%)
all from Zhao, et. al. [ZYCG17]. As we found no evidence of
cross validation in these other reports, we compare our single
best-performing test’s accuracy of 95.25% and F1 score of 0.9572
and find it to compete with the highest scoring models found
in literature: 4 layer LSTM (96.7% accuracy, 0.96 F1score)
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Category Hyperparameter Range

Data
Processing

Window Size 24, 48, 64, 128, 192, 256
Stride 25%, 50%, 75%
Batch Size 32, 64, 128, ..., 480

Archi-
tecture

Units 2, 22, 42, 62, ..., 522
Layers 1, 2, 3

Forward
Processing

Activation
Function (unit,
state)

softmax, tanh, sigmoid, ReLU, linear

Bias True, False
Weight
Initialization
(cell, state)

zeros, ones, random uniform dist., random
normal dist., constant (0.1), orthogonal, Le-
cun normal, Glorot uniform

Regular-
ization

Regularization
(cell, state, bias,
activation)

None, L2 Norm, L1 Norm

Weight Dropout
(unit, state)

uniform distribution (0, 1)

Batch normaliza-
tion

True, False

Learning Optimizers SGD, RMSProp, Adagrad, Adadelta, Nadam,
Adam

Learning Rate 10−7,10−6,10−5,10−4,10−3,10−2,10−1

TABLE 1: The various hyperparameters included in the search space, and their respective ranges.

Model Performance Features

Baseline LSTM 1 90.77% 9 (T,B,G)
Baseline LSTM 2 85.35% 3-9 (?)
Pipeline P1 (Best) 93.47% 3

Pipeline P2 (CV) 90.97% 3
0.90968 3

Pipeline P2 (Best) 95.25% 3
0.9572 3

TABLE 2: Results table including results from baseline LSTM models
trained on all 9 features provided in the dataset - total accelerometer
signals (T), body accelerometer signals (gravity component removed,
B), gyroscope signals (G). One of the baseline LSTM’s did not
explicitly specify the number of features used but only mentioned
accelerometer signals. We provide results from Part 1 (P1, Hyper-
parameter Optimization) and Part 2 (P2, Cross-Validation) of our
Pipeline. P2 scores include accuracies as percentages and F1 scores
as decimals.

[MP17], MLSTM-FCN and MALSTM-FCN (96.71% accuracy)
[KMDH18], and one-vs-one (OVO) SVM (96.4% accuracy, 551
features) [ROGA+13].

Conclusion/Future Work

We demonstrate the ability for a baseline LSTM model trained
solely on raw triaxial accelerometer data (without gravity com-
ponent removed) to perform competitively with classical models
trained on hundreds of hand-crafted features and with other more
complex LSTM models trained on higher dimensional sensor data.

We demonstrate the ability to optimize a data-centric model
over an expansive hyperparameter search space and train it end-to-
end within a scientifically rigorous and deliberate Data Analysis
Pipeline. The code used in this project can be found at https:
//github.com/xtianmcd/accelstm.

Going forward, we would like to repeat this experiment to
average performances from different models returned by the TPE
algorithm; we would also like to repeat this experiment on other
HAR datasets. Further exploration should be done to analyze why
the algorithm’s selections are indeed superior, how different data
affect these choices, and how the LSTM cells within the models
themselves are representing this type of data as has been done with
LSTMs in other domains.

We hope that this Pipeline will serve useful in producing
explicit and reproducible experiment results and in pushing the
field forward in a methodical way.
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