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Abstract—Parkinson’s disease (PD) is a highly prevalent neurodegenerative
condition originating in subcortical areas of the brain and resulting in progres-
sively worsening motor, cognitive, and psychiatric (e.g., depression) symptoms.
Neuroimage data is an attractive research tool given the neurophysiological ori-
gins of the disease. Despite insights potentially available in magnetic resonance
imaging (MRI) data, developing sound analytical techniques for this data has
proven difficult. Principally, multiple image modalities are needed to compile
the most accurate view possible; the process of incorporating multiple image
modalities into a single holistic model is both poorly defined and extremely
challenging. In this paper, we address these issues through the proposition
of a novel graph-based convolutional neural network (GCN) architecture and
present an end-to-end pipeline for preprocessing, formatting, and analyzing
multimodal neuroimage data. We employ our pipeline on data downloaded
from the Parkinson’s Progression Markers Initiative (PPMI) database. Our GCN
model outperforms baseline models, and uniquely allows for direct interpretation
of its results.

Introduction

Affecting more than 1% of the United States population over the
age of 60, Parkinson’s disease (PD) is the second-most preva-
lent age-related neurodegenerative disease following Alzheimer’s
disease [RST14]. PD diagnosis has traditionally relied on clin-
ical assessments with some degree of subjectivity [GGL+18],
often missing early-stage PD altogether [DDH16]. Benchmarks
for delineating PD progression or differentiating between similar
conditions are lacking [[LMS+18], [LWX+12]]. As such, many
efforts have emerged to identify quantitatively rigorous methods
through which to distinguish PD.

Neuroimage data is an attractive tool for PD research. Mag-
netic resonance imaging (MRI) in particular is safe for patients,
highly diverse in what it can capture, and decreasing in cost to
acquire. Recent work shows that multiple MRI modalities are
required to provide researchers and clinicians with the most accu-
rate view of a patient’s physiological state [[LCL+15], [DDH16],
[LWX+12]]. For example, anatomical MRI (aMRI1) data is useful
for identifying specific brain regions, but the Euclidean distance
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between regions does not well-approximate the functional or struc-
tural connectivity between them. Diffusion-weighted MRI (dMRI)
measures the flow of water through the brain in order to track the
tube-like connections between regions (i.e., tracking nerve fiber
bundles a.k.a. tracts via white matter tractography; see Appendix
A in the appendices file on our GitHub repository2 for more
information), and functional MRI (fMRI) measures changes in
blood oxygenation throughout the brain over time to approximate
which regions of the brain function together. As such, it is useful
to analyze a combination of these modalities to gain insights from
multiple measures of brain physiology. Processing and analyzing
multi-modal data together is both poorly defined and extremely
challenging, requiring combined expertise from neuroscience and
data analytics.

MRI data is inherently noisy data and requires extensive
preprocessing before analysis can be performed. This is often
left to the researcher to carry out; many techniques exist, and
the technical implementation decisions made along the way can
affect the outcome of later analysis. This is a major barrier to
reproducibility and prevents data analysts from applying their
skills in this domain. More work is needed to automate the
procedure and provide better documentation for steps requiring
case-specific input. To that end, we discuss our findings and
methods below, and our code is available on GitHub.

Following preprocessing, we address the issue of analyzing
multimodal MRI data together. Previous work has shown that
graph-based signal processing techniques allow multimodal analy-
sis in a common data space [[DMF+17], [KPF+18], [ZHC18]]. It
has been shown that graph-based signal processing classifiers can
be incorporated in neural network-like architectures and applied to
neuroimage data. Similar to convolutional neural networks, Graph
Convolutional Networks (GCNs) learn filters over a graph so as
to identify patterns in the graph structure, and ultimately perform
classification on the nodes of the graph. In this paper, following
the discussion of our preprocessing pipeline, we propose a novel
GCN architecture which uses graph attention network (GAT)

1. We use “anatomical MRI” to refer to standard T1-weighted (T1w) MR
imaging. “T1 weighted” refers to the specific sequence of magnetic and radio
frequency pulses used during imaging. T1w MRI is a common MR imaging
procedure and yields high-resolution images; different tissues and brain regions
can be distinguished.

2. https://github.com/xtianmcd/GCNeuro
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layers to perform whole-graph classification on graphs formed
from multimodal neuroimage data.

On data downloaded from the Parkinson’s Progression Mark-
ers Initiative (PPMI), we compare the performance of the novel
GCN architecture to that of baseline models. We find that our
GCN model outperforms baseline models on our data. The weights
from GAT layers provide a means for direct interpretation of the
results, indicating which brain regions contributed the most to the
distinction between patients with PD and healthy controls.

Related Works

While genetic and molecular biomarkers have exhibited some
efficacy in developing a PD blueprint [[GGL+18], [MLL+18],
[BP14]], many research efforts have turned to neuroimaging due
to its noninvasive nature and alignment with existing knowledge
of the disease. Namely, PD affects a major dopamine-producing
pathway (i.e., the nigrostriatal dopaminergic pathway) of the brain
[Bro16], and results in various structural and functional brain
abnormalities that can be captured by existing imaging modali-
ties [[ZYH+18], [MLL+18], [GLH+14], [TBvE+15], [LSC+14],
[GRS+16]]. Subsequent whole-brain neuroimage analysis has
identified PD-related regions of interest (ROIs) throughout the
brain, from cortical and limbic regions to the brainstem and
cerebellum [[BWS+11], [TBvE+15], [GRS+16]].

As neuroimage data has accumulated, researchers have worked
to develop sound analytical techniques for the complex images.
Powerful machine learning techniques have been employed for
analyzing neuroimage data [[MLL+18], [TBvE+15], [BWS+11],
[LSC+14]], but algorithmic differences can result in vastly dif-
ferent results [[GLH+14], [Kum18], [ZYH+18]]. [CJM+17] and
[GRS+16] found that implementation choices made during the
processing pipeline can affect analysis results as much as anatom-
ical differences themselves (e.g., when performing white mat-
ter tractography on diffusion-weighted MRI (dMRI) data and
in group analysis of resting-state functional MRI (rfMRI) data,
respectively). To overcome the effect of assumptions made by a
given analysis algorithm, many researchers have turned to appli-
cations of deep machine learning (DL) for neuroimage data anal-
ysis. Considered “universal function approximators” [HKK90],
DL algorithms are highly flexible and therefore have low bias
in their modeling behavior. Examples of DL applications to
neuroimage analysis are widespread. [KUH+16] proposes a 3D
convolutional neural network (CNN) for skull stripping 3D brain
images, [HDC+18] proposes a novel recurrent neural network
plus independent component analysis (RNN-ICA) model for fMRI
analysis, and [HCS+14] demonstrate the efficacy of the restricted
Boltzmann machine (RBM) for network identification. [LZC17]
offer a comprehensive review of deep learning-based methods for
medical image computing.

Multi-modal neuroimage analysis is increasing in prevalence
[[BSS+18], [LCL+15], [DDH16], [LMS+18], [LWX+12]] due to
limitations of single modalities, resulting in larger and increasingly
complex data sets. Recently, researchers have utilized advances
in graph convolutional networks to address these concerns. We
discuss the mathematical background of graph convolutional net-
works (GCNs) and graph attention networks (GATs, a variant of
GCNs with added attention mechanisms) in the Methods Section
below and Appendix B in the appendices file on GitHub. Prin-
cipally, our model is based on advancements made by [KW217]
and [VCC18] on GCNs and GATs, respectively.

This work follows from previous efforts applying GCNs to
similar classification tasks. [SNF+13] - in addition to providing in-
depth intuition behind spectral graph processing (i.e., processing
a signal defined on a graph structure) - demonstrate spectral graph
processing on diffusion signals defined on a graph of connected
brain regions. Their paper preceded but laid the groundwork for
incorporating spectral graph processing into convolutional neural
network architectures. To classify image objects based on multiple
“views” or angles, [[KZS15], [KCR16]] developed “siamese” and
“multi-view” neural networks. These architectures share weights
across parallel neural networks to incorporate each view of the
data. They group examples into pairs, aiming to classify the pairs
as being from the same class or different classes.

Efforts to utilize GCNs for multimodal neuroimage data have
used similar pairwise grouping as a way to increase the size
of their data set. [[DMF+17], [KPF+18]] train GCN models to
learn similarity metrics between subjects with Autism Spectrum
Disorder (ASD) and healthy controls (HC), using fMRI data from
the Autism Brain Imaging Data Exchange (ABIDE) database.
[ZHC18] apply a similar architecture to learn similarity metrics
between subjects with PD and HC, using dMRI data from the
PPMI data set. Their work inspired our paper; to our knowledge,
we are the first publication that uses GCNs to predict the class
of neuroimage data directly, instead of making predictions on
pairwise examples.

Discussion of the Processing Pipeline

This section walks through our pipeline, which handles the for-
matting and preprocessing of multimodal neuroimage data and
readies it for analysis via our GCN architecture. We reference the
specific python files that handle each task, and we provide some
background information. More information can be found in the
Appendices on GitHub.

Data Formatting

MRI signals are acquired through the application of precisely
coordinated magnetic fields and radiofrequency (RF) pulses. Each
image is reconstructed from a series of recordings averaged over
many individual signals, and requires extensive artifact correction
and removal before it can be used. This inherently results in
noisy measurements, magnetic-based artifacts, and artifacts from
human error such as motion artifacts [[Wan15], [HBL10]]. As
such, extensive preprocessing must be performed to clean the data
before analysis. Appendix A on our GitHub page provides more
details on the main MRI modalities.

Our pipeline assumes that a "multi-zip" download is used to
get data from the PPMI database3. The file neuro_format.py
combines the data from multiple download folders into a single
folder, consolidating the multiple zip files and recombining data
from the same subject.

Next, before preprocessing, images should be converted to
the Neuroimaging Informatics Technology Initiative (NIfTI)4 file
format. Whereas many MRI data are initially in the Digital
Information and Communications in Medicine (DICOM)5 format
for standardized transfer of medical data and metadata, the NIfTI
format is structured for ease of use when conducting computa-
tional analysis and processing on these files. The size, orientation,
and location in space of the voxel data is dependent on settings

3. The "Advanced Download" option on the PPMI database splits the data
into multiple zip files, separating files from the same subject.
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used during image acquisition and requires an affine matrix to
relate two images in a standard coordinate space. The NIfTI file
format automatically associates each image with an affine matrix
as well as a header file, which contains other helpful metadata.
The software dcm2niix6 is helpful for converting the data from
DICOM format to NIfTI format.

Next, it is common practice to convert your data file structure
to the Brain Imaging Data Structure (BIDS)7 format. Converting
data to the BIDS format is required by certain softwares, and
ensures a standardized and intuitive file structure. There exist
some readily available programs for doing this, but we wrote
our own function specifically for PPMI data in make_bids.py,
as the PPMI data structure is quite nuanced. This file also calls
dcm2niix to convert the image files to NIfTI format.

Data Preprocessing

This subsection discusses the various softwares and commands
used to preprocess the multimodal MRI data. The bash script
setup should help with getting the necessary dependencies
installed8 . The script was written for setting up a Google cloud
virtual machine, and assumes the data and pipeline files are already
stored in a Google cloud bucket.

The standard software for preprocessing anatomical MRI
(aMRI) data is Freesurfer9. Although an actively developed soft-
ware with responsive technical support and rich forums, receiving
training for Freesurfer may still be helpful. The recon-all
command performs all the steps needed for standard aMRI pre-
processing, including motion correction, registration to a common
coordinate space using the Talairach atlas by default, intensity
correction and thresholding, skull-stripping, region segmentation,
surface tessellation and reconstruction, statistical compilation, etc.

The entire process takes around 15 or more hours per image.
Support for GPU-enabled processing was stopped years ago, and
the -openmp <num_cores> command, which allows parallel
processing across the designated number of cores, may only
reduce the processing time to around 8-10 hours per image10.
We found that running parallel single-core CPU processes worked
the best, especially when many processing cores are available.
For this we employed a Google Cloud Platform virtual machine
and utilized the python module joblib.Parallel to run
many single-core processes in parallel. For segmentation, the
Deskian/Killiany atlas is used, resulting in around 115 volume
segmentations per image, to be used as the nodes for the graph.

The Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Software Library (FSL)11 is often used to preprocess
diffusion data (dMRI). The b0 volume is taken at the beginning

4. https://nifti.nimh.nih.gov
5. https://www.dicomlibrary.com
6. https://github.com/rordenlab/dcm2niix
7. https://bids.neuroimaging.io
8. We install the softwares to the home (~) to avoid permission issues during

remote Google cloud session. Several environment variables used by Freesurfer
need to be hard coded to accommodate this download location. See the setup
bash script provided for details.

9. https://surfer.nmr.mgh.harvard.edu
10. In the release notes, it is recommended for multi-subject pipelines to use

a single core per image and process subjects in parallel; we also found this
to provide the greatest speedup. Multiprocessing only reduces the processing
time by a few hours, so parallelization is more important. We did not use
GPUs; the time required to transfer data on and off GPU cores may diminish
the speedup provided by GPU processing. Also, Freesurfer has not supported
GPUs for quite some time, and we were unable to compile Freesurfer to use
newer versions of CUDA.

of dMRI acquisition and is used to align dMRI images to aMRI
images of the same subject. This volume is isolated (fslroi) and
merged with b0’s of other clinic visits (CVs)12 for the same subject
(fslmerge). fslmerge requires that all dMRI acquisitions
for a given subject have the same number of coordinates (e.g.,
(116,116, 78 ,65) vs. the standard (116,116, 72 ,65)). Since some
acquisitions had excess coordinates, we manually examined these
images and, if possible, removed empty space above or below
the brain. Otherwise, these acquisitions were discarded. Next,
the brain is isolated from the skull (skull stripped, bet with the
help of fslmaths -Tmean), magnetic susceptibility correction
is performed for specific cases (see below) using topup, and
eddy correction is performed using eddy_openmp. Magnetic
susceptibility and eddy correction refer to specific noise artifacts
that significantly affect dMRI data.

The topup tool requires two or more dMRI acquisitions
for a given subject, where the image acquisition parameters
TotalReadoutTime and/or PhaseEncodingDirection
(found in the image’s header file) differ from one another. Since
the multiple acquisitions for a given subject typically span dif-
ferent visits to the clinic, the same parameters are often used
and topup cannot be utilized. We found another software,
BrainSuite13, which can perform magnetic susceptibility correc-
tion using a single acquisition. Although we still include FSL
in our pipeline since it is the standard software used in many
other papers, we employ the BrainSuite software’s Brain Diffusion
Pipeline to perform magnetic susceptibility correction and to align
the corrected dMRI data to the aMRI data for a given subject (i.e.,
coregistration).

First, a BrainSuite compatible brain mask is obtained using
bse. Next, bfc is used for bias field (magnetic susceptibility)
correction, and finally bdp performs co-registration of the diffu-
sion data to the aMRI image of the same subject. The calls to the
Freesurfer, FSL, and BrainSuite software libraries are included in
automate_preproc.py.

Once the data has been cleaned, additional processing is
performed on the diffusion (dMRI) data. As discussed in the
Introduction section, dMRI data measures the diffusion of water
throughout the brain. The flow of water is constricted along the
tube-like pathways (tracts) that connect regions of the brain, and
the direction of diffusion can be traced from voxel to voxel to
approximate the paths of tracts between brain regions. There are
many algorithms and softwares that perform tractography, and the
choice of algorithm can greatly affect the analysis results. We use
the Diffusion Toolkit (DTK)14 to perform multiple tractography
algorithms on each diffusion image. In dtk.py we employ
four different diffusion tensor imaging (DTI)-based deterministic
tractography algorithms: Fiber Assignment by Continuous Track-
ing (FACT; [MCCv99]), the second-order Runge–Kutta method
(RK2; [BPP+00]), the tensorline method (TL; [LWT+03]), and
the interpolated streamline method (SL, [CLC99]). [ZZW+15]
provide more information on each method. dti_recon first
transforms the output file from Brainsuite into a usable format
for DTK, and then dti_tracker is called for each of the
tractography algorithms. Finally, spline_filter is used to
smooth the generated tracts, denoising the outputs. Now that

11. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
12. We use “clinic visit” or CV to refer to the MRI acquisitions (anatomical

and diffusion) obtained during a single visit to the clinic.
13. http://brainsuite.org
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Fig. 1: A depiction of the steps involved in forming the adjacency
matrix. First, anatomical images are segmented into regions of interest
(ROIs), which represent the vertices of the graph. The center voxel for
each ROI is then calculated. An edge is placed between each node i
and its k-nearest neighbors, calculated using the center coordinates.
Lastly, each edge is weighted by the normalized distance between each
node i and its connected neighbor j.

the images are processed, they can be efficiently loaded using
python libraries nibabel and dipy, and subsequently operated
on using standard data analysis packages such as numpy and
scipy.

Defining Graph Nodes and Features

Neuroimage data is readily applied to graph processing techniques
and is often used as a benchmark application for new develop-
ments in graph processing [SNF+13]. Intuitively, the objective is
to characterize the structural and functional relationships between
brain regions, since correlations between PD and abnormal brain
structure and function have been shown. As such, the first step
is to define a graph structure for our data. This step alone
has intuitive benefits. Even after preprocessing, individual voxels
of MRI data contain significant noise that can affect analysis
[GRS+16]. Brain region sizes vary greatly across individuals and
change over one individual’s lifetime (e.g., due to natural aging
[Pet06]). Representing regions as vertices on a graph meaningfully
groups individual voxels and mitigates these potential red herrings
from analysis.

We use an undirected weighted graph G = V ,E ,W with
a set of vertices V with |V | = the number of brain regions
N, a set of edges E , and a weighted adjacency matrix W, to
represent our aMRI data. G is shared across the entire data set
to represent general population-wide brain structure. Each vertex
vi ∈ V represents a brain region. Together, V ,E , and W form
a k-Nearest Neighbor adjacency matrix, in which each vertex
is connected to its k nearest neighbors (including itself) by an
edge, and edges are weighted according to the average Euclidean
distance between two vertices. The weight values are normalized
by dividing each distance by the maximum distance from a given
vertex to all of its neighbors, di j ∈ [0,1]. (Refer to Appendix B on
our GitHub for details.)

gen_nodes.py first defines the vertices of the graph using
the anatomical MRI data, which has been cleaned and segmented
into brain regions by Freesurfer. The center voxel for each segmen-
tation volume in each image is calculated. Next, adj_mtx.py
calculates the mean center coordinate across all aMRI images for
every brain region. The average center coordinate for each region
i is a vertex vi ∈ V of the graph G . See Figure 1 for a depiction of
the process.

Using these vertices, we wish to incorporate information
from other modalities to characterize the relationships between

14. http://trackvis.org/dtk/

Fig. 2: The process of generating the features from a single trac-
tography algorithm is shown. Tractography streamlines are aligned
to a corresponding anatomical image. The number of streamlines
connecting each pair of brain regions is calculated to represent the
strength of connection. Using each brain region as a vertex on the
graph, the connection strengths between a given vertex to all other
vertices are compiled to form the signal vector for that vertex.

the vertices. We define a signal on the vertices as a function
f : V → R, returning a vector f ∈ RN . These vectors can be
analyzed as “signals” on each vertex, where the change in signal
across vertices is used to define patterns throughout the overall
graph structure. In our case, the vector signal defined on a vertex vi
represents that vertex’s weighted connectivity to all other vertices
[SNF+13]. The weights correspond to the strength of connectivity
between vi and some other vertex v j, as calculated by a given
tractography algorithm. As such, each signal is a vertex of size
N and there are N signals defined on each graph (one for each
vertex), forming an N x N weighted connectivity matrix. Each
dMRI image has one N x N set of signals for each tractography
algorithm. In this way, the dimensionality of the data is drastically
reduced, and information from multiple modalities and processing
algorithms may be analyzed in a common data space.

gen_features.py approximates the strength of connec-
tivity between each pair of vertices. For this, the number of
tracts (output by each tractography algorithm) connecting each
pair of brain regions must be counted. Recall that each image
carries with it an affine matrix that translates the voxel data to a
coordinate space. Each preprocessing software uses a different
coordinate space, so a new affine matrix must be calculated
to align the segmented anatomical images and the diffusion
tracts (i.e., coregistration). Freesurfer’s mri_convert, FSL’s
flirt, and DTK’s track_transform are used to put the
two modalities in the same coordinate space so that voxel-to-
voxel comparisons can be made. Next, nibabel’s i/o func-
tionality is used to generate a mask file for each brain region,
nibabel.streamlines is used to read in the tractography
data and dipy.tracking.utils.target is used to identify
which tracts travel through each volume mask. The tracts are
encoded using a unique hashing function to save space and allow
later identification.

To generate the signals for each vertex, utils.py uses
the encoded tract IDs assigned to each volume to count the
number of tracts connecting each volume pair. The number of
connections between pairs of brain regions approximate the con-
nection strength, and these values are normalized similar to the
normalization scheme mentioned above for the k-nearest neighbor
weights. Figure 2 offers a visualization.

Graph Convolutional Networks

Common to many areas of data analysis, spectral graph processing
techniques (i.e., processing a signal defined on a graph structure)
have capitalized on the highly flexible and complex modeling

http://trackvis.org/dtk/
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capacity of so-called deep learning neural network architectures.
The layered construction of nonlinear calculations loosens rigid
parameterizations of other classical methods. This is desirable, as
changes in parameterizations have been shown to affect results in
both neuroimage analysis (e.g., independent component analysis
(ICA) [CJM+17]) and in graph processing (e.g., the explicit
parameterization used in Chebyshev approximation [KW217];
further discussed in Appendix B).

In this paper, we utilize the Graph Convolutional Network
(GCN) to compute signal processing on graphs. GCNs were
originally used to classify the vertices of a single graph using
a single set of signals defined on its vertices. Instead, our task
is to learn signal patterns that generalize over many subjects’
data. To this end, we designed a novel GCN architecture, which
combines information from anatomical and diffusion MRI (dMRI)
data, processes data from multiple diffusion MRI tractography al-
gorithms for each dMRI image, and consolidates this information
into a single vector so as to compare many subjects’ data side-
by-side. A single complete forward pass of our model consists
of multiple parallel Graph Convolutional Networks (one for each
tractography algorithm), max pooling, and graph classification via
Graph Attention Network layers. We will briefly explain each part
in this subsection; see Appendix B on our GitHub for a deeper
discussion.

The convolution operation measures the amount of change
enacted on a function f1 by combining it with another function
f2. We can define f2 such that its convolution with instances
of f1 from one class (e.g., PD) produce large changes while
its convolution with instances of f1 from another class (e.g.,
HC) produce small changes; this provides a way to discriminate
instances of f1 into classes without explicitly knowing the class
values. Recall that we have defined a function f over the vertices
of our graph using dMRI data (i.e., the signals). We seek to learn
functions, termed filters, that, when convolved with the input graph
signals, transform the inputs into distinguishable groups according
to class value (e.g., PD vs. healthy control). This is similar to the
local filters used in convolutional neural networks, except that the
filters of GCNs use the connections of the graph (i.e., the edges)
to establish locality.

Our specific implementation is based off the GCN class
from [KW217]’s PyTorch implementation15, which has several
computational improvements over the original graph convolution
formula. In short, the graph convolutional operation is based off
the graph Laplacian

Ł = I−D
−1
2 WD

−1
2 ,

where I is the identity matrix with 1’s along the diagonal and
0’s everywhere else, W is the weighted adjacency matrix defined
earlier w.r.t. G , and D is a weighted degree matrix such that Dii =

∑ j Wi j. We define the graph convolutional operation as

Z = D̃
−1
2 W̃ D̃

−1
2 XΘ,

A so-called renormalization trick has been applied to Ł wherein
identity matrix IN has been added; i.e., self-loops have been added
to the adjacency matrix. IN + D

−1
2 WD

−1
2 becomes D̃

−1
2 W̃ D̃

−1
2 ,

where W̃ = W + IN and D̃ii = ∑ j W̃i j. Θ ∈ RCxF is a matrix of
trainable coefficients, where C = N is the length of the input
signals at each node, and F = N is the number of C-dimensional

15. https://github.com/tkipf/pygcn

filters to be learned. X is the N x N matrix of input signals for
all vertices (i.e., the signals from a single tractography output of a
single dMRI image). Z ∈ RNxF is the output matrix of convolved
signals. We will call the output signals features going forward.

Generalizing Θ to the weight matrix W(l) at a layer, we can
calculate a hidden layer of our GCN as

Z = f (X ,A) = so f tmax(ÂReLU(ÂXW(0))W(1)),

where Â = D̃
−1
2 ÃD̃

−1
2 .

Multi-View Pooling

For each dMRI acquisition, d different tractography algorithms are
used to compute multiple “views” of the diffusion data. To account
for the variability in the outputs produced by each algorithm, we
wish to compile the information from each before classifying the
whole graph. As such, d GCNs are trained side-by-side, such
that the GCNs share their weights [[KZS15], [DMF+17]]. This
results in d output graphs, i.e. d output vectors for each vertex.
The vectors corresponding to the same vertex are pooled using
max pooling, which has been shown to outperform mean pooling
[ZHC18].

Graph Attention Networks

In order to convert the task from classifying each node to classify-
ing the whole graph, the features on each vertex must be pooled to
generate a single feature vector for each input. The self-attention
mechanism, widely used to compute a concise representation
of a signal sequence, has been used to effectively compute the
importance of graph vertices in a neighborhood [VCC18]. This
allows for a weighted sum of the vertices’ features during pooling.

We employ a PyTorch implementation of [VCC18]’s GAT
class16 to implement a graph attention network, using a feed-
forward neural network to learn attention coefficients as

ai j =
exp(LeakyReLU(aT [Wahi||Wah j]))

∑k∈Ni exp(LeakyReLU(aT [Wahi||Wahk]))
,

where || is concatenation.

Multi-Subject Training

The model is trained using train.py. First, several helper
functions in utils.py are called to load the graph, input signals,
and their labels, and prepare them for training. The model is built
and run using the GCNetwork class in GCN.py. During training,
the model reads in the signals for one dMRI acquisition at a time,
where the signals from each tractography algorithm are processed
in parallel, pooled into one graph, and then pooled into a single
feature vector via the graph attention network. Using this final
feature vector, a class prediction is made. Once a class prediction
is made for every input dMRI instance, the error is computed and
the weights of the model are updated through backpropagation.
This is repeated over many epochs to iteratively fit the weights to
the classification task. Figure 3 shows an outline of the network
architecture.

16. https://github.com/Diego999/pyGAT

https://github.com/tkipf/pygcn
https://github.com/Diego999/pyGAT
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Fig. 3: A depiction of the novel GCN architecture is shown. First,
a GCN is trained for each “view” of the data, corresponding to a
specific tractography algorithm. The GCNs share weights, and the
resulting features are pooled for each vertex. This composite graph is
then used to train a multi-head graph attention network, which assigns
a weight (i.e., “attention”) to the feature computed at each vertex. The
weight assigned to each vertex is used to compute a weighted sum of
the features, yielding a single feature vector for graph classification.

Methods

Our data is downloaded from the Parkinson’s Progression Markers
Initiative (PPMI)17 database. We download 243 images, consisting
of 96 aMRI images and 140 diffusion images. The images are
from 20 individuals (each subject had multiple visits to the clinic
and data from multiple image modalities). Among the images,
117 are from the Parkinson’s Disease (PD) group and 30 are from
healthy controls (HC). We preprocessed our data using the pipeline
described above. We ran this preprocessing using a Google cloud
virtual machine with 96 CPU cores over the course of several days.

Following preprocessing, we constructed the shared adjacency
matrix and trained the model on the dMRI signals, which totaled
to 588 (147 dMRI acquisitions x 4 tractography algorithms) N
x N connectivity matrices. We calculated the adjacency matrix
using each node’s 20 nearest neighbors. To account for the class
imbalance between PD and HC images, we use a bagging method.
On each of five iterations, all the images from the HC group were
combined with an equally-sized subset from the PD group. All of
the images were used at least once during training, and the overall
performance measures were averaged across training folds.

Using caution to prevent any forms of data leakage, we
used a roughly 80/20 train-test split, wherein we ensured all
data from the same subject was used as only training or testing
data. To assess the performance of our GCN model, we first
trained a number of baseline models on the features constructed
from the diffusion data. These models include k-nearest neighbor,
logistic regression, ridge regression, random forest, and support
vector machine (SVM, with both linear and polynomial kernels)
from scikit-learn; we also trained a fully-connected neural
network (fcNN) and a 4-channel convolutional neural network
(CNN) using PyTorch. Finally, we compare our model to the
“siamese multi-view” GCN (sMVGCN) used in [ZHC18]. This
network utilizes diffusion and anatomical MRI data and trains on
pairs of image data to predict whether the pairs are from the same
or different classes. The data is also from the PPMI data set and
uses the PD and HC classes during classification. This was the
closest model to ours that we found in the literature.

Except for the multi-channel CNN, we trained each model on
the features from each tractography algorithm individually, and
averaged the results. We calculated the overall accuracy, F1 score,
and area under the ROC curve (AUC) as our performance mea-
sures. The default parameters were used for the scikit-learn

17. https://www.ppmi-info.org

models. The fcNN was a three-layer network with two hidden
layers. The first layer had 128 ReLU units; the second had 64. For
the CNN, a single convolutional layer was used, containing 18
filters of size 3; stride of 1 was used. Max pooling with a kernel
size of 2 and stride of 2 was used to feed the features through
two fully-connected layers before the final output. The first fully-
connected layer reduced the 18x57x57-dimension input - where
57 is the original input width and height of 115 halved via max
pooling - to 64 ReLU hidden units. For both neural networks,
softmax activation was applied to the outputs and negative log
likelihood was used as the loss function (i.e., cross entropy).
Again for both models, learning rate was set to 0.01 and dropout
of 0.5 was used between fully-connected hidden layers. These
parameters coincide with the default parameters of the graph
convolutional network class we used, and are commonly used in
the literature. We used a validation set to find the optimal number
of epochs to train each network for. We tested 40, 80, 100, 140,
200, and 400 epochs for each model and found that 140 worked
best for the fcNN, and 100 for the CNN.

We trained the graph convolutional network (GCN) on the
same bagged subsets of data for comparison purposes. The only
difference is that the features are md to the vertices of the
adjacency matrix before training. We used a validation set to
tune the model parameters. We tested with or without dropout
(set to 0.5 when used), with or without weight decay (set to 5e-4
when used), the number of hidden units for the first GCN layer
(8,16,32), the number of "heads" or individual attention weights
(2,4,6,8), and the number of epochs (same options as for the fcNN
and GCN). We found that dropout of 0.5, weight decay of 5e-4,
8 hidden units, 8 attention heads, and 80 epochs worked best for
our model. The results from training the GCN are also included in
Table 1.

Results

The results from training the diffusion data on baseline models,
and the combined diffusion and anatomical data on the GCN
are included in Table 1. We report accuracy, F1-score, and AUC
for each model; these numbers are averaged across five training
iterations using subsets of the data to account for class imbalance.
Subsequently, we analyze the attention weights from the GCN
model. Each node of the adjacency matrix was assigned an
attention weighting corresponding to that node’s importance in
determining the overall class of the graph. Since each node of the
adjacency matrix corresponds to an anatomical brain region, we
could interpret the magnitude of each node’s attention weight as
the relative importance of a brain region for distinguishing the
PD vs. HC classes. We compiled the attention weights from each
training iteration and determined the 16 brain regions with the
highest weights. The names and relative importance assigned to
these regions are shown in Figure 4.

Discussion and Conclusion

From the results on the baseline models, we can see that the
features generated from the diffusion MRI data are suitable for
distinguishing the PD vs. HC classes. For example, the relatively
high performance of the SVM models demonstrate that the fea-
tures are roughly linearly separable. Furthermore, we see from the
improved performance of the GCN model that the incorporation
of anatomical data improves the capacity for the data to be
modeled. Of the 16 highest-weighted regions according to the

https://www.ppmi-info.org
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Fig. 4: The 16 regions with highest attention weighting across all
training iterations are shown. "L" and "R" indicate regions on the
left or right hemisphere, respectively. "post.", "ant.", "sup.", "mid.",
"rost.", "caud.", and "trans." indicate posterior, anterior, superior,
middle, rostral, caudal, and transverse, respectively.

Model Accuracy
(%)

F1-Score AUC

k-Nearest Neighbor 63.66% 0.636 0.646
Logistic Regression 75.72% 0.749 0.839
Ridge Regression 85.54% 0.883 0.500
Random Forest 77.77% 0.765 0.782
SVM (linear kernel) 87.66% 0.873 0.894
SVM (polynomial ker-
nel)

87.02% 0.899 0.887

Fully-Connected NN 83.98% 0.854 0.881
Convolutional NN 85.33% 0.900 0.908
Graph Convolutional
NN

92.14% 0.953 0.943

TABLE 1: The results from our testing of the baseline algorithms
on the features constructed from the diffusion data alone, and our
graph convolutional network (GCN) which additionally incorporates
anatomical information. The results are averaged across five training
iterations, which use subsamples of the data to ensure class balance.

GAT attentions layers, 9 coincide with lateral or contralateral
regions identified by [ZHC18] as significantly contributing to the
distinction between PD and HC classes. All but two of the regions
listed in Figure 4 were from the left hemisphere, whereas the
majority of regions in [ZHC18] were from the right hemisphere.
We aren’t sure why this may be, but the stronger identification
of left hemispheric regions aligns with asymmetries found by
[CMD+16], wherein the left hemisphere is more significantly
affected in early-stage PD.

Due to the time required to construct the pipeline, and the sub-
stantial time and compute resources required for each additional
image, we used a relatively small data set. The models showed
signs of overfitting during training, due to increasing performance
on the training data after improvement with the testing data had
stopped. We feel that reproduction with a larger dataset may

mitigate this issue and improve the robustness of our initial results.
We would also like to see future studies incorporate both

diffusion and functional MRI data. We investigated the use of
the C-PAC preprocessing software to generate features from func-
tional MRI (fMRI) data, and we believe these features could be
incorporated into our model. Additional anatomical information
such as the volume of each region could also be incorporated,
and even metadata such as age or genetic information could be
added to each node of an image to encourage class separation.
These points reflect our use of graph convolutional networks for
multimodal neuroimage analysis, as the format allows for the
combination of multiple forms of data in an efficient and intuitive
manner. All of these points were beyond the scope of the current
experiment, and are possibilities for future research.

We have made the code for our pipeline available on GitHub.
Included in the repository are the parameters we used to download
our data from PPMI, so that researchers with access to the
database might download similar data for reproduction. Processing
this data is very technical; there are multiple ways of doing so
and our pipeline is surely capable of being improved upon. For
example, we utilized all 115 brain regions returned by Freesurfer’s
segmentaion. Instead, [ZHC18] selectively utilize only 84 of the
regions. By confining the number of regions, e.g., to only those
with clinical significance to PD, we may see improvements in
performance and interpretability.

We have presented here a complete pipeline for preprocessing
multi-modal neuroimage data, applied to real-world data aimed at
developing image biomarkers for Parkinson’s disease research. We
propose a novel graph-based deep learning model for analysing
the data in an interpretable format. Our focus in this paper was to
explicitly delineate the steps we took and implement sound data
analysis techniques, so as to enable reproducibility in the field. To
this end, we hope to help bridge the gap between neuroscience
research and advanced data analysis.
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