
18 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fluctuation X-ray Scattering real-time app

Antoine Dujardin¶, Elliott Slaugther¶, Jeffrey Donatelli‡§, Peter Zwart‖§, Amedeo Perazzo¶, Chun Hong Yoon¶∗

https://youtu.be/IYADjGOiJhA

F

Abstract—The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser (X-FEL) facility enabling
scientists to take snapshots of single macromolecules to study their structure
and dynamics. A major LCLS upgrade, LCLS-II, will bring the repetition rate of
the X-ray source from 120 to 1 million pulses per second and exascale High
Performance Computing (HPC) capabilities will be required for the data analysis
to keep up with the future data taking rates.

We present here a Python application for Fluctuation X-ray Scattering
(FXS), an emerging technique for analyzing biomolecular structure from the
angular correlations of FEL diffraction snapshots with one or more particles
in the beam. This FXS application for experimental data analysis is being
developed to run on supercomputers in near real-time while an experiment is
taking place.

We discuss how we accelerated the most compute intensive parts of the
application and how we used Pygion, a Python interface for the Legion task-
based programming model, to parallelize and scale the application.

Index Terms—fluctuation x-ray scattering, free electron laser, real-time analy-
sis, coherent diffractive imaging

Introduction

LCLS-II, an LCLS upgrade

The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser facility
providing femtosecond pulses with an ultrabright beam approx-
imately one billion times brighter than synchrotrons [WRD15].
Such a brightness allows it to work with much smaller sample
sizes while the shortness allows imaging below the rotational
diffusion time of the molecules and also outrunning radiation dam-
age. With pulses of such an unprecedented brightness and short-
ness, scientists are able to take snapshots of single macromolecules
without the need for crystallization at ambient temperature.

To push the boundaries of the science available at the light-
source, LCLS is currently being upgraded after 10 years of
operation. The LCLS-II upgrade will progressively increase the
sampling rate from 120 pulses per second to 1 million. At these

¶ SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park,
CA 94025, USA
‡ Department of Applied Mathematics, Lawrence Berkeley National Labora-
tory, Berkeley, CA USA 94720-8142
§ Center for Advanced Mathematics for Energy Research Applications,
Lawrence Berkeley National Laboratory, Berkeley, CA USA 94720-8142
|| Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berke-
ley National Laboratory, Berkeley, CA USA 94720-8142
* Corresponding author: yoon82@slac.stanford.edu

Copyright © 2020 Antoine Dujardin et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

rates, the LCLS instruments will generate multiple terabytes per
second of scientific data and it will therefore be critical to know
what data is worth saving, requiring on-the-fly processing of the
data. Earlier, users could classify and preprocess their data after
the experiment, but this approach will become either prohibitive or
plainly impossible. This leads us to the requirement of performing
some parts of the analysis in real time during the experiment.

Quasi real time analysis of the LCLS-II datasets will require
High Performance Computing, potentially at the Exascale, which
cannot be offered in-house. Therefore, a pipeline to a supercom-
puting center is required. The Pipeline itself starts with a Data
Reduction step to reduce the data size, using vetoing, feature
extraction, and compression in real time. We then pass the data
over the Energy Sciences Network (ESnet) to the National Energy
Research Scientific Computing Center (NERSC). Currently, the
ESNet connection between SLAC and NERSC is 200 Gbps
capable; the plan is to upgrade this link to 400 Gbps by 2026 and to
1 Tbps by 2028. At the end of the pipeline, the actual analysis can
take place on NERSC’s supercomputers. This makes the whole
process, from the sample to the analysis, quite challenging to
change and adapt.

Moreover, LCLS experiments are typically high-risk / high-
reward and involve novel setups, varying levels of requirements,
and durations of only a few days. The novelty in the science can
require adaptations in the algorithms, requiring the data analysis
itself to be highly flexible. Furthermore, we want to give users
as much freedom as possible in the way they analyze their data
without expecting them to have a deep knowledge of large-scale
computer programming.

Therefore, we require real time analysis, high performance
computing capabilities and a complex pipeline, while requiring
enough flexibility to adapt to novel experimental setups and
analysis algorithms. We believe Python helps us achieve this goal
given the tradeoffs involved.

FXS: an example analysis requiring HPC

While a variety of experiments can be performed at LCLS, we
focus here on one specific example: Fluctuation X-ray Scattering
(FXS).

X-ray scattering of particles in a solution is a common
technique in the study of the structure and dynamics of macro-
molecules in biologically-relevant conditions and gives an under-
standing of their function. However, traditional methods currently
used at synchrotrons suffer from the fact that the exposure time is
longer than the rotation time of the particle, leading to the capture
of angularly-averaged patterns. FXS techniques fully utilize the
femtosecond pulses to measure diffraction patterns from multiple

https://youtu.be/IYADjGOiJhA
mailto:yoon82@slac.stanford.edu

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 19

Fig. 1: Fluctuation X-ray Scattering experiment setup.
In an FXS experiment, femtosecond pulses from an X-ray Free
Electron Laser are shot at a stream of particles in solution. The
scattered light forms a diffraction pattern on the detector, aggregating
the contributions of the different particles.1

identical macromolecules below the sample rotational diffusion
times (Fig. 1). The patterns are then collected to reconstruct a 3D
structure of the macromolecule or measure some of its properties.
This technique was described in the late 1970s [Kam77], [KKB81]
and has been widely used at LCLS [PDM+18], [KDY+17],
[MLS+14], [MWQ+16].

While a few hundreds of diffraction patterns might be suffi-
cient to reconstruct a low resolution 3-dimensional structure under
ideal conditions [KDY+17], the number of snapshots required
can be dramatically increased when working with low signal-to-
noise ratios (e.g. small proteins) or when studying low-probability
events. More interestingly, the addition of a fourth dimension,
time, to study dynamical processes expands again the amount
of data required. At these points, hundreds of millions or more
snapshots could be required.

We present here a Python application for FXS data analysis
that is being developed to run on supercomputing facilities at
US Department of Energy national laboratories in near real-time
while an experiment is taking place. As soon as data is produced,
it is passed through a Data Reduction Pipeline on-site and sent
to a supercomputer via ESNet, where reconstructions can be
performed. It is critical to complete this analysis in near real-time
to guide experimental decisions.

In FXS, each diffraction pattern contains several identical
particles in random orientations. Information about the structure
of the individual particle can be recovered by studying the two-
point angular correlation of the data. To do so, the 2D images
are expanded in a 3D, orientation-invariant space, where they are
aggregated using the following formula:

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

∫ 2π

0
I j(q,φ)I j(q′,φ +∆φ)dφ (1)

where I j(q,φ) represents the intensity of the j-th image, in polar
coordinates. This correlator can then be used as a basis for the
actual 3D reconstruction of the data (Fig. 3), using an algorithm
described elsewhere [DZS15], [PDM+18].

Acceleration: getting the best out of NumPy

The expansion/aggregation step presented in Equation (1) was
originally the most computation intensive part of the application,
representing the vast majority of the computation time. The

1. Copyright © P. Zwart, under the CC BY-SA 4.0 license.

original implementation was processing each I j(q,φ) image one
after the other and aggregating the results. This resulted in taking
424 milliseconds per image using NumPy [Oli06], [vdWCV11]
functions and a slightly better performance using Numba [LPS15].
As we illustrate in this section, rewriting this critical step allowed
us to gain a factor of 40 in speed, without any other libraries or
tools. The tests were performed on a node of Cori Haswell.

Let us start by simplifying Equation (1). The integral corre-
sponds to the correlation over I j(q,φ) and I j(q′,φ). Thanks to the
convolution theorem [Arf85], we have

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

F−1[F [I j(q,φ)]F [I j(q′,φ)]], (2)

where F represents the Fourier transform over φ . The inverse
Fourier transform being linear, we can get it outside the sum, and
on the left side. For the simplicity of the argument, we also neglect
all coefficients.

Using ψ as the equivalent of φ in the Fourier transform and
A j(q,ψ) as a shorthand for F [I j(q,φ)], we have:

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

A j(q,ψ)A j(q′,ψ). (3)

We end up with the naive implementation below:

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

for k in range(N_RAD_BINS):
C2[j, k, :] += A[j] * A[k].conj()

taking 42.4 seconds (for 100 images), using the following param-
eters:

N_IMGS = 100
N_RAD_BINS = 300
N_PHI_BINS = 256
IMGS_SHAPE = (N_IMGS, N_RAD_BINS, N_PHI_BINS)
C2_SHAPE = (N_RAD_BINS, N_RAD_BINS, N_PHI_BINS)

where N_RAD_BINS and N_PHI_BINS represent the image
dimensions over the q- and φ -axes, as well as the dataset:

images = np.random.random(IMGS_SHAPE)

We note that a typical application would be processing millions of
images, but let us use 100 for the example.

This naive version can be slightly accelerated using the fact
that our matrix is conjugate-symmetric:

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

which takes 36.0 seconds. Note that this is only 18% faster, far
from a 2x speed-up.

This naive implementation should not be confused with a pure
Python implementation, which is expected to be slow, since we
already operate on NumPy arrays along the angular axis. Such an
implementation could be approximated by:

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

for k in range(N_RAD_BINS):

20 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

for l in range(N_PHI_BINS):
C2[j, k, l] += A[j, l] * A[k, l].conj()

which takes 49.1 seconds per image, i.e. about 100 times slower
than the naive implementation, in accordance with the stereotype
of Python being much slower than other languages for numerical
computing.

A common acceleration strategy is to use Numba:

@numba.jit
def A_to_C2(A):

C2 = np.zeros(C2_SHAPE, np.complex128)
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

return C2

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
C2 += A_to_C2(A)

which takes 38.5 seconds, i.e. 10% faster than the naive imple-
mentation.

When considering our problem size of up to millions of
images, processing images one at a time makes sense. However,
focusing on a small batch as we have been doing in these
examples, a strategy can be to have NumPy and/or Numba work
on arrays of images, rather than the individual images. We then
have the following:

@numba.jit
def As_to_C2(As):

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = As[i]
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

return C2

As = np.fft.fft(images, axis=-1)
C2 = As_to_C2(As)

which takes 11.9 seconds, i.e. 3.56 times faster. We note also here
the batching of the Fast Fourier Transform.

However, such an implementation does not sound trivial using
NumPy, although one can recognize a nice (generalized) Einstein
sum in Equation (3), leading to:

As = np.fft.fft(images, axis=-1)
C2 = np.einsum('hik,hjk->ijk', As, As.conj())

which corresponds to expressing C2[i, j, k] as the sum over
h of As[h, i, k] * As.conj()[h, j, k].

This takes 17.9 seconds, which is slower than the version using
Numba per batch. However, we can realize that, at this batch
level, the last axis is independent from the others and that the
underlying alignment of the arrays matters. Thanks to NumPy’s
asfortranarray function, however, that is not an issue. We
then use the F-ordered dataset.

images_F = np.asfortranarray(images)

We observe, for the Einstein sum:

As = np.fft.fft(images_F, axis=-1)
C2 = np.einsum('hik,hjk->ijk', As, As.conj())

Implementation Time (/100) Speedup

Naive 42.4 s 1
Numba 38.5 s 10%
Numba, batched 11.9 s 3.56×
Einsum, F-order 4.05 s 10.5×
Dot, F-order 1.06 s 40.0×

TABLE 1: Summary of the major time improvements.

taking 4.05 seconds, i.e. 4.42 times faster than the C-ordered
Einstein sum and 10.5 times faster than the naive implementation.

Additionally, it turns out that in our precise case, we can
actually express it as a more optimized dot product:
As = np.fft.fft(images, axis=-1)
C2 = np.zeros(C2_SHAPE, np.complex128)
for k in range(N_PHI_BINS):

C2[..., k] += np.dot(As[..., k].T,
As[..., k].conj())

which now brings us down to 1.37 seconds, i.e. 30.9 times faster
than the naive version.

For the F-ordered case, we have:
As = np.fft.fft(images_F, axis=-1)
C2 = np.zeros(C2_SHAPE, np.complex128, order='F')
for k in range(N_PHI_BINS):

C2[..., k] += np.dot(As[..., k].T,
As[..., k].conj())

taking 1.06 seconds, i.e. 29% faster than the C-ordered case and
40.0 times faster than the naive implementation. We could note
that, at that speed, the main computation gets close to the time
required to perform the Fast Fourier Transform, which is, in our
case at least, faster on C-ordered (107 ms) than F-ordered (230
ms) data. Removing the FFT computation would yield an even
starker contrast (977 ms vs. 499 ms), but would neglect the cost
of the re-alignment.

In conclusion, and as summarized in Table 1, implementing
this algorithm using NumPy or Numba naively gives significant
improvement in computational speed compared to pure Python,
but there is still a lot of room for improvement. On the other hand,
such improvement does not necessarily require using fancier tools.
We showed that batching our computation helped in the Numba
case. From there, a batched NumPy expression looked interesting.
However, it required optimizing the mathematical formulation of
the problem to come up with a canonical expression, which could
then be handed over to NumPy. Finally, the memory layout can
have a sizable impact on the computation, while being easy to
tweak in NumPy.

Parallelization: effortless scaling with Pygion

To parallelize and scale the application we use Pygion, a Python
interface for the Legion task-based programming system [SA19].
In Pygion, the user decorates functions as tasks, and annotates
task parameters with privileges (read, write, reduce), but otherwise
need not be concerned with how tasks execute on the underlying
machine. Pygion infers the dependencies between tasks based on
their privileges and the values of arguments passed to tasks, and
ensures that the program executes correctly, even when running
on a parallel and distributed supercomputer.

To enable the distributed execution, it is necessary to separate
the question of what data is needed in a given task from the

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 21

Fig. 2: Weak scaling behavior on Cori Haswell with Lustre filesystem
(top) and Burst Buffer (bottom).
The application was run on 100,000 images per node, for up to 64
nodes on Cori Haswell. The Lustre filesystem is a high performance
system running on HDDs attached to the supercomputer. The Burst
Buffer corresponds to SSDs placed within the supercomputer itself
used for per-job storage.

allocation of the data in a given memory or memories. This
reification of the flow of data between tasks is achieved by
declaring regions, similar to multi-dimensional Pandas dataframes
[McK10]. Regions contain fields, each of which is similar to
and exposed as a NumPy array. Regions can be partitioned into
subregions, which can be processed by different tasks, allowing
the parallelism. Note that regions are allocated only when needed,
so it is possible (and idiomatic) to allocate a region which is
larger than any single machine’s memory, and then to partition
into pieces that will be used by individual tasks.

We scale up to 64 Haswell nodes on NERSC’s Cori su-
percomputer using Pygion, with 10 to 30 processes per node,
to reach a throughput of more than 15,000 images per second,
as illustrated in Figure 2. Compared to an equivalent MPI im-
plementation, Pygion is easier to scale out of the box as it
manages load-balancing of tasks across cores, shared memory
(between distinct Python processes on a node) and provides high-
level parallelization constructs. These constructs make it easy to
rapidly explore different partitioning strategies, without writing or
rewriting any communication code. This enabled us to quickly find
a strategy that scales better than the straightforward but ultimately
suboptimal strategy that we initially developed.

As an example, the most computationally intensive part of
our problem is the C2(q,q′,∆φ) computation discussed in detail

in the section above, which can trivially be parallelized over the
last (angular) axis. However, the image preprocessing and the
Fast Fourier Transform can only be parallelized over the first
(image) axis. Given the size of the data, parallelizing between
nodes would involve a lot of data movement. Parallelizing within
a node, however, could help. In the MPI case, we use MPI to
parallelize between nodes and within a node (MPI+MPI). If we
were to introduce this optimization into such a code, one would
have to create a 2-level structure such as:

In each node:
Define node-level communicator
In each rank:

Receive and pre-process some stacks of images
All-to-all exchange from stacks of images

to angular sections
In each rank:

Process the received angular section

where all the data exchange has to be coded by hand.
In the Pygion case, the ability to partition the data allows us to

create tasks that are unaware of the extent of the regions on which
they operate. We can therefore partition these regions both over
the image axis and the angular one. We end up with:

@task(privileges=[...])
def node_level_task(...):

for i, batch in enumerate(data_batches):
preprocess(input_=batch,

output=A_image_partition[i])
for i in range(NUMBER_OF_PROCESSES):

process(input_=A_angular_partition[i],
output=C2_angular_partition[i])

where the data exchange is implied by the image-axis par-
tition A_image_partition and the angular-axis partition
A_angular_partition of the same region A.

Results

To test our framework, a dataset of 100,000 single-particle diffrac-
tion images was simulated from a lidless chaperone (mm-cpn) in
its open state, using Protein Data Bank entry 3IYF [ZBS+10].
These images were processed by the algorithm described above
to get the 2-point correlation function, C2(q,q′,∆φ), described
in Equation (1). This correlation function was first filtered and
reduced using the methods described in [PDM+18], and then the
reconstruction algorithm in [DZS15] was applied to reconstruct
the electron density of the chaperone from the reduced correla-
tions, yielding the reconstruction shown in Figure 3.

To obtain this result, the correlation function was filtered
and reduced using the Multi-Tiered Iterative Filtering (M-TIF)
algorithm [PDM+18]. In particular, M-TIF uses several itera-
tions of Tikhonov regularization, linear pseudo inversion, and
principal component analysis to fit three tiers of expansions to
the data: a Legendre polynomial expansion in theta, a Hankel-
transformed Fourier-Bessel expansion in q and q′, and a low-
rank eigenvalue decomposition on the matrices of Fourier-Bessel
coefficients. The number of terms needed in each expansion step
is limited and determined by an upper-bound diameter estimate
of the protein sample. Once these coefficients are determined,
their corresponding series expansions are computed to produce a
filtered correlation function, along with a reduced set of Legendre
polynomial expansion coefficients on a coarse q-grid, which is
used in the reconstruction (See [PDM+18] for more details on the
filtering).

22 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Reconstruction of a lidless chaperone (mm-cpn) in its open
state from simulated diffraction patterns.
The 2-point correlation function was computed on the simulated
dataset as described in the present document. It was then filtered,
reduced, and fed to a reconstruction algorithm described elsewhere
[PDM+18], [DZS15] to yield the reconstruction above.

These Legendre expansion coefficients can be directly related
to the protein sample. In particular, the coefficients are equal to
the inner products of spherical harmonic coefficients of the 3D
intensity function, which is defined as the squared magnitude of
the Fourier transform of the sample’s electron density [Kam77].
This relation can be expressed as two tiers of phase problems
that need to be solved to reconstruct the underlying density: a
hyperphase problem to recover the intensity function from the
Legendre coefficients, and a classical scalar phase problem to
recover the density from the intensity. In order to reconstruct
the sample, we apply the Multi-Tiered Iterative Phasing (M-
TIP) algorithm [DZS15] to the Legendre coefficients computed
from the M-TIF filtering/reduction procedure. M-TIP works by
using a set of computationally efficient projection operators in
a self-consistent iteration to simultaneously solve both tiers of
phase problems and reconstruct the sample from the Legendre
coefficients.

After acceleration and parallelization, we now reach a through-
put of about 230 images per second on a single node of Cori
Haswell. This would allow us to process in real time the output
of an FXS experiment at LCLS-I, which produces 120 images
per second. Such a rapid processing would make possible to
give scientists immediate feedback on the quality of their data.
After scaling to up to 64 nodes, the throughput of about 15,000
images per second would be sufficient to follow up with the early
abilities of LCLS-II, although further acceleration and scaling will
be required to match the data being produced as LCLS-II increases
its pulse rate dramatically over the following years.

Interestingly, one might note from Equations 1, 2, or 3 that
computing the correlation function involves a sum over all the
images. The output of that computation, however, no longer
depends on the number of images in the dataset. The size of the
correlation function C2(q,q′,∆φ) is, therefore, only dependent on
the resolution over the q, q′, and ∆φ axes. As a consequence, the
computational complexity of the post-processing of the correlation
function and the reconstruction algorithm does not scale with the
amount of data being processed.

Conclusion

The Linac Coherent Light Source provides scientists with the
ability of X-ray diffraction patterns with much higher brightness

and much shorter timescales, allowing experiments not possible
elsewhere. With its upgrades LCLS-II in 2021 and LCLS-II-HE
(High Energy) in 2025, LCLS experiments will produce up to
millions of X-ray pulses per second and generate commensurate
amounts of data. In some cases, such as the FXS technique
described in this paper, the processing of the dataset will require
High Performance Computing at a scale that can no longer be
provided in-house.

We showed that Python gives us and our users the flexi-
bility to adapt the analysis pipeline to new experiments. The
main drawback of Python is that implementing new algorithms
without relying on specialized libraries can be problematically
slow. However, we illustrate with our example that spending some
time optimizing the math of the problem (rather than the code)
and being aware of the strengths and weaknesses of NumPy and
Numba can allow us to achieve drastically better performances,
without the need to develop or use external libraries.

Finally, we used Pygion to manage the parallelization of the
problem, which allows us to design applications that scale much
more naturally than MPI at a given level of coding effort, and
in particular has allowed us to explore different parallelization
strategies more rapidly, leading ultimately to a more scalable
solution than what we otherwise might have been able to find.

Acknowledgement

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. Use of the Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.

REFERENCES

[Arf85] G Arfken. Convolution theorem. In Mathematical Methods
for Physicists, chapter 15.5, pages 810–814. Academic Press,
Orlando, FL, 3 edition, 1985.

[DZS15] Jeffrey J Donatelli, Peter H Zwart, and James A Sethian. It-
erative phasing for fluctuation X-ray scattering. Proceedings
of the National Academy of Sciences of the United States of
America, 112(33):10286–91, 2015. doi:10.1073/pnas.
1513738112.

[Kam77] Zvi Kam. Determination of Macromolecular Structure in
Solution by Spatial Correlation of Scattering Fluctuations.
Macromolecules, 10(5):927–934, 1977. doi:10.1021/
ma60059a009.

[KDY+17] Ruslan P. Kurta, Jeffrey J. Donatelli, Chun Hong Yoon, Peter
Berntsen, Johan Bielecki, Benedikt J. Daurer, Hasan Demirci,
Petra Fromme, Max Felix Hantke, Filipe R.N.C. Maia, Anna
Munke, Carl Nettelblad, Kanupriya Pande, Hemanth K.N.
Reddy, Jonas A. Sellberg, Raymond G. Sierra, Martin Svenda,
Gijs Van Der Schot, Ivan A. Vartanyants, Garth J. Williams,
P. Lourdu Xavier, Andrew Aquila, Peter H. Zwart, and Adrian P.
Mancuso. Correlations in Scattered X-Ray Laser Pulses Reveal
Nanoscale Structural Features of Viruses. Physical Review Let-
ters, 119(15), 2017. doi:10.1103/PhysRevLett.119.
158102.

[KKB81] Z Kam, M. H.J. Koch, and J. Bordas. Fluctuation x-ray scattering
from biological particles in frozen solution by using synchrotron
radiation. Proceedings of the National Academy of Sciences of
the United States of America, 78(6 I):3559–3562, 1981. doi:
10.1073/pnas.78.6.3559.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM
’15, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2833157.2833162.

http://dx.doi.org/10.1073/pnas.1513738112
http://dx.doi.org/10.1073/pnas.1513738112
http://dx.doi.org/10.1021/ma60059a009
http://dx.doi.org/10.1021/ma60059a009
http://dx.doi.org/10.1103/PhysRevLett.119.158102
http://dx.doi.org/10.1103/PhysRevLett.119.158102
http://dx.doi.org/10.1073/pnas.78.6.3559
http://dx.doi.org/10.1073/pnas.78.6.3559
http://dx.doi.org/10.1145/2833157.2833162

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 23

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stefan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56–
61, 2010. doi:10.25080/Majora-92bf1922-00a.

[MLS+14] Derek Mendez, Thomas J. Lane, Jongmin Sung, Jonas Sellberg,
Clément Levard, Herschel Watkins, Aina E. Cohen, Michael
Soltis, Shirley Sutton, James Spudich, Vijay Pande, Daniel
Ratner, and Sebastian Doniach. Observation of correlated X-ray
scattering at atomic resolution. Philosophical Transactions of
the Royal Society B: Biological Sciences, 369(1647):20130315,
2014. doi:10.1098/rstb.2013.0315.

[MWQ+16] Derek Mendez, Herschel Watkins, Shenglan Qiao, Kevin S.
Raines, Thomas J. Lane, Gundolf Schenk, Garrett Nelson,
Ganesh Subramanian, Kensuke Tono, Yasumasa Joti, Makina
Yabashi, Daniel Ratner, and Sebastian Doniach. Angular cor-
relations of photons from solution diffraction at a free-electron
laser encode molecular structure. IUCrJ, 3(6):420–429, 2016.
doi:10.1107/S2052252516013956.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

[PDM+18] Kanupriya Pande, Jeffrey J Donatelli, Erik Malmerberg, Lutz
Foucar, Christoph Bostedt, Ilme Schlichting, and Petrus H Zwart.
Ab initio structure determination from experimental fluctuation
X-ray scattering data. Proceedings of the National Academy of
Sciences of the United States of America, 115(46):11772–11777,
2018. doi:10.1073/pnas.1812064115.

[SA19] Elliott Slaughter and Alex Aiken. Pygion: Flexible, Scalable
Task-Based Parallelism with Python. In Proceedings of PAW-
ATM 2019: Parallel Applications Workshop, Alternatives to
MPI+X, Held in conjunction with SC 2019: The International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 58–72. Institute of Electrical and
Electronics Engineers (IEEE), 2019. doi:10.1109/PAW-
ATM49560.2019.00011.

[vdWCV11] Stéfan van der Walt, Chris Colbert, and Gaël Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science & Engineering, 13:22–30, 2011. doi:
10.1109/MCSE.2011.37.

[WRD15] William E. White, Aymeric Robert, and Mike Dunne. The linac
coherent light source. Journal of Synchrotron Radiation, 22:472–
476, 2015. doi:10.1107/S1600577515005196.

[ZBS+10] Junjie Zhang, Matthew L. Baker, Gunnar F. Schröder,
Nicholai R. Douglas, Stefanie Reissmann, Joanita Jakana,
Matthew Dougherty, Caroline J. Fu, Michael Levitt, Steven J.
Ludtke, Judith Frydman, and Wah Chiu. Mechanism of
folding chamber closure in a group II chaperonin. Nature,
463(7279):379–383, 2010. doi:10.1038/nature08701.

http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1098/rstb.2013.0315
http://dx.doi.org/10.1107/S2052252516013956
http://dx.doi.org/10.1073/pnas.1812064115
http://dx.doi.org/10.1109/PAW-ATM49560.2019.00011
http://dx.doi.org/10.1109/PAW-ATM49560.2019.00011
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1107/S1600577515005196
http://dx.doi.org/10.1038/nature08701

	Introduction
	LCLS-II, an LCLS upgrade
	FXS: an example analysis requiring HPC

	Acceleration: getting the best out of NumPy
	Parallelization: effortless scaling with Pygion
	Results
	Conclusion
	Acknowledgement
	References

