
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 77

WrightSim: Using PyCUDA to Simulate
Multidimensional Spectra

Kyle F Sunden‡∗, Blaise J Thompson‡, John C Wright‡

F

Abstract—Nonlinear multidimensional spectroscopy (MDS) is a powerful ex-
perimental technique used to interrogate complex chemical systems. MDS
promises to reveal energetics, dynamics, and coupling features of and between
the many quantum-mechanical states that these systems contain. In practice,
simulation is typically required to connect measured MDS spectra with these
microscopic physical phenomena. We present an open-source Python package,
WrightSim, designed to simulate MDS. Numerical integration is used to
evolve the system as it interacts with several electric fields in the course of a
multidimensional experiment. This numerical approach allows WrightSim to
fully account for finite pulse effects that are commonly ignored. WrightSim
is made up of modules that can be exchanged to accommodate many different
experimental setups. Simulations are defined through a Python interface that is
designed to be intuitive for experimentalists and theorists alike. We report sev-
eral algorithmic improvements that make WrightSim faster than previous im-
plementations. We demonstrated the effect of parallelizing the simulation, both
with CPU multiprocessing and GPU (CUDA) multithreading. Taken together,
algorithmic improvements and parallelization have made WrightSim multi-
ple orders of magnitude faster than previous implementations. WrightSim
represents a large step towards the goal of a fast, accurate, and easy to use
general purpose simulation package for multidimensional spectroscopy. To our
knowledge, WrightSim is the first openly licensed software package for these
kinds of simulations. Potential further improvements are discussed.

Index Terms—Simulation, spectroscopy, PyCUDA, numerical integration,
Quantum Mechanics, multidimensional

Introduction

Nonlinear multidimensional spectroscopy (MDS) is an increas-
ingly important analytical technique for the analysis of complex
chemical material systems. MDS can directly observe fundamental
physics that are not possible to record in any other way. With
recent advancements in lasers and optics, MDS experiments are
becoming routine. Applications of MDS in semiconductor pho-
tophysics [CTK+15], medicine [FGG+09], and other domains
[PLMZ18] are currently being developed. Ultimately, MDS may
become a key research tool akin to multidimensional nuclear
magnetic resonance spectroscopy. [PRK+09]

A generic MDS experiment involves exciting a sample with
multiple pulses of light and measuring the magnitude of the
sample response (the signal). The dependence of this signal on
the properties of the excitation pulses (frequency, delay, fluence,

* Corresponding author: sunden@wisc.edu
‡ University of Wisconsin--Madison

Copyright © 2018 Kyle F Sunden et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: Simulated spectrum at normalized coordinates

polarization etc.) contains information about the microscopic
physics of the material. However, this information cannot be
directly "read off" of the spectrum. Instead, MDS practitioners
typically compare the measured spectrum with model spectra.
A quantitative microscopic model is developed based on this
comparison between experiment and theory. Here, we focus on this
crucial modeling step. We present a general-purpose simulation
package for MDS: WrightSim1.

Figure 1 is a visualization of a spectrum in 2-dimensional
frequency-frequency space. The axes are two different frequencies
for two separate input electric fields. The system that we have
chosen for this simulation is very simple, with a single resonance.
The axes are translated such that there is a resonance around
0.0 in both frequencies. This two-dimensional simulation is rep-
resentative of WrightSim’s ability to traverse through many
aspects of experimental space. Every conceivable pulse parameter
(delay, fluence, frequency, chirp etc.) can become an axis in the

1. Source code available at https://github.com/wright-group/WrightSim, re-
leased under MIT License.

mailto:sunden@wisc.edu
https://github.com/wright-group/WrightSim

78 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

simulation.
WrightSim is designed with the experimentalist in mind,

allowing users to parameterize their simulations in much the same
way that they would collect a similar spectrum in the laboratory.
WrightSim is modular and flexible. It is capable of simulating
different kinds of MDS, and it is easy to extend to new kinds.

WrightSim uses a numerical integration approach that cap-
tures the full interaction between material and electric field
without making common limiting assumptions. This approach
makes WrightSim flexible, accurate, and interpretable. While
the numerical approach we use is more accurate, it does de-
mand significantly more computational time. We have focused
on performance as a critical component of WrightSim. Here
we report algorithmic improvements which have significantly
decreased computational time (i.e. wall clock time) relative to
prior implementations. We also discuss parallelization approaches
we have taken, and show how the symmetry of the simulation
can be exploited. While nascent, WrightSim has already shown
itself to be a powerful tool, greatly improving execution time over
prior implementation.

A Brief Introduction of Relevant Quantum Mechanics

This introduction is intended to very quickly introduce what is
being done, but not why. If you are interested in a more com-
plete description, please refer to Kohler, Thompson, and Wright.
[KTW17]

WrightSim uses the density matrix formulation of quantum
mechanics. This formulation allows us to describe mixed states
(coherences) which are key players in light-matter-interaction and
spectroscopy. This involves numerically integrating the Liouville-
von Neumann equation [Gib02]. This strategy has been described
before [GED09], so we are brief in our description here.

WrightSim calculates multidimensional spectra for a given
well-defined Hamiltonian. We do not make common limiting
assumptions that allow reduction to analytical expressions. In-
stead, we propagate all of the relevant density matrix elements,
including populations and coherences, in a numerical integration.
This package does not perform ab initio computations. This
places WrightSim at an intermediate level of theory where the
Hamiltonian is known, but accurately computing the correspond-
ing multidimensional spectrum requires complicated numerical
analysis.

Now, we focus on one representative experiment and Hamil-
tonian. In this case, we are simulating the interactions of three
electric fields to induce an output electric field. For three fields,
there are 3! = 6 possible time orderings for the pulses to interact
and create superpositions or populations in the material system
(Figure 2, columns). Within each time ordering, there are sev-
eral different pathways (Figure 2, rows). In total, there are 16
pathways, represented in Figure 2 as a series of wave mixing
energy level (WMEL) diagrams [LA85]. We are restricting this
simulation to have two positive interactions (solid up arrows or
dashed down arrows) and one negative interaction (dashed up
arrow or solid down arrow). Experimentalists isolate this condition
spatially using an aperture. They can isolate the time orderings
by introducing delays between pulses. Simulation allows us to
fully separate each pathway, leading to insight into the nature of
pathway interference in the total signal line shape.

Figure 3 shows a finite state automaton for the same system as
Figure 2. The nodes are the density matrix elements themselves.

Fig. 2: Independent Liouville pathways simulated. Excitations from
ω1 are in yellow, excitations from ω2 = ω2′ are shown in purple.
Figure was originally published as Figure 1 of Kohler, Thompson,
and Wright [KTW17]

ρ00

ρ
(1)
10

ρ
(2′)
10

ρ
(−2)
01

ρ
(1+2′)
20

ρ
(1−2)
11

ρ
(2′−2)
11

ρ
(1−2+2′)
10

ρ
(1−2+2′)
21

Fig. 3: Finite state automaton of the interactions with the den-
sity matrix elements. Matrix elements are denoted by their coher-
ence/population state (the subscript) and the pulses which they have
already interacted with (the superscript). Arrows indicate interactions
with ω1 (blue), ω2′ (red), and ω2 (green). Figure was originally
published as Figure S1 of Kohler, Thompson, and Wright [KTW17]

All pathways start at the ground state (ρ00). Encoded within each
node is both the quantum mechanical state and the fields with
which the system has already interacted. Interactions occur along
the arrows, which generate density in the resulting state. Here, the
fields must each interact exactly once. Output is generated by the
rightmost two nodes, which have interacted with all three fields.
These nine states represent all possible states which match the
criterion described by the process we are simulating.

We take these nine states and collect them into a state density

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 79

vector, ρ (Equation 1.1):

ρ ≡



ρ̃00

ρ̃
(−2)
01

ρ̃
(2′)
10

ρ̃
(1)
10

ρ̃
(1+2′)
20

ρ̃
(1−2)
11

ρ̃
(2′−2)
11

ρ̃
(1−2+2′)
10

ρ̃
(1−2+2′)
21


Next we need to describe the transitions within these states. This
is the Hamiltonian matrix. Since we have nine states in our density
vector, the Hamiltonian is a nine by nine matrix. To simplify
representation, six time dependent variables are defined:

A1 ≡
i
2

µ10e−iω1τ1 c1(t− τ1)ei(ω1−ω10)t

A2 ≡
i
2

µ10eiω2τ2 c2(t− τ2)e−i(ω2−ω10)t

A2′ ≡
i
2

µ10e−iω2′ τ2′ c2′(t− τ2′)e
i(ω2′−ω10)t

B1 ≡
i
2

µ21e−iω1τ1 c1(t− τ1)ei(ω1−ω21)t

B2 ≡
i
2

µ21eiω2τ2 c2(t− τ2)e−i(ω2−ω21)t

B2′ ≡
i
2

µ21e−iω2′ τ2′ c2′(t− τ2′)e
i(ω2′−ω21)t

These variables each consist of a constant factor of i
2 , a dipole mo-

ment term (µ10|21), an electric field phase and amplitude (the first
exponential term), an envelope function (c, a Gaussian function
here), and a final exponential term which captures the resonance
dependence. These variables can then be used to populate the
matrix:

Q≡



0 0 0 0 0 0 0 0 0
−A2 −Γ10 0 0 0 0 0 0 0
A2′ 0 −Γ10 0 0 0 0 0 0
A1 0 0 −Γ10 0 0 0 0 0
0 0 B1 B2′ −Γ20 0 0 0 0
0 A1 0 −A2 0 −Γ11 0 0 0
0 A2′ −A2 0 0 0 −Γ11 0 0
0 0 0 0 B2 −2A2′ −2A1 −Γ10 0
0 0 0 0 −A2 B2′ B1 0 −Γ21


The Γ values along the diagonal represent loss terms such as
dephasing (loss of coherence) and population relaxation. To isolate
a given time ordering, we can simply set the value of elements
which do not correspond to that time ordering to zero.

At each time step, the dot product of the matrix with the ρ

vector is the change in the ρ vector to the next time step (when
multiplied by the differential). WrightSim uses a second order
technique (Runge-Kutta) [BDH06] for determining the change
in the ρ vector. The core of the simulations is to take the ρ

vector and multiply by the Hamiltonian at each time step (noting
that the Hamiltonian is time dependant, as are the electric fields,
themselves). This process repeats over a large number of small
time steps, and must be performed separately for any change in the
inputs (e.g. frequency [ω] or delay[τ]). As a result, the operation is
highly parallelizable. The integration is performed in the rotating
frame so the number of time steps can be as small as possible.

Usage

WrightSim is designed in a modular, extensible manner in order
to be friendly to experimentalists and theorists alike. The key steps
to running a basic simulation are:

• Define the experimental space
• Select a Hamiltonian for propagation
• Run the scan
• Process the results

Experimental spaces are defined in an INI format that defines
a set of parameters and specifies their defaults and relationships.
This can be thought of as a particular experimental setup or
instrument.

We use the same experiment and Hamiltonian described above
to demonstrate usage. Here, we are using a space called trive
which provides, among other settings, two independent frequency
axes and two independent delay axes, controlling a total of three
incident pulses. The frequency axes are called w1 and w22, the
delays are d1 and d2. To scan a particular axis, simply set the
points array to a NumPy [?] array and set it’s active attribute
to True. You can also set a static value for any available axis,
by setting the points attribute to a single number (and keeping
active set to False). Finally, the experiment class defines
the timing of the simulation. Three main parameters control this:
timestep, which controls the size of each numerical integration
step, early_buffer, which defines how long to integrate be-
fore the first pulse maximum, and late_buffer, which defines
how long to integrate after the last pulse maximum. Here is
an example of setting up a 3D (shape 64x64x32) scan with an
additional static parameter set:
import WrightSim as ws
import numpy as np

dt = 50. # pulse duration (fs)
nw = 64 # number of frequency points (w1 and w2)
nt = 32 # number of delay points (d2)

create experiment
exp = ws.experiment.builtin('trive')

set the scan ranges
exp.w1.points = np.linspace(-500., 500., nw)
exp.w2.points = np.linspace(-500., 500., nw)
exp.d2.points = np.linspace(-2 * dt, 8 * dt, nt)
tell WrightSim to treat the axis as scanned
exp.w1.active = exp.w2.active = exp.d2.active = True

set a non-default delay time for the 'd1' axis
exp.d1.points = 4 * dt # fs
exp.d1.active = False

set time between iterations, buffers
exp.timestep = 2. # fs
exp.early_buffer = 100.0 # fs
exp.late_buffer = 400.0 # fs

The Hamiltonian object is responsible for the density vector and
holding on to the propagation function used when the experiment
is run. Included in the density vector responsibility is the iden-
tity of which columns will be returned in the end result array.
Hamiltonians may have arbitrary parameters to define themselves
in intuitive ways. Under the hood, the Hamiltonian class also holds
the C struct and source code for the PyCUDA implementation and
a method to send itself to the CUDA device. Here is an example

2. Note, while the Latin character w is used here because it is easier to type
in code, it actually represents the Greek letter ω , conventionally, a frequency.

80 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

of setting up a Hamiltonian object with restricted pathways and
explicitly set recorded element parameters:
create hamiltonian
ham = ws.hamiltonian.Hamiltonian(w_central=0.)

Select particular pathways
ham.time_orderings = [4, 5, 6]
Select particular elements to be returned
ham.recorded_elements = [7,8]

Finally, all that is left is to run the experiment itself. The run
method takes the Hamiltonian object and a keyword argument mp,
short for "multiprocess". Any value that evaluates to False will
run non-multiprocessed (i.e. single threaded). Almost all values
that evaluates to True with run CPU - multiprocessed with the
number of processes determined by the number of cores of the
machine. The exception is the special string 'gpu', which will
cause WrightSim to run using PyCUDA.
do scan, using PyCUDA
scan = exp.run(ham, mp='gpu')

obtain results as a NumPy array
gpuSig = scan.sig.copy()

Running returns a Scan object, which contains several internal
features of the scan including the electric field values themselves.
The important part, however is the signal array that is generated.
In this example, the complex floating point number array is of
shape (2x64x64x32) (i.e. the number of recorded_elements
followed by the shape of the experiment itself). These numbers
can be easily manipulated and visualized to produce spectra like
that seen in 1. The Wright Group also maintains a library for
working with multidimensional data, WrightTools [TSM+].
This library will be integrated more fully to provide even easier
access to visualization and archival storage of simulation results.

Performance

Performance is a critical consideration in the implementation of
WrightSim. Careful analysis of the algorithms, identifying and
measuring the bottlenecks, and working to implement strategies
to avoid them are key to achieving the best performance pos-
sible. Another key is taking advantage of modern hardware for
parallelization. These implementations have their advantages and
trade-offs, which are quantified and examined in detail herein.

NISE [Gro16] is the package written by Kohler and Thompson
while preparing their manuscript [KTW17]. NISE uses a slight
variation on the technique described above, whereby they place
a restriction on the time ordering represented by the matrix, and
can thus use a seven element state vector rather than a 9 element
state vector. This approach is mathematically equivalent to that
presented above. NISE is included here as a reference for the
performance of previous simulations of this kind.

Algorithmic Improvements

When first translating the code from NISE into WrightSim, we
sought to understand why it took so long to compute. We used
Python’s standard library package cProfile to produce traces
of execution, and visualized them with SnakeViz [jif17]. Figure
4 shows the trace obtained from a single-threaded run of NISE
simulating a 32x32x16 frequency-frequency-delay space. This
trace provided some interesting insights into how the algorithm
could be improved. First, 99.5% of the time is spent inside of a
loop which is highly parallelizable. Second, almost one third of

that time was spent in a specific function of NumPy, ix_. Further
inspection of the code revealed that this function was called in the
very inner most loop, but always had the same, small number of
parameters. Lastly, approximately one tenth of the time was spent
in a particular function called rotor (the bright orange box in
Figure 4). This function computed cos(theta) + 1 j ∗ sin(theta),
which could be replaced by the equivalent, but more efficient
exp(1 j ∗ theta). Additional careful analysis of the code revealed
that redundant computations were being performed when generat-
ing matrices, which could be stored as variables and reused.

When implementing WrightSim, we took into account all of
these insights. We simplified the code for matrix generation and
propagation by only having the one 9 by 9 element matrix rather
than two 7 by 7 matrices. The function that took up almost one
third the time (ix_) was removed entirely in favor of a simpler
scheme for denoting which values to record, simply storing a list
of the indices directly. We used variables to store the values needed
for matrix generation, rather than recalculating each element. As
a result, solely by algorithmic improvements, almost an order of
magnitude speedup was obtained (See Figure 5). Still, 99% of the
time was spent within a highly parallelizable inner loop.

CPU and GPU Parallel Implementations

NISE already had, and WrightSim inherited, CPU multipro-
cessed parallelism using the Python standard library multiprocess-
ing interface. Since almost all of the program is parallelizable, this
incurs a four times speedup on a machine with four processing
cores (limited more by the operating system scheduling other
tasks than by Amdahl’s law). This implementation required little
adjustment outside of minor API tweaks.

In order to capitalize on the highly parallelizable nature of our
multidimensional simulation, the algorithm was re-implemented
using Nvidia CUDA [NBGS08]. In order to make the implementa-
tion as easy to use as possible, and maintainable over the lifetime
of WrightSim, PyCUDA [KPL+12] was used to integrate the
call to a CUDA kernel from within Python. PyCUDA allows the
source code for the device side functions (written in C/C++) to
exist as strings within the Python source files. These strings are
just-in-time compiled (using nvcc) immediately prior to calling
the kernel. For the initial work with the CUDA implementation,
only one Hamiltonian and one propagation function were written,
however it is extensible to additional methods. The just-in-time
compilation makes it easy to replace individual functions as
needed (a simple form of metaprogramming).

The CUDA implementation is slightly different from the pure
Python implementation. It only holds in memory the Hamiltonian
matrices for the current and next step, where the Python imple-
mentation computes all of the matrices prior to entering the loop.
This was done to conserve memory on the GPU. Similarly, the
electric fields are computed in the loop, rather than computing
all ahead of time. These two optimizations reduce the memory
overhead, and allow for easier to write functions, without the help
of NumPy to perform automatic broadcasting of shapes.

Scaling Analysis

Scaling analysis, tests of the amount of time taken by each
simulation versus the number of points simulated, were con-
ducted for each of the following: NISE single threaded, NISE
Multiprocessed using four cores, WrightSim Single threaded,
WrightSim Multiprocessed using four cores, and WrightSim
CUDA implementation. A machine with an Intel Core i5-7600

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 81

Fig. 4: Profile trace of a single threaded simulation from NISE.

Fig. 5: Profile trace of a single threaded simulation from WrightSim.

(3.5 GHz) CPU and an Nvidia GTX 1060 (3GB) graphics card,
running Arch Linux was used for all tests. The simulations were
functionally identical, with the same number of time steps and
same recorded values. The NISE simulations use two seven
by seven matrices for the Hamiltonian, while the WrightSim
simulations use a single nine by nine matrix. The results are
summarized in Figure 6.

The log-log plot shows that the time scales linearly with
number of points. All lines have approximately the same slope at
high values of N, though the CUDA implementation grows slower
at low N. The Algorithmic improvements alone offer doubled per-

formance over even 4-Core multiprocessed NISE simulation. The
CUDA implementation has a positive intercept at approximately
200 milliseconds. This is due, in large part, to the compilation
overhead.

Limitations

The CUDA implementation faces limitations at both ends in terms
of number of points. On the low side, the cost of compilation
and transfer of data makes it slower than the 4-Core CPU Multi-
processing implementation. This crossover point is approximately
256 points (for this simulation, all other parameters being equal).
Incidentally, that is also a hard coded block size for the CUDA

82 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 6: Scaling Comparison of WrightSim and NISE

kernel call. While this could be modified to ensure no illegal
memory accesses occur on smaller cases, the fact that you are
not saving by using CUDA (and even single core performance
is under a second) means it is not worth the effort at this time.
The hard-coded block size also means that multiples of 256 points
must be used in the current implementation.

With larger number of points, we are limited by the amount of
memory available to be allocated on the GPU. For each pixel in
the simulations presented here, 250 complex numbers represented
as doubles must be allocated. Additional space is needed, however
it is dominated by this array, which contains the outputs which are
then transferred back to the host. Each CUDA thread additionally
dynamically allocates the arrays it needs to perform the com-
putation. The current implementation, paired with the particular
hardware used, has a limit somewhere between 218 and 219 points.
This limit could be increased by using single precision floating
point numbers to represent the complex arrays, if the precision
trade-off is acceptable (which is yet to be determined).

Future Work

This is still quite early days for WrightSim. While it is already
a promising proof of concept display of how PyCUDA can be
applied to this problem, there is still much room for improvement.
In general, there are improvements to be made in terms of features,
API/ease of use, and indeed further algorithmic improvements.

Features

NISE had implemented a few additional features which were not
carried over to WrightSim during the initial development efforts
which focused on performance thus far.

There was support for chirped electric field pulses, which
behave in less ideal fashions than the true sinusoids and Gaussian
peaks used thus far. These non-ideal perturbations can have a real
effect in spectra collected in the lab, and accurately modelling
them helps to interpret these spectra.

Samples in laboratory experiments may have some amount of
inhomogeneity within the sample, resulting in broader than would
otherwise be expected peaks. This inhomogeneity can be modeled
by storing the response array which is calculated by numerical
integration, and translating the points slightly. The original NISE
implementation would perform the simulation multiple times,
where that is not needed as a simple translation will do. At one
point we considered generating a library of responses in well
known coordinates and saving them for future use, avoiding the
expensive calculation all together. That seems to be less urgent,
given the speed of the CUDA code.

NISE provided a powerful and flexible set of tools to “Mea-
sure" the signal, using Fourier transforms and produce arrays that
even further mimic what is observed experimentally. That system
needs to be added to WrightSim for it to be feature-complete.
More naïve methods of visualizing work in this case, but a true
measurement would allow for richer, more detailed analysis and
interpretation.

Some new features could be added, including saving inter-
mediate responses using an HDF5 based file format. The CUDA
implementation itself would benefit from some way of saving
the compiled code for multiple runs, removing the 0.2 second
overhead. Current implementation compiles directly before calling
the kernel, whether it has compiled it before or not. If performing
many simulations in quick succession (e.g. a simulation larger than
the memory allows in a single kernel call) with the same C code,
the savings would add up.

The just-in-time compilation enables some special metapro-
gramming techniques which could be explored. The simple case
is using separately programmed functions which have the same
signature to do tasks in different ways. Currently there is a
small shortcut in the propagation function which uses statically
allocated arrays and pointers to those arrays rather than using
dynamically allocated arrays. This relies on knowing the size at
compilation time. The numbers could be replaced by preprocessor
macros which are also fed to the compiler to assign this value
"pseudo-dynamically" at compilation time. A much more ad-
vanced metaprogramming technique could, theoretically, generate
the C struct and Hamiltonian generation function by inspecting the
Python code and performing a translation. Such a technique would
mean that new Hamiltonians would only have to be implemented
once, in Python, and users who do not know C would be able to
run CUDA code.

Usability

One of the primary reasons for reimplementing the simulation
package is to really think about our interface. As much as possible,
the end user should not need to be an experienced programmer to
be able to get a simulation. One of the next steps for WrightSim
is to take a step back and ensure that our API is sensible and
easy to follow. We wish to, as much as possible, provide ways
of communicating through configuration files, rather than code.
Ultimately, a GUI front end may be desirable, especially as the
target audience is primarily experimentalists.

Additional Hamiltonians would make the package significantly
more valuable as well. To add more Hamiltonians will require
ensuring the code is robust, that values are transferred as expected.
A few small assumptions were made in the interest of efficiency
in the original implementation. Certain values, such as the initial
density vector, represented by the Hamiltonian were hard-coded
on the device code. While the hard-coded values are reasonable

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 83

for most simulations, the ability to set theses at run time is desired,
and will be added in the future.

Further Algorithmic Improvements

While great strides were taken in improving the algorithms from
previous implementations, there are several remaining avenues to
gain improved performance in execution time and memory usage.
The CUDA implementation is memory bound, both in terms of
what can be dispatched, and in terms of time of execution. The
use of single precision complex numbers (and other floating point
values) would save roughly half of the space. One of the inputs
is a large array with parameters for the each electric field at each
pixel. This array contains much redundant data, which could be
compressed with the parsing done in parallel on the device.

If the computed values could be streamed out of the GPU
once computed, while others use the freed space, then there would
be almost no limit on the number of points. This relies on the
ability to stream data back while computation is still going, which
we do not have experience doing, and are not sure CUDA even
supports. The values are not needed once they are recorded, so
there is no need from the device side to keep the values around
until computation is complete.

Additional memory could be conserved by using a bit field
instead of an array of chars for determining which time orderings
are used as a boolean array. This is relatively minimal, but is a
current waste of bits. The Python implementation could potentially
see a slight performance bump from using a boolean array rather
than doing list searches for this same purpose.

The CUDA implementation does not currently take full ad-
vantage of shared cache. Most of the data needed is completely
separated, but there are still a few areas where it could be useful.

The current CUDA implementation fills the Hamiltonian with
zeros at every time step. The values which are nonzero after
the first call are always going to be overwritten anyway, so this
wastes time inside of of nested loop. This zeroing could be done
only before the first call, removing the nested loop. Additionally,
many matrices have a lot of zero values. Often they are triangular
matrices, which would allow for a more optimized dot product
computation which ignores the zeros in the half which is not
populated. Some matrices could even benefit by being represented
as sparse matrices, though these are more difficult to use.

Finally, perhaps the biggest, but also most challenging, remain-
ing possible improvement would be to capitalize on the larger
symmetries of the system. It’s a non-trivial task to know which
axes are symmetric, but if it could be done, the amount that
actually needs to be simulated would be much smaller. Take the
simulation in Figure 1. This was computed as it is displayed, but
there are two orthogonal axes of symmetry, which would cut the
amount actually needed to replicate the spectrum down by a factor
of four. Higher dimensional scans with similar symmetries would
benefit even more.

Conclusions

WrightSim, as implemented today, represents the first major
step towards a cohesive, easy to use, fast simulation suite for
quantum mechanical numerically integrated simulations using
density matrix theory. Solely algorithmic improvements enabled
the pure Python implementation to be an order of magnitude
faster than the previous implementation. The algorithm is highly
parallelizable, enabling easy CPU level parallelism. A new im-
plementation provides further improvement than the CPU parallel

code, taking advantage of the General Purpose-GPU Computation
CUDA library. This implementation provides approximately 2.5
orders of magnitude improvement over the existing NISE serial
implementation. There are still ways that this code can be im-
proved, both in performance and functionality. With WrightSim,
we aim to lead by example among the spectroscopic community
by providing an open-source package for general-purpose MDS
simulation.

REFERENCES

[BDH06] Paul Blanchard, Robert L Devaney, and Glen R Hall. Numerical
Methods. In Differential Equations, chapter 7, pages 627–667.
Thomson Brooks/Cole, third edition, 2006.

[CTK+15] Kyle J. Czech, Blaise J. Thompson, Schuyler Kain, Qi Ding,
Melinda J. Shearer, Robert J. Hamers, Song Jin, and John C.
Wright. Measurement of ultrafast excitonic dynamics of few-
layer MoS2using state-selective coherent multidimensional spec-
troscopy. ACS Nano, 9(12):12146–12157, dec 2015. doi:
10.1021/acsnano.5b05198.

[FGG+09] Frederic Fournier, Rui Guo, Elizabeth M. Gardner, Paul M. Don-
aldson, Christian Loeffeld, Ian R. Gould, Keith R. Willison, and
David R. Klug. Biological and biomedical applications of two-
dimensional vibrational spectroscopy: Proteomics, imaging, and
structural analysis. Accounts of Chemical Research, 42(9):1322–
1331, sep 2009. URL: https://doi.org/10.1021/ar900074p, doi:
10.1021/ar900074p.

[GED09] Maxim F. Gelin, Dassia Egorova, and Wolfgang Domcke. Ef-
ficient calculation of time- and frequency-resolved four-wave-
mixing signals. Accounts of Chemical Research, 42(9):1290–
1298, sep 2009. URL: http://dx.doi.org/10.1021/ar900045d, doi:
10.1021/ar900045d.

[Gib02] J.W. Gibbs. Elementary Principles in Statistical Mechanics:
Developed with Especial Reference to the Rational Foundations
of Thermodynamics. C. Scribner’s sons, 1902. URL: https:
//books.google.com/books?id=IGMSAAAAIAAJ.

[Gro16] Wright Group. Nise: Numerical integration of the shrödinger
equation, 2016. URL: http://github.com/wright-group/NISE.

[jif17] jiffyclub. Snakeviz, 2017. URL: http://jiffyclub.github.io/
snakeviz/.

[KPL+12] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catan-
zaro, Paul Ivanov, and Ahmed Fasih. PyCUDA and Py-
OpenCL: A scripting-based approach to GPU run-time code
generation. Parallel Computing, 38(3):157–174, mar 2012.
URL: http://dx.doi.org/10.1016/j.parco.2011.09.001, doi:10.
1016/j.parco.2011.09.001.

[KTW17] Daniel D. Kohler, Blaise J. Thompson, and John C. Wright.
Frequency-domain coherent multidimensional spectroscopy when
dephasing rivals pulsewidth. The Journal of Chemical Physics,
147(8):084202, aug 2017. URL: https://doi.org/10.1063/1.
4986069, doi:10.1063/1.4986069.

[LA85] Duckhwan Lee and Andreas C. Albrecht. A unified view of
raman, resonance raman, and fluorescence spectroscopy (and their
analogues in two-photon absorption. In R. J. H. Clark and R. E.
Hester, editors, Advances in infrared and Raman Spectroscopy,
chapter 4, pages 179–213. London; New York, 1 edition, 1985.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable parallel programming with CUDA. Queue, 6(2):40, mar
2008. URL: https://doi.org/10.1145/1365490.1365500, doi:10.
1145/1365490.1365500.

[PLMZ18] Megan K. Petti, Justin P. Lomont, Michał Maj, and Martin T.
Zanni. Two-dimensional spectroscopy is being used to address
core scientific questions in biology and materials science. The
Journal of Physical Chemistry B, 122(6):1771–1780, feb 2018.
URL: https://doi.org/10.1021/acs.jpcb.7b11370, doi:10.1021/
acs.jpcb.7b11370.

[PRK+09] Andrei V. Pakoulev, Mark A. Rickard, Kathryn M. Kornau,
Nathan A. Mathew, Lena A. Yurs, Stephen B. Block, and John C.
Wright. Mixed frequency-/time-domain coherent multidimen-
sional spectroscopy: Research tool or potential analytical method?
Accounts of Chemical Research, 42(9):1310–1321, sep 2009.
doi:10.1021/ar900032g.

[TSM+] Blaise J. Thompson, Kyle F. Sunden, Darien J. Morrow,
Nathan Andrew Neff-Mallon, Kyle J. Czech, Daniel D. Kohler,
Tom Parker, and Rachel Swedin. Wrighttools. doi:10.5281/
zenodo.1198904.

http://dx.doi.org/10.1021/acsnano.5b05198
http://dx.doi.org/10.1021/acsnano.5b05198
https://doi.org/10.1021/ar900074p
http://dx.doi.org/10.1021/ar900074p
http://dx.doi.org/10.1021/ar900074p
http://dx.doi.org/10.1021/ar900045d
http://dx.doi.org/10.1021/ar900045d
http://dx.doi.org/10.1021/ar900045d
https://books.google.com/books?id=IGMSAAAAIAAJ
https://books.google.com/books?id=IGMSAAAAIAAJ
http://github.com/wright-group/NISE
http://jiffyclub.github.io/snakeviz/
http://jiffyclub.github.io/snakeviz/
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1063/1.4986069
https://doi.org/10.1063/1.4986069
http://dx.doi.org/10.1063/1.4986069
https://doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
https://doi.org/10.1021/acs.jpcb.7b11370
http://dx.doi.org/10.1021/acs.jpcb.7b11370
http://dx.doi.org/10.1021/acs.jpcb.7b11370
http://dx.doi.org/10.1021/ar900032g
http://dx.doi.org/10.5281/zenodo.1198904
http://dx.doi.org/10.5281/zenodo.1198904

	Introduction
	A Brief Introduction of Relevant Quantum Mechanics
	Usage
	Performance
	Algorithmic Improvements
	CPU and GPU Parallel Implementations
	Scaling Analysis
	Limitations

	Future Work
	Features
	Usability
	Further Algorithmic Improvements

	Conclusions
	References

