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Safe handling instructions for missing data
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Abstract—In machine learning tasks, it is common to handle missing data by
removing observations with missing values, or replacing missing data with the
mean value for its feature. To show why this is problematic, we use listwise
deletion and mean imputing to recover missing values from artificially created
datasets, and we compare those models against ones with full information.
Unless quite strong independence assumptions are met, we observe large
biases in the resulting coefficients and an increase in the model’s prediction
error. We include a set of recommendations for handling missing data safely,
and a case study showing how to put those recommendations into practice.

Index Terms—data science, missing data, imputation

Introduction

It is common in data analytics tasks to encounter missing values
in datasets, where by missing we mean that some particular
values does or should exist, and failed to be observed or recorded
[little-rubin-2002]. There are several causes for missingness in
datasets, which vary in theoretical difficulty from bit flipping
(less problematic) to participant dropout in extended experimental
studies (more problematic). According to the Inglis Conjecture1,
the best way to handle missing data is to apply corrections to the
acquisition of that data. Because strategies for doing this tend to
be domain specific, we will not be addressing this topic further in
this paper.

In a similar vein, different research fields tend to have idiosyn-
cratic methods for statistical correction of missing data, although
they should not [newman-2014]. At one end of this spectrum is the
epidemiology community, who are both unusual and commend-
able for their principled stance and clear guidelines regarding the
handling and reporting of missingness [perkins-et-al-2018]. At the
other end of the spectrum are research communities who handle
missingness ad hoc, and frequently fail to report the presence of
missingess at all.

Safe handling instructions are needed because the presence of
unobserved data causes two theoretical problems with statistical
models [schafer-graham-2002]. One of these is inferential: when
data are missing from a particular feature or variable, estimates of
the variance of that feature are unreliable and therefore so are any
tests that use those variances. The second of these is descriptive:
when data are missing according to a particular pattern, model
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parameters that learn from the remaining data become biased by
that pattern.

Anecdotally, the machine learning community appears less
concerned with statistical inference, and feels relatively comfort-
able with the idea of replacing missing values with the mean
value for each feature. The justification appears to be that mean
imputing (called single imputation in the missingness literature)
preserves the central tendency for that feature. However, statistical
learning procedures are not determined by the mean values of their
features—indeed, we often scale these down to zero—but rather
by the the relationship between the variance of two features, which
is modified by the presence of missing values and collapsed by
single imputation.

This is the key theoretical problem with missing values: that
they modify the covariance in datasets. To illustrate this, let’s
imagine that we have a dataset with no missing values and a linear
relationship between one feature and one target. We’ll remove
30% of the data (specifically the records at low values of our
target) and then run a few models on the fully attested dataset and
the dataset with missingness to see how the models compare.

Fig. 1: Best fit lines across experiments for a fully-attested dataset
compared to best fit lines and for a dataset with missingness imposed
at random. Note the bias in the differences in slope.

What we see in Fig. 1 is that the models run over the
dataset with missing values have a very particular kind of error.
Specifically, the error in estimating the coefficient of the feature is
not distributed as a Gaussian around the true value, but is always
a reduction of the true value. This is bias, and it was created by
the missingness process that we imposed on our data.

There are a theoretically infinite number of physical process
that generate missingness in datasets, so in practice we will bin
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them into one of three categories that characterizes the input to
the process which generates those missing values [rubin-1976].
If the probability that a value is missing is independent of any
input, the process is stochastic and we call it Missing Completely
At Random (MCAR). If the probability that a value is missing
depends on another feature in our dataset, we call this Missing
At Random (MAR)2. If the probability that a value is missing
depends on that value itself, we call this Missing Not At Random
(MNAR). In theory, it is not possible to be certain whether values
are MAR or MNAR, so they tend to be treated similarly.

Methods

To demonstrate when and how this bias appears, 1890 datasets
were randomly generated with linear, quadratic, and sinusoidal
relationships between two features and one target, at sizes that
ranged between 100 and 10000 rows, and with an error term that
varied in strength between factors of 0.0 (no error) and 0.5 (half
of the magnitude of the data). Missingness regimes were imposed
on only one of these two features, which we will refer to as the
principle feature (x). The equations for generating the targets are
given in Eqs. 1, 2, and 3. The datasets were supplemented with two
auxiliary features3 whose correlation strength with the principal
feature varied between 0.0 and 0.5.

t = 2∗ x+ y+ ε (1)

t = x2 − y+ ε (2)

t = 2∗ sin(x)− y+ ε (3)

A fractional amount of values was removed from the principal
feature for each of the three missingness regimes, MCAR, MAR,
and MNAR. For data missing completely at random, this was done
with np.random.choice. For data missing at random and not
at random, this was done by using the index of the N smallest val-
ues of the target and the principle feature, respectively. The amount
of data removed varied between 0% (no missingness) and 50% of
attested values, which is typical of the amount of missingness
reported in experimental studies (50% is on the high end, more
likely to be observed in longitudinal studies [sullivan-et-al-2017]).

Missing values were corrected using three different strategies.
The first of these was to remove entire rows where any data
is non present—this is called listwise deletion. The second was
single imputation. We used the mean imputer from scikit-learn, but
prior research shows that more complicated single imputation (like
using the per sample grouped mean) has the same theoretical prob-
lems. The third strategy was an expectation maximization routine
implemented in impyute [impyute], which estimates replacements
for missing values that maximize the probability of the rest of the
data.

These datasets were fit with four models—linear regression,
lasso regression, ridge regression, and support vector regression
from scikit-learn. For stability when generating statistical sum-
maries, each experimental combination for datasets with less than
10,000 rows was run through ten trials. This resulted in a total of
3,628,800 experiments.

For each experiment, difference scores were calculated for
model coefficients between experiments with fully attested data
and experiments with missing values for both the primary feature
(the one with values removed by missingness) and the secondary
feature (no data removed). We also calculated the difference in the

regime strategy t p

mcar listwise_del 0.389 0.697
mcar mean_imputer 7.684 0.0
mcar em_imputer 12.336 0.0
mar listwise_del 27.859 0.0
mar mean_imputer 28.509 0.0
mar em_imputer 48.919 0.0
mnar listwise_del 0.331 0.741
mnar mean_imputer 9.535 0.0
mnar em_imputer 36.687 0.0

TABLE 1: Results of pairwise t-tests comparing difference scores for
the primary coefficient.

regime strategy t p

mcar listwise_del 0.005 0.996
mcar mean_imputer -2.28 0.023
mcar em_imputer -3.745 0.0
mar listwise_del -29.256 0.0
mar mean_imputer -2.437 0.015
mar em_imputer -2.876 0.004
mnar listwise_del -3.486 0.0
mnar mean_imputer -0.128 0.898
mnar em_imputer 0.072 0.943

TABLE 2: Results of pairwise t-tests comparing difference scores for
the secondary coefficient.

mean squared error of the models between the full datasets and
those with missingness applied.

Pairwise independent Welch’s t-tests were performed on dif-
ferences in the model coefficients and model error between the
fully attested data and the three strategies for imputing missing
values for each of the three kinds of missingness regimes, for a
total of 9 tests. To avoid inflating the overall error rate for each
family of comparisons, we used the Bonferroni correction and set
the alpha for each individual test to 0.005.

Experiments were completed on a server with an AMD Phe-
nom II X4 955 3.2 GHz processor running Ubuntu 16.04, under
Anaconda Python 3.5.4, impyute 0.0.4, Numpy 1.13.1, scikit-learn
0.19.0. The code used to run these experiments, the data they
generated, a Jupyter notebook containing the code for generating
the statistics and plots in this paper, and frozen requirements for
the code environment is publicly available at https://github.com/
deniederhut/safe-handling-instructions-for-missing-data.

Results

Pairwise t-tests conducted on the coefficients of the primary
feature show significant differences from zero in seven of the nine
cases (Table 1). The only cases where the model learned a similar
coefficient involved the use of listwise deletion as a strategy for
handling missing data. The smallest difference was observed for
cases missing completely at random (stochastically). The largest
differences were observed when data were missing at random.

Pairwise t-tests conducted on the difference scores for the
secondary coefficient show a similar pattern of results (Table 2).
Specifically, the only case in which the estimated parameter for
the feature without any missingness applied to it was close to
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regime strategy t p

mcar listwise_del -1.332 0.183
mcar mean_imputer -5.643 0.0
mcar em_imputer -7.297 0.0
mar listwise_del -46.945 0.0
mar mean_imputer -54.322 0.0
mar em_imputer -52.646 0.0
mnar listwise_del -9.102 0.0
mnar mean_imputer -12.127 0.0
mnar em_imputer -17.626 0.0

TABLE 3: Results of pairwise t-tests comparing difference scores for
the model error.

zero was when data were missing completely at random, and
the missing cases were removed listwise. The largest differences
in the coefficient for the secondary feature were observed for
data missing at random or missing not at random, when the
missingness strategy employed was listwise deletion. Listwise
deletion tends to cause the coefficient for the secondary feature to
be underestimated, while both imputation strategies tend to cause
the coefficient to be overestimated.

Pairwise t-tests applied to the overall model error show a
similar pattern of results, where the only difference score that is
close to zero is for the case of listwise deletion applied to a dataset
where values are missing completely at random (Table 3). The
largest increases in model error is observed when data are missing
at random, no matter which strategy for handling missingness is
used.

Discussion

Fig. 2: Changes in the coefficient of y when using listwise deletion
across different missingness regimes.

We find that deleting records with missing values is only
safe when data are missing completely at random. Under other
missingness regimes, this strategy produced biased coefficients
for all features, and significantly worse model errors. Interestingly,
listwise deletion as a strategy produced the largest bias of all tested
strategies in features with no missing data, significantly overesti-
mating their importance to the model (Fig. 2). This suggests that
unsafe use of listwise deletion may be one contributing factor in
spurious correlations and findings that otherwise fail to replicate.

Fig. 3: Changes in the coefficient of x when using single imputation
across different missingness regimes.

Single imputation, or using a feature mean or median as
replacement for missing data, results in biased coefficients and
significantly larger model errors no matter what kind of process
created the missingness in the dataset (Fig. 3). As such, it is
our recommendation that it not be used. However, in this set of
experiments single imputation did produce smaller biases in model
features that were not missing any data.

We were surprised by the poor performance of expectation
maximization during the experiment given the widespread
evidence of its effectiveness in prior literature [shah-et-al-2014].
This discrepancy could be due to a mistake in the design of
the experiment, or due to the algorithm’s implementation in
impyute. As far as we are aware, well-tested multiple imputation
libraries like MICE [vanbuuren-groothuisoudshoorn-2011],
Amelia [blackwell-honaker-king-2017], and MissForest
[stekhoven-buhlmann-2012], have yet to be directly ported
to Python4.

Fig. 4: Changes in the coefficient of x by the size of the total dataset.

As a final comment, we often hear that the solution for
missing values is simply to collect more data. However, unless
this additional data collection explicitly addresses missingness
by correcting the acquisition process (per Inglis), the additional
data has the paradoxical effect of making the biases worse.
The expected magnitude of the bias does not change with data
size—this is governed by the missingness regime and the fraction
of missing data. However, the variance in the bias across repeated
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experiments will shrink, leading to confidence in the estimated
coefficients that is both misplaced and inflated (fig. 4).

Guidelines

We include here guidelines for researchers to use when handling
missing data to ensure that it is done safely.

1) Try to construct your acquisition step such that there will
not be missing values. This may involve following up
with individual cases to find why they are non present, so
plan to track to provenance of your data.

2) In addition to your primary features of interest, collect
data that are known to be causally related or correlated.
These are called auxiliary features and will help you es-
tablish the missingness regime for your data and generate
realistic estimates for missing values if needed.

3) Once your data have been collected, examine them for
patterns of missingness. A common approach is to build
a missingness indicator for each feature with missing val-
ues, and run pairwise correlations against other features
in the dataset. This is more effective with good auxiliary
features.

4) If you are 100% sure that your missingness is MCAR,
you have the option of using listwise deletion, keeping in
mind that this should not be done for analyses with low
statistical power.

5) Otherwise use a modern multiple imputation technique
like MICE or MO, and generate 5-10 imputed datasets.
Be sure to create any derived features that you plan on
including in your final model before the imputation step.

6) Run the rest of your analysis as planned for each of the
imputed datasets, and report the average parameters of all
of the imputed models.

7) When you report your results, include the fraction of
missing values, the pattern of missing values, and the
strategy used to handle them. If your imputed models
have widely diverging results, you should report descrip-
tive statistics for any parameters that are highly variable.

Case Study

We can illustrate the use of these guidelines with a real-world case
study. The data we’ll use is from Scott Cole’s open source dataset
on burrito quality in San Diego5. The dataset consists of approx-
imately 400 ratings of burritos from different restaurants within
San Diego, where the ratings for each burrito include five point
Likert scores for overall quality, cost, mean, uniformity, salsa, and
wrap (the tortilla). The dataset also includes indicator variables
for the presence of various ingredients in the burritos, including
common ingredients like beans and avocado, and uncommon ones,
like sushi and taquitos.

The indicator variables were recoded to work with scikit-learn,
and the Likert scores were normalized on a per-rater basis to
increase the inter-rater reliability. This brought the dataset down to
an effective size of 231 observations. We then used a decision tree
(with no hyperparameter tuning) to generate a reference model for
predicting overall burrito quality given the individual ratings and
presence/absence of ingredients.

The individual ingredients in the burrito don’t seem to con-
tribute much to the overall score (Table 4). The quality of the meat
emerged as the most important feature in a good burrito, with the

feature importance

Meat 0.54674656983
Salsa 0.12792116636
Uniformity 0.15980891451

TABLE 4: Features with the highest importance ratings on the fully
attested burritos dataset, under a decision tree regressor with no
tuning.

quality of the salsa and the uniformity of ingredients throughout
the length of the burrito as the next two most important features.

We then impose a regime of MAR on our dataset, removing
one ranking score randomly from every record that falls above the
30th percentile for burrito rankings. The causal explanation for
this might be something like reviewers are more likely to forget to
record data about their burritos when the burrito is tasty, because
they are too busy enjoying it.
rows = df[df.overall > df.overall.quantile(.3)].index
cols = np.random.choice(['Cost', 'Meat', 'Salsa',

'Uniformity'], rows.size)
for row, col in zip(rows, cols):

df.loc[row, col] = np.nan

Because we are using data from another research team, there
isn’t much we can do with respect to steps 1 and 2 in the
guidelines above. So we start with step 3, looking for patterns
in the missingness in our dataset, by constructing an indicator for
missing values:
df['has_nulls'] = pd.isnull(df).sum(axis=1)

and then running a correlation against the variables of our dataset
(Fig. 5). There is a large correlation (r=0.8) between the number
of missing values and the overall burrito quality, and moderate
correlations (0.4 < r < 0.6) with other key rankings, including the
quality of the meat and salsa in the burrito.

Fig. 5: Pearson correlation strength of model features with count
number of missing values per observation.

These correlations indicate that our data are not MCAR, and so
we will proceed with multiple imputation. We create five imputed
datasets, and train the same untuned decision tree regressor on
each of them as above, recording the important features and model
scores for each trial. For comparison, we will also run train the
model on data using single imputation and listwise deletion.

The multiple imputation dataset returns feature importances
that are similar to those found in the model run on the fully attested
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feature importance

Meat 0.42690684148
Salsa 0.14982927778
Uniformity 0.21762993715

TABLE 5: Features from one trial of a dataset using multiple
imputation (here, the expectation maximization procedure found in
impyute).

data, where the meat quality was the most important feature,
followed by uniformity and salsa, in that order (Table 5). The
single imputation and listwise deletion models both fail to recover
the importance of meat quality in the burrito, and compensate
for this by overestimating the importance of either the salsa, the
uniformity, or the cost.

Fig. 6: Distribution of model score for decision trees trained under
multiple imputation, single imputation, and listwise deletion. The
score obtained on the fully attested model is the reference line in
blue.

When comparing model scores (here, the coefficient of de-
termination), none of the models which have had data removed
perform as well as the fully attested model (Fig. 6). However, the
score on the best model only falls within the range of models
trained on multiple imputation data, and not those trained on
deleted or singly imputed data. Listwise deletion is the worst
performing model here, largely because of the reduced size of
the dataset (76 observations).

In our final report, we would include in our methods section
that 70% of observations were missing data for at least one feature.
We would say that the presence of missing values showed a strong
correlation with overall burrito quality, meat quality, and salsa
quality, leading us to speculate that people are less likely to fill out
surveys when thoroughly relishing a good burrito. We would say
that we imputed values using expectation maximization, and that
we are reporting averaged results from five separate imputations.

Conclusion

Missing values are a widespread issue in many analytical fields. To
handle them safely, there must be some understanding of the kind
of process that generated them. Data that are missing completely
at random (stochastically) do not create bias during parameter
estimation, and can be handled by removing rows with missing
values. Missing values that exhibit a definite pattern or dependency

need to be replaced by reasonable estimates using a modern
multiple imputation technique. Finally, to ensure reproducibility,
statistics and decisions at each of these steps should be reported.
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1. Named after Dr. Ben Inglis of the University of California, the Inglis
Conjecture states that it requires less effort to fix the data acquisition step than
to perform post hoc statistical corrections.

2. Random in the sense of a random variable, which is a statistical designa-
tion roughly corresponding to a dependent variable.

3. An auxiliary feature is one which measures a related variable but is not
necessarily included in the final model.

4. impyute has an imputing function called MICE, but implements a modi-
fication of the original algorithm.

5. Licensed under MIT, and available at https://github.com/srcole/burritos.
You can watch Scott’s lightning talk about this dataset from SciPy 2017 at
https://youtu.be/f-Vcq_anPaY?t=47m44s.
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