
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 61

Text and data mining scientific articles with allofplos

Elizabeth Seiver∗, M Pacer§, Sebastian Bassi‡

F

Abstract—Mining scientific articles is hard when many of them are inaccessible
behind paywalls. The Public Library of Science (PLOS) is a non-profit Open
Access science publisher of the single largest journal (PLOS ONE), whose
articles are all freely available to read and re-use. allofplos is a Python package
for maintaining a constantly growing collection of PLOS’s 230,000+ articles. It
also efficiently parses these article files into Python data structures. This article
will cover how allofplos keeps your articles up-to-date, and how to use it to easily
access common article metadata and fuel your meta-research, with actual use
cases from inside PLOS.

Index Terms—Text and data mining, metascience, open access, science pub-
lishing, scientific articles, XML

Introduction

Why mine scientific articles?

Scientific articles are the standard mechanism of communication
in science. They embody a clear way by which human minds
across centuries and continents are able to communicate with one
another, growing the total sum of knowledge. Scientific articles are
unique resources, in that they are the material artifacts by which
this cultural exchange is made concrete and persistent. They offer a
unique source of insight into the history of carefully argued, hard-
won knowledge. Accordingly because they are made of annotated
text, they offer unique opportunities for well-defined text and
data mining problems. Importantly, because PLOS represents the
largest single journal in the history of publishing, it has collected
an excellent corpus for this study, spanning seven journals that
specialize in biology and medicine. Equally importantly, because
PLOS is Open Access, the opportunity to use this data set is
available to anyone capable of downloading and analyzing it. The
allofplos library enables more people to do that more easily.

What is allofplos?

allofplos is a Python package for downloading and maintain-
ing up-to-date scientific article corpora, as well as parsing PLOS
XML articles in the JATS (Journal Article Tag Suite) [jats] format.
It is available on PyPI [allofplospypi] as well as a GitHub repos-
itory [allofplosgh]. Many existing Python packages for parsing
XML and/or JATS focus on defensive parsing, where the structure
is assumed not to be reliable or the document is immediately

* Corresponding author: elizabeth.seiver@gmail.com
§ Netflix
‡ Globant

Copyright © 2018 Elizabeth Seiver et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

converted to another intermediate format (often JSON) and XML
is just a temporary stepping stone. allofplos uses lxml [lxml05],
which is compiled in C, for fast XML parsing and conversion to
familiar Python data structures like lists, dictionaries, and datetime
objects. The intended audience is researchers who are familiar
with scientific articles and Python, but may not be familiar with
JATS XML. Other related tools include a parser from fellow Open
Access publisher eLife [elife] as well as the Open Access subset
for downloading OA articles in bulk from PubMed Commons
(PMC) [pmc].

Functionality

The primary function of allofplos is to download and maintain
a corpus of PLOS articles. To enable users to parse articles without
downloading 230,000 XML files, allofplos ships with a starter
directory of 122 articles (starterdir), and includes commands
for downloading a 10,000 article demo corpus as well. The default
path to a corpus is stored as the variable corpusdir in the
Python program, and first checks for the environment variable
$PLOS_CORPUS which overrides that default location. If you
have used pip to install the program, specifying $PLOS_CORPUS
will ensure that the article data will not be overwritten when
you update the allofplos package, as the default location
is within the package. (Forking/cloning the GitHub repository
avoids this problem, because the default corpus location is in the
.gitignore file.)
import os
os.environ['PLOS_CORPUS'] = 'path/to/corpus_directory'
from allofplos import update
update.main()

Downloading new articles can also be accessed via the command
line:

$ export PLOS_CORPUS="path/to/corpus_directory"
$ python -m allofplos.update

If no articles are found at the specified corpus location, it will
initiate a download of the full corpus. This is a 4.6 GB zip file
stored on Google Drive, updated daily via an internal PLOS server,
that then is unzipped in that location to around 25 GB of 230,000+
XML articles. For incremental updates of the corpus, allofplos first
scans the corpus directory for all DOIs (Digital Object Identifiers)
[doi] of all articles (constructed from filenames) and compares that
with every article DOI from the PLOS search API. The missing
articles are then downloaded individually in a rate-limited fashion
from links that are constructed using the DOIs. Those files are
identical to the ones in the .zip file. The .zip file prevents users
from needing to scrape the entire PLOS website for the XML
files, and "smartly" scrapes only the latest articles. For a subset of

mailto:elizabeth.seiver@gmail.com

62 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

provisional articles called "uncorrected proofs", it checks whether
the final version is available, and downloads the updated version
if so. The files are then ready for parsing and analysis.

Article corpora and parsing

To initialize a corpus (defaults to corpusdir, or the location
set by the $PLOS_CORPUS environmental variable), use the
Corpus class. This points allofplos at the directory of articles
to be analyzed.

from allofplos import Corpus
corpus = Corpus()

To analyze the starter directory, also import starterdir and
set corpus = Corpus(starterdir). The number of arti-
cles in the corpus can be found with len(corpus). The list
of every DOI for every article in the corpus can be found at
corpus.dois, and the path to every XML file in the corpus
directory at corpus.filenames. To select a random Article
object, use corpus.random_article. To select a random
list of ten Article objects, use corpus.random_sample(10).
You can also iterate through articles as such:

for article in corpus[:10]:
print(article.title)

Because DOIs contain semantic meaning and XML filenames are
based on the DOI, if you systematically loop through the corpus,
it will not be a representative sample but rather will implicitly
progress first by journal name and then by publication date. The
iterator for Corpus() puts the articles in a random order to avoid
this problem.

The Article class

As mentioned above, you can use the Corpus class to initialize
an Article() object without calling Article directly. An Article
takes a DOI and the location of the corpus directory to read the
accompanying XML document into lxml.

art = Article('10.1371/journal.pcbi.1004692')

The lxml tree of the article is memoized in art.tree so it can
be repeatedly called without needing to re-read the XML file.

>>> type(art.tree)
lxml.etree._ElementTree

Article parsing in allofplos focuses on metadata (e.g., article
title, author names and institutions, date of publication, Creative
Commons copyright license [cc], JATS version/DTD), which are
conveniently located in the front section of the XML. We de-
signed the parsing API to quickly locate and parse XML elements
as properties without needing to know the JATS tagging format.

>>> art.doi
'10.1371/journal.pcbi.1004692'
>>> art.title
'Ensemble Tractography'
>>> art.journal
'PLOS Computational Biology'
>>> art.pubdate
datetime.datetime(2016, 2, 4, 0, 0)
>>> art.license
{'license': 'CC-BY 4.0',
'license_link':

'https://creativecommons.org/licenses/by/4.0/',
'copyright_holder': 'Takemura et al',

'copyright_year': 2016}
>>> art.dtd
'JATS 1.1d3'

For author information, Article reconciles and combines data
from multiple elements within the article into a clean standard
form, including author email addresses and affiliated institutions.
Property names match XML tags whenever possible.

Using XPath

While the Article class handles most basic metadata within the
XML files, users may also wish to analyze the content of the
article more directly. The XPath query language is built into lxml
and provides a way to search for particular XML tags or attributes.
(Note that XPath will always return a list of results, as element tags
and locations are not unique.) You can perform XPath searches on
art.tree, which also works well for finding article elements
that are not Article class properties, such as the acknowledgments,
which have the tag <ack>.

>>> acknowledge = art.tree.xpath('//ack/p')[0]
>>> acknowledge.text[:41]
'We thank Ariel Rokem and Jason D. Yeatman'

For users who are more familiar with XML or want
to perform quality control checks on XML files, XPath
searches can find articles that match a particular XML
structure. For example, PLOS’s production team needed to
find articles that had a <list> item anywhere within a
<boxed-text> element. They iterated through the corpus using
art.tree.xpath('//boxed-text//list').

Use case: searching Methods sections

We can put these pieces together to make a list of articles
that use PCR (Polymerase Chain Reaction, a common molec-
ular biology technique) in their Methods section (pcr_list).
The body of an article is divided into sections (with the ele-
ment tag <sec>) and the element attributes of Methods sec-
tions are either {'sec-type': 'materials|methods'}
or {'sec-type': 'methods'}. In addition to importing
allofplos, the lxml.etree module needs to be imported to turn
XML elements into Python strings via the tostring() method.

import lxml.etree as et
pcr_list = []
for article in corpus.random_sample(20):

Step 1: find Method sections
methods_sections = article.root.xpath(

"//sec[@sec-type='materials|methods']")
if not methods_sections:

methods_sections = article.root.xpath(
"//sec[@sec-type='methods']")

for sec in methods_sections:

Step 2: turn the method sections into strings
method_string = et.tostring(sec, method='text',

encoding='unicode')

Step 3: add DOI if 'PCR' in string
if 'PCR' in method_string:

pcr_list.append(article.doi)
break

else:
pass

TEXT AND DATA MINING SCIENTIFIC ARTICLES WITH ALLOFPLOS 63

Included SQLite database

The allofplos code includes a SQLite database with all articles
in starter directory. In this release there are 122 records that
represents a wide range of papers. In order to use the database,
the user needs a SQLite client. The official client is command
line based and can be downloaded from https://www.sqlite.org/
download.html. The database can also be displayed on graph-
ical viewers such as DB Browser for SQLite and SQLiteStu-
dio. There are also some options to query the database online,
without installing any software, like https://sqliteonline.com/ and
http://inloop.github.io/sqlite-viewer/.

The main table of the database is plosarticle. It has the DOI,
title, abstract, publication date and other fields that link to other
child tables, like articletype and journal_id. The corresponding
author information is stored in the correspondingauthor table and
is linked to the plosarticle table using the relation table called
coauthorplosarticle.

For example, to get all papers whose corresponding authors
are from France:

SELECT DOI FROM plosarticle
JOIN coauthorplosarticle ON
coauthorplosarticle.article_id = plosarticle.id
JOIN correspondingauthor ON
(correspondingauthor.id =
coauthorplosarticle.corr_author_id)
JOIN country ON
country.id = correspondingauthor.country_id
WHERE country.country = 'France';

This will return the DOIs from three papers from the starter
database:
10.1371/journal.pcbi.1004152
10.1371/journal.ppat.1000105
10.1371/journal.pgen.1002912
10.1371/journal.pcbi.1004082

The researcher can avoid using SQL queries by using the included
Object-relational mapping (ORM) models. The ORM library used
is peewee. A file with sample queries is stored in the repository
with the name of allofplos/dbtoorm.py. Part of this file defines all
Python classes that corresponds to the SQLite Database. These
class definitions are from the beginning of the file until the
comment marked as # End of ORM classes creation.

After this comment, there is an example of how to build a
query. The following query is the peewee compatible syntax that
constructs the same SQL query as outlined before:

query = (Plosarticle
.select()
.join(Coauthorplosarticle)
.join(Correspondingauthor)
.join(Country)
.join(Journal,

on=(Plosarticle.journal == Journal.id))
.where(Country.country == 'France')
)

This will return a query object. This object can be walked over
with a for loop as any Python iterable:

for papers in query:
print(papers.doi)

SQLite database constructor

There is a script at allofplos/makedb.py that can be used to
generate the SQLite Database from a directory full of XML

articles. This script was used to generate the included starter.db.
If the user wants to make another version, from another subset (or
from the whole corpus), this script will be useful.

To generate a SQLite DB with all the files currently in the
Corpus directory, and save the DB as mydb.db:

$ python makedb.py --db mydb.db

There is an option to generate a DB with only a random subset of
articles. For a DB with 500 articles randomly selected, use:

$ python makedb.py --random 500 --db mydb.db

Future directions

We also have plans for future updates to allofplos. First, we plan
to make the article parsing publisher-neutral, allowing for reading
JATS content from other publishers in addition to PLOS. Second,
we want to improve incremental corpus updates so that all changes
can be downloaded and updated via a standardized mechanism
such as a hash table. This includes ’silent republications’, where
articles are updated online without an official correction notice
(the substance of the article is unchanged, but the XML has
been updated). While the local allofplos server has methods for
catching these changes and updating the zip file appropriately,
there is not currently a way to make sure a user’s local corpus
copy reflects all of those changes. Third, we want to expand the
possibilities of multiple corpora and allow for article versioning,
such as for comparing older and newer versions of articles instead
of just replacing them entirely. And finally, we want to expand and
integrate the functionality of the sqlite database so that selecting
a subset of articles based on metadata criteria such as journal,
publication date, or author is faster and easier than looping through
each XML file individually.

Conclusions

As more scientific articles are published, it will become more
important that these articles can be analyzed in aggregate. Tools
like allofplos make such an effort much easier. With an
intuitive and straightforward Corpus() and Article() APIs,
allofplos avoids much of the complexity of parsing xml
for new users, while still enabling XML experts the flexibility
and power needed to accomplish their aims. By building in the
ability to automatically update and maintain the corpus, people
can trust that they have the most state-of-the-art data without
needing to manually check the >230,000 articles (a task few
would undertake). By connecting this information to database
technologies, allofplos enables quickly accessing data when
that efficient access is needed. By making strides in all of these
directions allofplos demonstrates itself to be a valuable tool
in the scientific python toolkit.

REFERENCES

[lxml05] Behnel, S., Faassen, M. et al. (2005), lxml: XML and HTML
with Python, http://lxml.de.

[cc] Creative Commons Licenses. https://creativecommons.org/
licenses/

[allofplosgh] allofplos GitHub repository. https://github.com/PLOS/
allofplos

[allofplospypi] allofplos PyPI repository. https://pypi.org/project/allofplos/
[jats] JATS NIH/NISO standard. https://jats.nlm.nih.gov/publishing/

tag-library/1.1d3/chapter/how-to-read.html
[elife] elife-tools GitHub repository. https://github.com/elifesciences/

elife-tools

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://sqlitebrowser.org/
https://sqlitestudio.pl/index.rvt
https://sqlitestudio.pl/index.rvt
https://sqliteonline.com/
http://inloop.github.io/sqlite-viewer/
http://lxml.de
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://github.com/PLOS/allofplos
https://github.com/PLOS/allofplos
https://pypi.org/project/allofplos/
https://jats.nlm.nih.gov/publishing/tag-library/1.1d3/chapter/how-to-read.html
https://jats.nlm.nih.gov/publishing/tag-library/1.1d3/chapter/how-to-read.html
https://github.com/elifesciences/elife-tools
https://github.com/elifesciences/elife-tools

64 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[doi] Digital Object Identifiers. https://www.doi.org/doi_handbook/
1_Introduction.html

[pmc] PMC Open Access Subset. https://www.ncbi.nlm.nih.gov/
pmc/tools/openftlist/

https://www.doi.org/doi_handbook/1_Introduction.html
https://www.doi.org/doi_handbook/1_Introduction.html
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

	Introduction
	Why mine scientific articles?

	What is allofplos?
	Functionality
	Article corpora and parsing
	The Article class
	Using XPath
	Use case: searching Methods sections

	Included SQLite database
	SQLite database constructor

	Future directions
	Conclusions
	References

