
54 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Codebraid: Live Code in Pandoc Markdown
Geoffrey M. Poore‡∗

F

Abstract—Codebraid executes code blocks and inline code in Pandoc Mark-
down documents as part of the document build process. Code can be exe-
cuted with a built-in system or Jupyter kernels. Either way, a single document
can involve multiple programming languages, as well as multiple independent
sessions or processes per language. Because Codebraid only uses standard
Pandoc Markdown syntax, Pandoc handles all Markdown parsing and format
conversions. In the final output document produced by Pandoc, a code chunk
can be replaced by a display of any combination of its original Markdown source,
its code, the stdout or stderr resulting from execution, or rich output in the case
of Jupyter kernels. There is also support for programmatically copying code or
output to other parts of a document.

Index Terms—reproducibility, dynamic report generation, literate programming,
Python, Pandoc, Project Jupyter

Introduction

Scientific and technical documents are increasingly written with
software that allows a mixture of text and executable code, such
as the Jupyter Notebook [KRKP+16], knitr [YX15], and Org-
mode Babel [SD11], [SDDD12]. Writing with such tools can
enhance reproducibility, simplify code documentation, and aid in
automating reports.

This paper introduces Codebraid, which allows executable
code within Pandoc Markdown documents [JG19], [JM19]. Code-
braid is developed at https://github.com/gpoore/codebraid and
is available from the Python Package Index (PyPI). It allows
Markdown code blocks like the one below to be executed during
the document build process. In this case, the “.cb.run” tells
Codebraid to run the code and include the output.
```{.python .cb.run}
print("Running code within *Markdown!*")
```

The final document contains the code’s output, interpreted as if it
had been entered directly in the original Markdown source:

Running code within Markdown!
A document using Codebraid can be converted from Mark-

down into any of the many formats supported by Pandoc, such as
HTML, Microsoft Word, LaTeX, and PDF. Codebraid delegates all
Markdown parsing and format conversions to Pandoc, so it does
not introduce any special restrictions on what is possible with a
Pandoc Markdown document. This close integration with Pandoc
also means that Codebraid can be extended in the future to work
with additional document formats beyond Markdown.

* Corresponding author: gpoore@uu.edu
‡ Union University

Copyright © 2019 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Codebraid includes a built-in code execution system. It can
also use Jupyter kernels [KRKP+16] to execute code. The first
code block that is executed with a given language can specify a
kernel. In the example below, the “.cb.nb” tells Codebraid to
run the code and provide a “notebook” display that shows both
code and output, while “jupyter_kernel” specifies a kernel.

```{.python .cb.nb jupyter_kernel=python3}
from sympy import *
init_printing()
x = Symbol('x')
integral = Integral(E**(-x**2), (x, -oo, oo))
display(integral)
integral.doit()
```

Because a Jupyter kernel was used to run the code, the result
includes rich output in the form of rendered LaTeX math, just as
it would in a Jupyter notebook:

from sympy import *
init_printing()
x = Symbol('x')
integral = Integral(E**(-x**2), (x, -oo, oo))
display(integral)
integral.doit() ∫

∞

−∞

e−x2
dx

√
π

The next section provides an example of the document build
process with Codebraid. This is followed by an overview of Code-
braid features and capabilities. Finally, the Comparison considers
Codebraid in the context of knitr, Pweave, Org-mode Babel, and
the Jupyter Notebook.

Building a simple Codebraid document

A simple Pandoc Markdown document that runs code with Code-
braid is shown below.

```{.python .cb.run name=part1}
var1 = "Hello from *Python!*"
var2 = f"Here is some math: $2^8={2**8}$."
```

```{.python .cb.run name=part2}
print(var1)
print(var2)
```

If this were a normal Pandoc document, converting it into a
format such as reStructuredText could be accomplished by running

pandoc --from markdown --to rst file.md

https://github.com/gpoore/codebraid
mailto:gpoore@uu.edu

CODEBRAID: LIVE CODE IN PANDOC MARKDOWN 55

Using Codebraid to execute code as part of the document con-
version process is simply a matter of replacing pandoc with
codebraid pandoc:

codebraid pandoc --from markdown --to rst file.md

The codebraid executable is available from the Python Pack-
age Index (PyPI); development is at https://github.com/gpoore/
codebraid. By default, code is executed with Codebraid’s built-in
code execution system. This can easily be swapped for a Jupyter
kernel, as shown in the Introduction and discussed in greater detail
in Jupyter kernels.

When this codebraid pandoc command is executed, the
original Markdown shown above is converted into Codebraid-
processed Markdown:

Hello from *Python!*
Here is some math: $2^8=256$.

This processed Markdown is then converted into the final reStruc-
turedText, rendering as

Hello from Python! Here is some math: 28 = 256.

By default, the output of code executed with cb.run is in-
terpreted as Markdown. It is possible to show the output verbatim
instead, as discussed later.

In this example, the code is simple enough that it could be
executed every time the document is built, but that will often not
be the case. By default, Codebraid caches all code output, and
code is only re-executed when it is modified. This can be changed
by building with the flag --no-cache.

Pandoc code attribute syntax

Pandoc Markdown defines an attribute syntax for inline code and
code blocks. Codebraid uses this to designate which code blocks
should be executed and provide options. Code attributes have the
general form

{#id .class1 .class2 key1=value1 key2=value2}

If code with these attributes were converted into HTML, #id be-
comes an HTML id for the code, anything with the form .class
specifies classes, and space-separated key-value pairs provide
additional attributes. Although key-value pairs can be quoted with
double quotation marks, Pandoc allows most characters except the
space and equals sign unquoted. Other output formats such as
LaTeX use attributes in a largely equivalent manner.

Pandoc uses the first class to determine the language name
for syntax highlighting, hence the .python in the example in the
last section. Codebraid uses the second class to specify a command
for processing the code. All Codebraid commands are under a cb
namespace to prevent unintentional collisions with normal Pandoc
attributes. In the example, cb.run indicates that code should be
run, stdout should be included and interpreted as Markdown, and
stderr should be displayed in the event of errors. If a Jupyter kernel
were in use, rich output such as plots would also be included.
Finally, the name keyword is used to assign a unique name to each
piece of code. This allows the code to be referenced elsewhere in
a document to insert any combination of its Markdown source,
code, stdout, stderr, and rich output (for Jupyter kernels).

Creating examples

The example in Building a simple Codebraid document was actu-
ally itself an example of using Codebraid. This paper was written

in Markdown, then converted to reStructuredText via Codebraid
with Pandoc. Finally, the reStructuredText was converted through
LaTeX to PDF via Docutils [DG16]. The two code blocks in the
example were only entered in the original Markdown source of
this paper a single time, and Codebraid only executed them a
single time. However, with Codebraid’s copy-paste capabilities, it
was possible to display the code and output at other locations in
the document programmatically.

The rendered output of the two code blocks is shown at the
very end of the earlier section. This is where the code blocks were
actually entered in the original Markdown source of this paper,
and where they were executed.

Recall that both blocks were given names, part1 and part2.
This enables any combination of their Markdown source, code,
stdout, and stderr to be inserted elsewhere in the document. At
the beginning of the earlier section, the Markdown source for the
blocks was shown. This was accomplished via

```{.cb.paste copy=part1+part2 show=copied_markup}
```

The cb.paste command inserts copied data from one or more
code chunks that are specified with the copy keyword. Mean-
while, the show keyword controls what is displayed. In this case,
the Markdown source of the copied code chunks was shown. Since
the cb.paste command is copying content from elsewhere, it
is used with an empty code block. Alternatively, a single empty
line or a single line containing an underscore is allowed as a
placeholder.

Toward the end of the earlier section, the verbatim output
of the Codebraid-processed Markdown was displayed. This was
inserted in a similar manner:

```{.cb.paste copy=part1+part2 show=stdout:verbatim}
```

The default format of stdout is verbatim, but this was
specified just to be explicit. The other option is raw (interpreted
as Markdown).

Of course, all Markdown shown in the current section was
itself inserted programmatically using cb.paste to copy from
the earlier section. However, to prevent infinite recursion, the next
section is not devoted to explaining how this was accomplished.

Other Codebraid commands

The commands cb.run and cb.paste have already been
introduced. There are three additional commands.

The cb.code command simply displays code, like normal
inline code or a code block. It primarily exists so that normal
code can be named, and then accessed later. cb.paste could be
used to insert the code elsewhere, perhaps combined with code
from other sources via something like copy=code1+code2. It
would also be possible to run the code elsewhere:

```{.cb.run copy=code1+code2}
```

When copy is used with cb.run, or another command that
executes code, only code is copied, and everything proceeds as
if this code had been entered directly in the code block.

The cb.expr command only works with inline code, unlike
other commands. It evaluates an expression and then prints a string
representation, which is interpreted as Markdown. For example,

https://github.com/gpoore/codebraid
https://github.com/gpoore/codebraid

56 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

`2**128`{.python .cb.expr}

produces

340282366920938463463374607431768211456

As this demonstrates, Pandoc code attributes for inline code
immediately follow the closing backtick(s). While this sort of a
“postfix” notation may not be ideal from some perspectives, it is
the cost of maintaining full compatibility with Pandoc Markdown
syntax.

Finally, the cb.nb command runs code and provides a “note-
book” display. For inline code, cb.nb is like cb.expr except
that it displays rich output or verbatim text. For code blocks,
cb.nb displays code followed by verbatim stdout. If there are
errors, stderr is also included automatically. When Codebraid is
used with a Jupyter kernel, rich outputs such as plots are included
as well. This was demonstrated in the Introduction.

Display options

There are two code chunk keywords that govern display, show and
hide. These can be used to override the default display settings
for each command.

show takes any combination of the following options:
markup (display Markdown source), code (display code
being executed), stdout, stderr, and none. There is
also rich_output when a Jupyter kernel is used to ex-
ecute code. Multiple options can be combined, such as
show=code+stdout+stderr. Code chunks using copy can
employ copied_markup to display the Markdown source of the
copied code chunk. When the cb.expr command is used, the
expression output is available via expr. Using show completely
overwrites the existing display settings.

The display format can also be specified with show. For
stdout, stderr, and expr, there are three formats: raw (in-
terpreted as Markdown), verbatim, or verbatim_or_empty
(verbatim if there is output, otherwise a space or empty line). For
example, show=stdout:raw+stderr:verbatim. While a
format can be specified for markup and code, only the
default verbatim is permitted. For rich_output, the
output representation (MIME type) can be selected. Thus,
show=rich_output:png selects a PNG image representation.

hide takes the same options as show, except that none is re-
placed by all and formats are not specified. Instead of overriding
existing settings like show, hide removes the specified display
options from those that currently exist.

Codebraid code execution system

Codebraid currently provides two options for executing code:
a built-in code execution system which is used by default and
Jupyter kernels. Jupyter kernels are demonstrated in the next
section. This section describes the built-in system, which currently
supports Python 3.5+, Julia, Rust, R, Bash, and JavaScript. Any
combination of these languages can be used within a single
document. While the built-in system currently lacks Jupyter kernel
features like rich output, it is nearly identical to extracting the
code from a document, concatenating it, and executing it via the
standard interpreter or compiler. As a result, it has low overhead
and produces the same output as would have been generated by a
separate source file.

Overview

The code from each code chunk is inserted into a template before
execution. The template writes delimiters to stdout and stderr at
the beginning of each code chunk. These delimiters are based
on a hash of the code to avoid the potential for collisions. Once
execution is complete, Codebraid parses stdout and stderr and uses
these delimiters to associate output with individual code chunks.
This system is a more advanced variant of the one I created
previously in PythonTeX [GMP15].

By default, code must be divided into complete units. For
example, a code block must contain an entire loop, or an entire
function definition. (This restriction can be relaxed with the code-
chunk keyword complete; see Incomplete units of code later.)
If a code chunk is not complete (and this is not indicated), then
the incomplete code will interfere with writing the delimiters.

To address this, each individual delimiter is unique, and is
tracked individually by Codebraid. If incomplete code interferes
with the template to produce an error, Codebraid can use any
existing stderr delimiters plus parsing of stderr to find the source
and generate an appropriate error message. If the code does not
produce an error, but prevents a delimiter from being written
or causes a delimiter to be written multiple times or not at the
beginning of a line, this will also be detected and traced back.
Under normal conditions, interfering with the delimiters without
detection requires conscious effort.

Adding languages

Adding support for additional languages is simply a matter of cre-
ating the necessary templates and putting them in a configuration
file. Basic language support can require very little, essentially just
code for writing the delimiters to stdout and stderr. For example,
Bash support is based on this three-line template:

printf "\n{stdout_delim}\n"
printf "\n{stderr_delim}\n" >&2
{code}

The Bash configuration file also specifies that the file extension
.sh should be used, and provides another four lines of template
code to enable cb.expr. So far, the longest configuration file,
for Rust, is less than fifty lines—counting empty lines.

Stderr

Because code is typically inserted into a template for execution,
if there are errors the line numbers will not correspond to those
of the code that was extracted from the document, but rather to
those of the code that was actually executed. Codebraid tracks line
numbers during template assembly, so that executed line numbers
can be converted into original line numbers. Then it parses stderr
and corrects line numbers. An example of an error produced with
cb.nb with Python is shown below. Notice that the line number
displayed is correct.

var = 123
print(var, flush=True)
var += "a"

123

Traceback (most recent call last):
File "source.py", line 3, in <module>

var += "a"
TypeError: unsupported operand type(s) for +=:
'int' and 'str'

CODEBRAID: LIVE CODE IN PANDOC MARKDOWN 57

Since line numbers in errors and warnings correspond to those
in the code entered by the user, and since anything written to stderr
is displayed by default next to the code that caused it, debugging
is significantly simplified. In many cases, this even applies to
compile errors for a language like Rust.

Jupyter kernels

Using a Jupyter kernel instead of the built-in code execution
system is as simple as adding jupyter_kernel=<name> to
the first code chunk for a language (or, as discussed later, to the
first code chunk of a named session):

```{.python .cb.run jupyter_kernel=python3}
%matplotlib inline
import numpy as np
from matplotlib import pyplot as plt
```

```{.python .cb.run}
x = np.linspace(0, 2*np.pi)
for n in range(-1, 2):

plt.plot(x, np.sin(x + n*np.pi/4))
plt.grid()
```

Notice that jupyter_kernel was only needed (and only al-
lowed) for the first code chunk. The second code chunk is still
using the same language (.python), so it shares the same kernel.
This Markdown results in a plot, just as it would within a Jupyter
notebook. Because cb.run was used rather than cb.nb, code is
not displayed and only the plot is shown:

The built-in code execution system allows multiple languages
within a single document. This is also possible when Jupyter
kernels are used instead. A single document can involve multiple
kernels. Multiple independent sessions for the same kernel type
are also possible when jupyter_kernel is combined with
session (described in the next section). Of course, kernel
features like IPython magics [IDT19a] are fully functional as well.

Advanced code execution

Ideally, executable code should be arranged within a document
based on what is best for the reader, rather than in a manner
dictated by limitations of the tooling. Several options are provided
to maximize the flexibility of code presentation.

Incomplete units of code

By default, Codebraid requires that code be divided into complete
units. For example, a code block must contain an entire loop, or
an entire function definition. Codebraid’s built-in code execution

system can detect the presence of an incomplete unit of code be-
cause it interferes with stdout and stderr processing, in which case
Codebraid will raise an error. Attempting to run an incomplete
unit of code with a Jupyter kernel will also result in an error.

The complete keyword allows incomplete units of code.
While this increases the flexibility of code layout, it also means
that any output will not be shown until the next complete code
chunk.

The Markdown for a somewhat contrived example that demon-
strates these capabilities is shown below, along with its output.
While this example uses Codebraid’s code execution system,
exactly the same result is obtained by using a Jupyter kernel.

```{.python .cb.run complete=false}
for n in range(11):

if n % 2 == 0:
```

```{.python .cb.run}
if n < 10:

print(f"{n}, ", end="")
else:

print(f"{n}")
```

0, 2, 4, 6, 8, 10

Sessions

By default, all code for a language is executed within a single
default session, so variables and data are shared between code
chunks. It can be convenient to separate code into multiple
sessions when several independent tasks are being performed,
or when a long calculation is required but the output can easily
be saved and loaded by separate code for visualization or other
processing. The session keyword makes this possible. Session
names are restricted to valid Python identifiers. For example,

```{.python .cb.run session=long}
import json
result = sum(range(100_000_000))
with open("result.json", "w") as f:

json.dump({"result": result}, f)
```

Sessions work with both Codebraid’s built-in code execution
system and Jupyter kernels. For example, it is possible to have
multiple independent sessions with a python3 kernel within a
single document.

All sessions are currently executed in serial. In the future,
support for parallel execution may be added.

Outside main()

Codebraid’s built-in code execution system runs code by inserting
it into a template. The template allows stdout and stderr to be
broken into pieces and correctly associated with the code chunks
that created them. For a language like Python under typical
usage, complete eliminates the few limitations of this approach.
However, the situation for a compiled language with a main()
function is more complex.

Codebraid includes support for Rust. By default, code is
inserted into a template that defines a main() function. Thus,
a code block like

```{.rust .cb.run}
let x = "Greetings from *Rust!*";



58 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

println!("{}", x);
```

can run to produce

Greetings from Rust!

In some situations, it would be convenient to completely
control the definition of the main() function and add code
outside of main(). The outside_main keyword makes this
possible. All code chunks with outside_main=true at the
beginning of a session are used to overwrite the beginning of
the main() template (everything before main()), while any
chunks with outside_main=true at the end of the session
are used to overwrite the end of the main() template (everything
after main()). If all code chunks have outside_main=true,
then all of Codebraid’s templates are completely omitted, and all
output is associated with the final code chunk. The example below
demonstrates this option.

```{.rust .cb.run outside_main=true}
fn main() {

use std::fmt::Write as FmtWrite;
use std::io::Write as IoWrite;
let x = "Rust says hello. Again!";
println!("{}", x);

}
```

Rust says hello. Again!

Working with external files

Though Codebraid is focused on embedding executable code
within a document, there will be times when it is useful to
interact with external source files. Since Codebraid’s built-in code
execution system processes code with a programming language’s
standard interpreter or compiler, normal module systems are fully
compatible; for example, in Python, import works normally.
Of course, this is also true when working with Jupyter kernels.
Codebraid provides additional ways to work with external files
via the include_file option.

When include_file is used with the cb.code command,
an external source file is simply included and displayed. It is
possible to include only certain line ranges using the additional
option include_lines, or only part of a file that matches a
regular expression via include_regex. For example,

```{.markdown .cb.code include_file=poore.txt
include_regex="# Working.*?,"}
```

includes the original Markdown source for this paper, and then
uses a regular expression to display only the first few lines of this
current section on working with external files:

Working with external files

Though Codebraid is focused on embedding executable
code within a document,

Since the cb.code command is including content from else-
where, it is used with an empty code block. Alternatively, a single
empty line or a single line containing an underscore is allowed as
a placeholder.

This example included part of a file using a single regular
expression. There are also options for including everything starting

with or starting after a literal string or regular expression, and for
including everything before or through a literal string or regular
expression.

The include_file option works with commands that exe-
cute code as well. For instance,

```{.python .cb.run include_file=code.py}
```

would read in the contents of an external file “code.py” and then
run it in the default Python session, just as if it had been entered
directly within the Markdown file.

Comparison

To put Codebraid in context, this section provides a comparison
with knitr, Pweave, Org-mode Babel, and the Jupyter Notebook.
The comparison focuses on the default features of each program.
Extensions for these programs and additional programs with
similar features are summarized in the Appendix.

knitr

knitr [YX15] provides powerful R evaluation in Markdown, La-
TeX, HTML, and other formats. It was inspired by Sweave [FL02],
which allows R in LaTeX. The reticulate [AUT+19] and JuliaCall
[CL19] packages for R have given knitr significant Python and
Julia capabilities as well, including the ability to convert objects
between languages. knitr is commonly used with the RStudio IDE,
which provides a two-panel source-and-output preview interface
as well as a notebook-style mode with inline display of results.

While knitr provides superior support for R, Codebraid focuses
on providing more capabilities for other languages. knitr runs
all R, Python, and Julia code in language-specific sessions, so
data and variables are shared between code chunks. For all other
languages, each code chunk is run in a separate process and there
is no such continuity. Codebraid’s built-in code execution system
is designed to allow any language to share a session between
multiple code chunks, and Jupyter kernels provide equivalent
capabilities. R, Python, and Julia are limited to a single shared
session each with knitr. Codebraid allows multiple sessions for
all supported languages. This allows independent computations
to be divided into separate sessions and only re-executed when
necessary.

Once code is executed, Codebraid and knitr provide similar
basic features for displaying the code and its output. knitr has
more advanced options for formatting output, such as customizing
plot appearance, converting plots into figures with captions, or
combining plots into an animation.

The two programs take different approaches to extracting code
from Markdown documents. knitr uses the custom R Markdown
[RSt18] syntax to designate code that should be executed. It
extracts inline code and code blocks from the original Markdown
source using a preprocessor, then inserts the code’s output into
a copy of the document that can subsequently be processed with
Pandoc. Because the preprocessor is based on simple regex match-
ing, it does not understand Markdown comments and will run code
in a commented-out part of a document. Writing tutorials that
show literal knitr code chunks can involve inserting empty strings,
zero-width spaces, line breaks, or Unicode escapes to avoid the
preprocessor’s tendency to execute code [YX19], [Hov17]. With
Codebraid, Pandoc is used to convert a Markdown document
into Pandoc’s abstract syntax tree (AST) representation. Code
extraction and output insertion are performed as operations on the

CODEBRAID: LIVE CODE IN PANDOC MARKDOWN 59

AST, and then Pandoc converts the modified AST into the final
output document. This has the advantage that Pandoc handles all
parsing and conversion, at the cost of running Pandoc multiple
times.

Pweave

Pweave [MP16] is inspired by Sweave [FL02] and knitr [YX15],
with a focus on Python in Markdown and other formats like
LaTeX and reStructuredText. Pweave uses a custom Markdown
syntax similar to knitr’s for designating code blocks that should be
executed, with many similar features and options. It also extracts
code from Markdown documents with a simple preprocessor. Code
is executed with a single Jupyter kernel. Any kernel can be used;
the default is python3. Rich output like plots can be included
automatically.

Like knitr, Pweave provides some more advanced options
for display formatting that Codebraid lacks, primarily related to
figures. Codebraid has advantages in three areas. Code execution is
more flexible since it allows multiple Jupyter kernels per document
and multiple independent sessions per kernel, in addition to the
built-in code execution system. Since Codebraid uses Pandoc for
all Markdown parsing, it avoids the limitations of a preprocessor.
Codebraid also provides a broader set of display capabilities,
including the ability to programmatically copy and display code
or its output into other parts of a document.

Org-mode Babel

Babel [SD11], [SDDD12] allows code blocks and inline code
in Emacs Org-mode documents to be executed. Any number of
languages can be used within a single document. By default, each
code chunk is executed individually in its own process. For many
interpreted languages, it is also possible to run code in a session so
that data and variables persist between code chunks. In those cases,
multiple sessions per language are possible. Any combination of
code and its stdout can be displayed. Stdout can be shown verbatim
or interpreted as Org-mode, HTML, or LaTeX markup. For some
languages, such as gnuplot, graphical output can also be captured
and included automatically.

Babel can function as a meta-programming language for Org
mode. A code chunk can be named, and then a later code
chunk—potentially in a different language—can access its output
by name and perform further processing. Similarly, there are
literate programming capabilities that allow a code chunk to copy
the source of one or more named chunks into itself, essentially
serving as a template, before execution.

Codebraid is like a Markdown-based Babel with additional
code execution capabilities but without some of the meta-
programming and literate programming options. Codebraid allows
sessions for all languages, not just for some interpreted languages.
It provides broad support for rich output like plots through Jupyter
kernels. Stderr can also be displayed. While Codebraid currently
lacks a system for passing output between code chunks, it does
provide some literate-programming style capabilities for code
reuse.

Jupyter Notebook

The Jupyter (formerly IPython) Notebook [KRKP+16] provides a
browser-based user interface in which a document is represented
as a series of cells. A cell may contain Markdown (which is
converted into HTML and displayed when not being edited), raw
text, or code. Code is executed by language-specific backends,

or kernels. Well over one hundred kernels are available beyond
Python, including Julia, R, Bash, and even compiled languages
like C++ and Rust [Jup19c]. Jupyter kernels are often used with
the Jupyter Notebook, but they can also function as a standalone
code execution system.

A Jupyter Notebook can only have a single kernel, and thus
only a single primary programming language with a single session
or process. This means that dividing independent computations
into separate sessions or processes is typically not as straightfor-
ward as it might be in Org-mode Babel or Codebraid. However,
the interactive nature of the notebook often reduces the impact of
this limitation, and can actually be a significant advantage. Code
cells can be run one at a time; a single code cell can be modified
and run again without re-executing any previous code cells.

Some kernels include support for interacting with additional
languages. The IPython kernel [IDT19b] has %%script and
similar “magics” [IDT19a] that allow single cells to be executed
in a subprocess by another language. PyJulia [JIdt19] and rpy2
[LGrc16] provide more advanced magics that allow an IPython
kernel to interact with a single Julia or R session over a series of
cells (see [MB18b] for examples).

While Codebraid lacks the Jupyter Notebook’s interactivity, it
does have several capabilities not present in the default Notebook.
A Codebraid document can involve multiple Jupyter kernels, as
well as multiple independent sessions per kernel. It can execute
both code blocks and inline code; the Jupyter Notebook is limited
to executing code in code cells. Code layout is more flexible with
Codebraid because a code chunk can contain an incomplete unit of
code, such as part of a loop or part of a function definition. This is
possible even when working with Jupyter kernels. Codebraid also
provides more flexible display options. It is possible to show any
combination of code, stdout, stderr, or rich output in any order,
and to select which form of rich output (MIME type) is shown.
Code or its output can be copied programmatically, so code can
be executed at one location in a document and its output displayed
elsewhere.

Conclusion

Codebraid provides a unique and powerful combination of features
for executing code embedded in Pandoc Markdown documents.

• Both code blocks and inline code can be executed.
• Code blocks are not required to contain complete units of

code, like a complete loop or function definition.
• A single document can use multiple languages and multi-

ple independent sessions per language. Any language can
share a session between multiple code chunks. Indepen-
dent computations can be divided into separate sessions
and only re-executed when necessary.

• Code can be executed with the built-in system, or with
Jupyter kernels which provide rich output such as plots.

• A code chunk can display any combination of its Mark-
down source, code, stdout, stderr, and rich output.

• It is easy to reuse code and its output programmatically
with the paste functionality. It is also possible to include all
or part of an external source file for display or execution.

• Because only standard Pandoc Markdown syntax is used,
all Markdown parsing and document conversion can be
delegated to Pandoc, and there are no issues with prepro-
cessors that do not fully support Markdown syntax.

60 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

There are several logical avenues for further development.
One of the original motivations for creating Codebraid was to
build on my previous work with PythonTeX [GMP15] to create
a program that could be used with multiple markup languages.
While Codebraid has focused thus far on Pandoc Markdown,
little of it is actually Markdown-specific. It should be possible
to work with other markup languages supported by Pandoc, such
as LaTeX; all that is required is that Pandoc parses key-value
attributes for some variant of a code block. Pandoc has recently
added Jupyter notebooks to its extensive list of supported formats.
Perhaps at some point it will be possible to convert a Codebraid
document into a Jupyter notebook, perform some exploratory
programming for a single session of a single language, and then
convert back to Markdown.

Codebraid’s caching system could also be improved in the
future. Currently, caching is based only on the code that is
executed. Adding a way to specify external dependencies such
as data files would be beneficial.

APPENDIX

The Comparison focuses on the default features of knitr, Pweave,
Org-mode Babel, and the Jupyter Notebook. This appendix sum-
marizes extensions for these programs and additional programs
with similar features.

knitr extensions

Though knitr does not include any support for Jupyter kernels,
the knitron [FH16] and ipython_from_R [MW18b] packages have
demonstrated that this is technically feasible.

Software similar to Pweave

The Comparison includes Pweave [MP16] because it is one of
the most capable knitr-like systems for other languages. There are
several other similar programs.

Weave.jl [MP17], by the creator of Pweave, provides similar
features for executing Julia code. It uses Julia to manage code
execution rather than a Jupyter kernel.

knitpy [Kat18] describes itself as a port of knitr to Python.
It uses knitr-style Markdown syntax, and provides code-block
options to control basic code and output display. Other knitr-style
options are not supported. Code is executed in a single Jupyter
IPython kernel. stitch [TA16] is similar, drawing inspiration from
knitr and knitpy. Compared to knitpy, it lacks options for cus-
tomizing output display but has options for customizing figure
display.

Knitj [JH19] is another Jupyter kernel–Markdown integration.
Options for controlling display are contained in special comments
in the first line of code within a code block, rather than in the code
block’s Markdown attributes. It focuses on producing HTML and
includes efficient live preview capabilities.

There are also some comparable tools for reStructuredText.
nb2plots can convert an ipynb notebook file into reStructuredText
for Sphinx [MB18a]. When Sphinx builds the document, the code
is still executed and plots are automatically included, so the live
code and rich output of the notebook are not lost. It is possible to
customize display by hiding code. The reStructuredText can also
be converted to a Python source file or ipynb when that is desired.

The Jupyter Sphinx Extension [Jup19b] provides a
jupyter-execute directive for running code in a Jupyter ker-
nel. By default, code is executed within a single kernel, providing
continuity. It is also possible to switch to a different kernel or
switch to a different session using the same kernel type. Code and
output (including rich output like plots) are displayed by default,
but there are options for hiding code or output, or reversing their
order. All code for a given Jupyter session can be converted into a
script or a Jupyter notebook.

Org-mode Babel extensions

Packages like ob-ipython [GS17] and emacs-jupyter [NN19] al-
low Jupyter kernels [KRKP+16] instead of Babel’s built-in code
execution system. These add the capability to display error mes-
sages or rich output like graphics. The Emacs IPython Notebook
[JMM19] takes a different approach by providing a complete
Jupyter Notebook client in Emacs.

Jupyter Notebook extensions and related software

Some more general approaches to working around the limitation
of one kernel per notebook are provided by the BeakerX polyglot
magics [TSOS18], which support bidirectional autotranslation of
data between languages, and the Script of Scripts (SoS) kernel
[BP19], which acts as a managing kernel over multiple normal
kernels.

It is possible to execute inline code within Markdown cells
with the Python Markdown extension [Jup18c]. This treats Mark-
down cells as {{expression}}-style templates so long as
inline code is outside LaTeX equations. The extension also sup-
ports notebook export to other document formats with nbconvert
[Jup19a] via a bundled preprocessor.

The Comparison does not consider hiding code or output
in documents derived from Jupyter notebooks because this is
possible with nbconvert [Jup19a] as well as extensions and other
programs. Hiding code or output in exported documents is possible
on a notebook-wide basis by configuring nbconvert with the
TemplateExporter exclude options. It is also possible at the
individual cell level by adding a tag to a cell (View, Cell Toolbar,
Tags, then “Add tag”) and then configuring nbconvert to use
the desired TagRemovePreprocessor with a given tag. An
alternative is to use extensions with their provided preprocessors
or templates [Jup18a], [Jup18b], or employ a more comprehensive
tool like Jupyter Book [LH19] that defines a set of tags for display
customization.

The Comparison does not cover the Jupyter Notebook’s JSON-
based ipynb file format because there are multiple ways to work
around its limitations. There are special diffing tools for ipynb files
such as nbdime [MSA15]. It is also possible to save notebooks
as Markdown files instead, or convert them to source code with
Markdown in comments:

• Jupytext [MW18a], [MWtJT19] can convert Jupyter note-
books into Markdown or R Markdown (knitr), or into
scripts in which code cells are converted into code while
Markdown cells are converted into intervening comments.
These formats can also be converted into Jupyter note-
books.

• notedown [AO16] can convert between Markdown and
ipynb, and can also work with R Markdown documents.

• Pandoc [JM19] can convert to or from ipynb files. Note-
books, including cells along with their attributes, can be

CODEBRAID: LIVE CODE IN PANDOC MARKDOWN 61

represented as standard Pandoc Markdown. podoc [CR18]
is an earlier program for converting between ipynb and
Pandoc’s AST. It builds on the prior ipymd [CR16].

• The Hydrogen package [Hyd19] for the Atom text editor
provides conversion between ipynb and source code plus
comments. When such a source file is edited, Hydrogen
can connect to a Jupyter kernel to display rich output inline
within the editor. Similar capabilities are provided by the
Python extension for VS Code [Mic19].

Of the programs listed above, Jupytext, notedown, and podoc
provide ContentsManager subclasses for the Jupyter Note-
book that allow it to seamlessly use Markdown as a storage
format.

REFERENCES

[AO16] Aaron O’Leary. Convert IPython Notebooks to markdown (and
back), 2016. URL: https://github.com/aaren/notedown.

[AUT+19] JJ Allaire, Kevin Ushey, Yuan Tang, Dirk Eddelbuettel, Bryan
Lewis, and Marcus Geelnard. reticulate: R Interface to Python,
2019. URL: https://rstudio.github.io/reticulate/index.html.

[BP19] Bo Peng. SoS: Notebook environment for both interactive data
analysis and batch data processing, 2019. URL: https://vatlab.
github.io/sos-docs/.

[CL19] Changcheng Li. JuliaCall: an R package for seamless integration
between R and Julia. The Journal of Open Source Software,
4(35):1284, 2019. doi:10.21105/joss.01284.

[CR16] Cyrille Rossant. Replace .ipynb with .md in the IPython Note-
book, 2016. URL: https://github.com/rossant/ipymd.

[CR18] Cyrille Rossant. podoc, 2018. URL: https://github.com/podoc/
podoc.

[DG16] David Goodger. Docutils Project Documentation Overview,
2016. URL: http://docutils.sourceforge.net/docs/index.html.

[FH16] Fabian Hirschmann. knitron: knitr + IPython + matplotlib, 2016.
URL: https://github.com/fhirschmann/knitron/.

[FL02] Friedrich Leisch. Sweave: Dynamic generation of statistical
reports using literate data analysis. In Wolfgang Härdle and
Bernd Rönz, editors, Compstat 2002 — Proceedings in Com-
putational Statistics, pages 575–580. Physica Verlag, Heidel-
berg, 2002. ISBN 3-7908-1517-9. URL: http://www.stat.uni-
muenchen.de/~leisch/Sweave.

[GMP15] Geoffrey M. Poore. PythonTeX: reproducible documents with
LaTeX, Python, and more. Computational Science & Discov-
ery, 8(1):014010, July 2015. URL: https://doi.org/10.1088%
2F1749-4699%2F8%2F1%2F014010, doi:10.1088/1749-
4699/8/1/014010.

[GS17] Greg Sexton. Readme, 2017. URL: https://github.com/
gregsexton/ob-ipython.

[Hov17] T. Hovorka. How to Show R Inline Code Blocks in R Mark-
down, 2017. URL: https://rviews.rstudio.com/2017/12/04/how-
to-show-r-inline-code-blocks-in-r-markdown/.

[Hyd19] Hydrogen Contributors. Hydrogen, 2019. URL: https://nteract.
gitbooks.io/hydrogen/.

[IDT19a] The IPython Development Team. Built-in magic commands,
2019. URL: https://ipython.readthedocs.io/en/stable/interactive/
magics.html.

[IDT19b] The IPython Development Team. IPython Documentation, 2019.
URL: https://ipython.readthedocs.io/en/stable/index.html.

[JG19] John Gruber. Markdown, 2002–2019. URL: https://
daringfireball.net/projects/markdown/.

[JH19] Jan Hermann. Knitj, 2019. URL: https://github.com/jhrmnn/
knitj.

[JIdt19] The Julia and IPython development teams. Welcome to PyJulia’s
documentation!, 2019. URL: https://pyjulia.readthedocs.io.

[JM19] John MacFarlane. Pandoc: a universal document converter,
2006–2019. URL: https://pandoc.org/.

[JMM19] John M. Miller. The Emacs IPython Notebook, 2019. URL:
http://millejoh.github.io/emacs-ipython-notebook/.

[Jup18a] Jupyter Contrib Team. Codefolding, 2015–2018. URL:
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/
nbextensions/codefolding/readme.html.

[Jup18b] Jupyter Contrib Team. Hide Input, 2015–2018. URL:
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/
nbextensions/hide_input/readme.html.

[Jup18c] Jupyter Contrib Team. Unofficial Jupyter Notebook
Extensions: Python Markdown, 2015–2018. URL:
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/
nbextensions/python-markdown/readme.html.

[Jup19a] Jupyter Development Team. nbconvert: Convert Notebooks to
other formats, 2015–2019. URL: https://nbconvert.readthedocs.
io.

[Jup19b] Jupyter Development Team. Jupyter Sphinx Extension, 2019.
URL: https://jupyter-sphinx.readthedocs.io.

[Jup19c] Jupyter Team. Jupyter kernels, 2019. URL: https://github.com/
jupyter/jupyter/wiki/Jupyter-kernels.

[Kat18] Jan Katins. knitpy: Elegant, flexible and fast dynamic report gen-
eration with python, 2018. URL: https://github.com/jankatins/
knitpy.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
Notebooks – a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning
and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87–90. IOS Press, 2016. doi:10.3233/978-1-
61499-649-1-87.

[LGrc16] Laurent Gautier & rpy2 contributors. Documentation for rpy2,
2008–2016. URL: https://rpy2.readthedocs.io.

[LH19] Sam Lau and Chris Holdgraf. Jupyter Book: Books with Jupyter
and Jekyll, 2019. URL: https://jupyter.org/jupyter-book/intro.

[MB18a] Matthew Brett. nb2plots - the documentation that is not missing,
2016–2018. URL: http://matthew-brett.github.io/nb2plots/.

[MB18b] Matthias Bussonnier. I Python, You R, We Julia, 2018. URL:
https://blog.jupyter.org/i-python-you-r-we-julia-baf064ca1fb6.

[Mic19] Microsoft. Working with Jupyter Notebooks in Visual Studio
Code, 2019. URL: https://code.visualstudio.com/docs/python/
jupyter-support.

[MP16] Matti Pastell. Pweave - Scientific Reports Using Python, 2010–
2016. URL: http://mpastell.com/pweave/.

[MP17] Matti Pastell. Weave.jl: Scientific Reports Using Julia. Journal of
Open Source Software, 2(11), 2017. URL: http://joss.theoj.org/
papers/10.21105/joss.00204, doi:10.21105/joss.00204.

[MSA15] Martin Sandve Alnæs. nbdime – diffing and merging of Jupyter
Notebooks, 2015. URL: https://nbdime.readthedocs.io/en/latest/
index.html.

[MW18a] Marc Wouts. Introducing Jupytext, 2018. URL: https://
towardsdatascience.com/introducing-jupytext-9234fdff6c57.

[MW18b] Marc Wouts. ipython_from_R: Communicate with jupyter ker-
nels from R, 2018. URL: https://github.com/mwouts/ipython_
from_R.

[MWtJT19] Marc Wouts and the Jupytext Team. Jupyter notebooks as
Markdown documents, Julia, Python or R scripts, 2018–2019.
URL: https://jupytext.readthedocs.io/.

[NN19] Nathaniel Nicandro. An interface to communicate with Jupyter
kernels in Emacs, 2019. URL: https://github.com/dzop/emacs-
jupyter.

[RSt18] RStudio Inc. R Markdown, 2016–2018. URL: https://
rmarkdown.rstudio.com/.

[SD11] E. Schulte and D. Davison. Active Documents with Org-Mode.
Computing in Science Engineering, 13(3):66–73, May 2011.
doi:10.1109/MCSE.2011.41.

[SDDD12] Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik.
A Multi-Language Computing Environment for Literate Pro-
gramming and Reproducible Research. Journal of Statistical
Software, 46(3):1–24, 1 2012. URL: http://www.jstatsoft.org/
v46/i03.

[TA16] Tom Augspurger. stitch, 2016. URL: https://pystitch.github.io/.
[TSOS18] LLC Two Sigma Open Source. BeakerX, 2018. URL: http:

//beakerx.com/.
[YX15] Yihui Xie. Dynamic Documents with R and knitr. Chapman &

Hall/CRC Press, 2015.
[YX19] Yihui Xie. Frequently asked questions, 2005–2019. URL: https:

//yihui.name/knitr/faq/.

https://github.com/aaren/notedown
https://rstudio.github.io/reticulate/index.html
https://vatlab.github.io/sos-docs/
https://vatlab.github.io/sos-docs/
http://dx.doi.org/10.21105/joss.01284
https://github.com/rossant/ipymd
https://github.com/podoc/podoc
https://github.com/podoc/podoc
http://docutils.sourceforge.net/docs/index.html
https://github.com/fhirschmann/knitron/
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
https://doi.org/10.1088%2F1749-4699%2F8%2F1%2F014010
https://doi.org/10.1088%2F1749-4699%2F8%2F1%2F014010
http://dx.doi.org/10.1088/1749-4699/8/1/014010
http://dx.doi.org/10.1088/1749-4699/8/1/014010
https://github.com/gregsexton/ob-ipython
https://github.com/gregsexton/ob-ipython
https://rviews.rstudio.com/2017/12/04/how-to-show-r-inline-code-blocks-in-r-markdown/
https://rviews.rstudio.com/2017/12/04/how-to-show-r-inline-code-blocks-in-r-markdown/
https://nteract.gitbooks.io/hydrogen/
https://nteract.gitbooks.io/hydrogen/
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/index.html
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://github.com/jhrmnn/knitj
https://github.com/jhrmnn/knitj
https://pyjulia.readthedocs.io
https://pandoc.org/
http://millejoh.github.io/emacs-ipython-notebook/
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/codefolding/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/codefolding/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/hide_input/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/hide_input/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/python-markdown/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/python-markdown/readme.html
https://nbconvert.readthedocs.io
https://nbconvert.readthedocs.io
https://jupyter-sphinx.readthedocs.io
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jankatins/knitpy
https://github.com/jankatins/knitpy
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.3233/978-1-61499-649-1-87
https://rpy2.readthedocs.io
https://jupyter.org/jupyter-book/intro
http://matthew-brett.github.io/nb2plots/
https://blog.jupyter.org/i-python-you-r-we-julia-baf064ca1fb6
https://code.visualstudio.com/docs/python/jupyter-support
https://code.visualstudio.com/docs/python/jupyter-support
http://mpastell.com/pweave/
http://joss.theoj.org/papers/10.21105/joss.00204
http://joss.theoj.org/papers/10.21105/joss.00204
http://dx.doi.org/10.21105/joss.00204
https://nbdime.readthedocs.io/en/latest/index.html
https://nbdime.readthedocs.io/en/latest/index.html
https://towardsdatascience.com/introducing-jupytext-9234fdff6c57
https://towardsdatascience.com/introducing-jupytext-9234fdff6c57
https://github.com/mwouts/ipython_from_R
https://github.com/mwouts/ipython_from_R
https://jupytext.readthedocs.io/
https://github.com/dzop/emacs-jupyter
https://github.com/dzop/emacs-jupyter
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
http://dx.doi.org/10.1109/MCSE.2011.41
http://www.jstatsoft.org/v46/i03
http://www.jstatsoft.org/v46/i03
https://pystitch.github.io/
http://beakerx.com/
http://beakerx.com/
https://yihui.name/knitr/faq/
https://yihui.name/knitr/faq/

	Introduction
	Building a simple Codebraid document
	Pandoc code attribute syntax
	Creating examples
	Other Codebraid commands
	Display options
	Codebraid code execution system
	Overview
	Adding languages
	Stderr

	Jupyter kernels
	Advanced code execution
	Incomplete units of code
	Sessions
	Outside main()

	Working with external files
	Comparison
	knitr
	Pweave
	Org-mode Babel
	Jupyter Notebook

	Conclusion
	Appendix
	knitr extensions
	Software similar to Pweave
	Org-mode Babel extensions
	Jupyter Notebook extensions and related software

	References

