
24 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

HOOMD-blue version 3.0 A Modern, Extensible,
Flexible, Object-Oriented API for Molecular

Simulations
Brandon L. Butler‡∗, Vyas Ramasubramani‡, Joshua A. Anderson‡, Sharon C. Glotzer‡§¶‖

https://youtu.be/fIFPYZsOVqI

F

Abstract—HOOMD-blue is a library for running molecular dynamics and hard
particle Monte Carlo simulations that uses pybind11 to provide a Python in-
terface to fast C++ internals. The package is designed to scale from a single
CPU core to thousands of NVIDIA or AMD GPUs. In developing HOOMD-blue
version 3.0, we significantly improve the application protocol interface (API)
by making it more flexible, extensible, and Pythonic. We have also striven to
provide simpler and more performant entry points to the internal C++ classes
and data structures. With these updates, we show how HOOMD-blue users will
be able to write completely custom Python classes which integrate directly into
the simulation run loop and analyze previously inaccessible data. Throughout
this paper, we focus on how these goals have been achieved and explain design
decisions through examples of the newly developed API.

Index Terms—molecular dynamics, molecular simulations, Monte Carlo simu-
lations, object-oriented

Introduction

Molecular simulation has been an important technique for study-
ing the equilibrium properties of molecular systems since the
1950s. The two most common methods for this purpose are
molecular dynamics and Monte Carlo simulations [MRR+], [AW].
Molecular dynamics (MD) is the application of Newton’s laws of
motion to molecular system, while Monte Carlo (MC) methods
employ a Markov chain to sample from equilibrium configura-
tions. Since their inception these tools have been used to study
numerous systems, examples include colloids [DEG], metallic
glasses [FIE], and proteins [DZK+], among others.

Today many software packages exist for these purposes.
LAMMPS [Pli], GROMACS [BvdSvD], [AMS+], OpenMM
[ESC+], ESPResSo [WWS+], [GTK+] and Amber [SCW],
[CCD+] are a few examples of popular MD packages, while
Cassandra [SMM+] and MCCCS Towhee [Mar] provide MC
simulation capabilities. Implementations on high performance
GPUs [SMAG], parallel architectures [NBB+], and the greater
accessibility of computational power have tremendously improved

* Corresponding author: butlerbr@umich.edu
‡ University of Michigan, Department of Chemical Engineering
§ University of Michigan, Department of Material Science and Engineering
¶ University of Michigan, Department of Physics
|| University of Michigan, Biointerfaces Institute

Copyright © 2020 Brandon L. Butler et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the length [BCR+] and time [SDS+] scales of simulations from
those conducted in the mid 1900s. The flexibility and generality
of such tools has dramatically increased the usage of molecular
simulations, which has in turn led to demands for even more
customizable software packages that can be tailored to very spe-
cific simulation requirements. Different tools have taken different
approaches to enabling this, such as the text-file scripting in
LAMMPS, the command line interface provided by GROMACS,
and the Python, C++, C, and Fortran bindings of OpenMM.
Recently, programs that have used other interfaces have also added
Python bindings such as LAMMPS and GROMACS.

In the development of these tools, the requirements for the
software to enable good science became more obvious. Having
computational research that is Transferable, Reproducible, Usable
(by others), and Extensible (TRUE) [TGM+] is necessary for
fully realizing the potential of computational molecular science.
HOOMD-blue is part of the MoSDeF project which seeks to
bring these traits to the wider computational molecular science
community through packages like mbuild [KSJ+] and foyer
[KST+] which are Python packages that generalize generating
initial particle configurations and force fields respectively across
a variety of simulation back ends [CG], [TGM+]. This effort
in increased TRUEness is one of many motivating factors for
HOOMD-blue version 3.0.

HOOMD-blue [ALT], [GNA+], [AGG], an MD and MC
simulations engine with a C++ back end, provides to use a Python
API facilitated through pybind11 [JRM]. The package is open-
source under the 3-clause BSD license, and the code is hosted
on GitHub (https://github.com/glotzerlab/hoomd-blue). HOOMD-
blue was initially released in 2008 as the first fully GPU-enabled
MD simulation engine using NVIDIA GPUs through CUDA.
Since its initial release, HOOMD-blue has remained under active
development, adding numerous features over the years that have
increased its range of applicability, including adding support for
domain decomposition (dividing the simulation box among MPI
ranks) in 2014 and recent developments that enable support for
AMD in addition to NVIDIA GPUs.

Despite its great flexibility, the package’s API still has certain
key limitations. In particular, since its inception HOOMD-blue
has been designed around some maintenance of global state.
The original releases of HOOMD-blue provided Python scripting
capabilities based on an imperative programming model, but it
required that these scripts be run through HOOMD-blue’s mod-

https://youtu.be/fIFPYZsOVqI
mailto:butlerbr@umich.edu
https://github.com/glotzerlab/hoomd-blue

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 25

ified interpreter that was responsible for managing this global
state. Version 2.0 relaxed this restriction, allowing the use of
HOOMD-blue within ordinary Python scripts and introducing the
SimulationContext object to encapsulate the global state
to some degree, thereby allowing multiple largely independent
simulations to coexist in a single script. However, this object
remained largely opaque to the user, in many ways still behav-
ing like a pseudo-global state, and version 2.0 otherwise made
minimal modifications to the HOOMD-blue Python API, which
was largely inspired by and reminiscent of the structure of other
simulation software, particularly LAMMPS.

In this paper, we describe the upcoming 3.0 release of
HOOMD-blue, which is a complete redesign of the API from the
ground up to present a more transparent and Pythonic interface
for users. Version 3.0 aspires to match the intuitive APIs provided
by other Python packages like SciPy [VGO+], NumPy [vdWCV],
scikit-learn [PVG+], and matplotlib [Hun], while simultaneously
adding seamless interfaces by which such packages may be in-
tegrated into simulation scripts using HOOMD-blue. Global state
has been completely removed, instead replaced by a highly object-
oriented model that gives users explicit and complete control
over all aspects of simulation configuration. Where possible, the
new version also provides performant, Pythonic interfaces to data
stored by the C++ back end. Over the next few sections, we will
use examples of HOOMD-blue’s version 3.0 API (which is still
in development at the time of writing) to highlight the improved
extensibility, flexibility, and ease of use of the new HOOMD-blue
API.

General API Design

Rather than beginning with abstract descriptions, we will introduce
the new API by example. The script below illustrates a standard
MD simulation of a Lennard-Jones fluid using the version 3.0
API. Each of the elements of this script is introduced throughout
the rest of this section. We also show a rendering of the particle
configuration in Figure (1).
import hoomd
import hoomd.md
import numpy as np

device = hoomd.device.Auto()
sim = hoomd.Simulation(device)

Place particles on simple cubic lattice.
N_per_side = 14
N = N_per_side ** 3
L = 20
xs = np.linspace(0, 0.9, N_per_side)
x, y, z = np.meshgrid(xs, xs, xs)
coords = np.array(

(x.ravel(), y.ravel(), z.ravel())).T

One way to define an initial system state is
by defining a snapshot and using it to
initialize the system state.
snap = hoomd.Snapshot()
snap.particles.N = N
snap.configuration.box = hoomd.Box.cube(L)
snap.particles.position[:] = (coords - 0.5) * L
snap.particles.types = ['A']

sim.create_state_from_snapshot(snap)

Create integrator and forces
integrator = hoomd.md.Integrator(dt=0.005)
langevin = hoomd.md.methods.Langevin(

hoomd.filter.All(), kT=1., seed=42)

Fig. 1: A rendering of the Lennard-Jones fluid simulation script
output. Particles are colored by the Lennard-Jones potential energy
that is logged using the HOOMD-blue Logger and GSD class
objects. Figure is rendered in OVITO [Stu] using the Tachyon [Sto]
renderer.

integrator.methods.append(langevin)

nlist = hoomd.md.nlist.Cell()
lj = hoomd.md.pair.LJ(nlist, r_cut=2.5)
lj.params[('A', 'A')] = dict(

sigma=1., epsilon=1.)
integrator.forces.append(lj)

Set up output
gsd = hoomd.output.GSD('trajectory.gsd', trigger=100)
log = hoomd.logging.Logger()
log += lj
gsd.log = log

sim.operations.integrator = integrator
sim.operations.analyzers.append(gsd)
sim.run(100000)

Simulation, Device, State, Operations

Each simulation in HOOMD-blue is now controlled through three
main objects which are joined together by the Simulation
class: the Device, State, and Operations classes. Figure (2)
shows this relationship with some core attributes/methods for each
class. Each Simulation object holds the requisite information
to run a full molecular dynamics or Monte Carlo simulation,
thereby circumventing any need for global state information. The
Device class denotes whether a simulation should be run on
CPUs or GPUs and the number of cores/GPUs it should run on. In
addition, the device manages custom memory tracebacks, profiler
configurations, and the MPI communicator among other things.

The State class stores the system data (e.g. particle positions,
orientations, velocities, the system box). As shown in our example,
the state can be initialized from a snapshot, after which the data
can be accessed and modified in two ways. One option is for
users to operate on a new Snapshot object, which exposes
NumPy arrays that store a copy of the system data. To construct
a snapshot, all system data distributed across MPI ranks must be
gathered and combined by the root rank. Setting the state using the
snapshot API requires assigning a modified snapshot to the system
state (i.e. all system data is reset upon setting). The advantages
to this approach come from the ease of use of working with a

26 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Simulation

State Operations Device

run()
timestep

snapshot
cpu_local_snapshot
gpu_local_snapshot
particle_types
bond_types

integrator
updaters
analyzers
tuners
computes

communicator
num_ranks
mode
notice_level

Fig. 2: Diagram of core objects with some attributes and methods.
Classes are in bold and orange; attributes and methods are blue.
Figure is made using Graphviz [EGK+], [GKNV].

single object containing the complete description of the state. The
following snippet showcases how this approach can be used to set
the z position of all particles to zero.
snap = sim.state.snapshot
snapshot only stores data on rank 0
if snap.exists:

set all z positions to 0
snap.particles.position[:, 2] = 0

sim.state.snapshot = snap

The other API for accessing State data is via a zero-copy,
rank-local access to the state’s data on either the GPU or CPU.
On the CPU, we expose the buffers as numpy.ndarray-like
objects through provided hooks such as __array_ufunc__
and __array_interface__. Similarly, on the GPU we mock
much of the CuPy [zot] ndarray class if it is installed; however,
at present the CuPy package provides fewer hooks, so our inte-
gration is more limited. Whether or not CuPy is installed, we use
version 2 of the __cuda_array_interface__ protocol for
GPU access (compatibility with our GPU buffers in Python there-
fore depends on the support of version 2 of this protocol). This
provides support for libraries such as Numba’s [LPS] GPU just-in-
time compiler and PyTorch [PGM+]. We chose to mock NumPy-
like interfaces rather than expose ndarray objects directly out
of consideration for memory safety. To ensure data integrity, we
restrict the data to only be accessible within a specific context
manager. This approach is much faster than using the snapshot
API because it uses HOOMD-blue’s data buffers directly, but
the nature of providing zero-copy access requires that users deal
directly with the domain decomposition since only data for a MPI
rank’s local simulation box is stored by a given rank. The example
below modifies the previous example to instead use the zero-copy
API.
with sim.state.cpu_local_snapshot as data:

data.particles.position[:, 2] = 0

assumes CuPy is installed
with sim.state.gpu_local_snapshot as data:

data.particles.position[:, 2] = 0

The last of the three classes, Operations, holds the different
operations that will act on the simulation state. Broadly, these
consist of 3 categories: updaters, which modify simulation state;
analyzers, which observe system state; and tuners, which tune the
hyperparameters of other operations for performance. Although

updaters and analyzers existed in version 2.x (tuners are a version
3.0 split from updaters), these operations have undergone a sig-
nificant API overhaul for version 3.0 to support one of the more
far-reaching changes to HOOMD-blue: the deferred initialization
model.

Operations in HOOMD-blue are generally implemented as
two classes, a user-facing Python object and an internal C++
object which we denote as the action of the operation. On creation,
these C++ objects typically require a Device and a C++ State
in order to, for instance, initialize appropriately sized arrays.
Unfortunately this requirement restricts the order in which objects
may be created since devices and states must exist first. This
restriction could create potential confusion for users who forget
this ordering and would also limit the composability of modular
simulation components by preventing, for instance, the creation
of a simple force field without the prior existence of a Device
and a State. To circumvent these difficulties, the new API has
moved to a deferred initialization model in which C++ objects are
not created until the corresponding Python objects are attached to
a Simulation, a model we discuss in greater detail below.

Deferred C++ Initialization

The core logic for the deferred initialization model is imple-
mented in the _Operation class, which is the base class for
all operations in Python. This class contains the machinery for
attaching/detaching operations to/from their C++ counterparts, and
it defines the user interface for setting and modifying operation-
specific parameters while guaranteeing that such parameters are
synchronized with attached C++ objects as appropriate. Rather
than handling these concerns directly, the _Operation class
manages parameters using specially defined classes that handle
the synchronization of attributes between Python and C++: the
ParameterDict and TypeParameterDict classes. In addi-
tion to providing transparent dict-like APIs for the automatically
synchronized setting of parameters, these classes also provide
strict validation of input types, ensuring that user inputs are
validated regardless of whether or not operations are attached to a
simulation.

Each class supports validation of their keys, and they can be
used to define the structure and validation of arbitrarily nested
dictionaries, lists, and tuples. Likewise, both support default
values, but to a varying degree due to their differing purposes.
ParameterDict acts as a dictionary with additional validation
logic. However, the TypeParameterDict represents a dictio-
nary in which each entry is validated by the entire defined schema.
This distinction occurs often in simulation contexts as simulations
with multiple types of particles, bonds, angles, etc. must specify
certain parameters for each type. In practice this distinction means
that the TypeParameterDict class supports default specifi-
cation with arbitrary nesting, while the ParameterDict has
defaults but these are equivalent to object attribute defaults. An
example TypeParameterDict initialization and use of both
classes can be seen below.

Specification of Sphere's shape TypeParameterDict
TypeParameterDict(

diameter=float,
ignore_statistics=False,
orientable=False,
len_keys=1)

from hoomd.hpmc.integrate import Sphere

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 27

sphere = Sphere(seed=42)
Set nselect parameter using ParameterDict
sphere.nselect = 2
Set shape for type 'A' using TypeParameterDict
sphere.shape['A'] = {'diameter': 1.}
Set shape for types 'B', 'C', and 'D'
sphere.shape[['B', 'C', 'D']] = {'diameter': 0.5}

The specification defined above sets defaults for
ignore_statistics and orientable (the purpose
of these is outside the scope of the paper), but requires the setting
of the diameter for each type.

To store lists of operations that must be attached to a simu-
lation, the analogous SyncedList class transparently handles
attaching of operations.
import hoomd

ops = hoomd.Operations()
gsd = hoomd.output.GSD('example.gsd')
Append to the SyncedList ops.analyzers
ops.analyzers.append(gsd)

These classes also have the ancillary benefit of improving error
messaging and handling. An example error message for trying to
set sigma for A-A interactions in the Lennard-Jones pair potential
to a string (i.e. lj.params[('A', 'A')] = {'sigma':
'foo', 'epsilon': 1.} would provide the error message,

TypeConversionError: For types [(’A’, ’A’)], error
In key sigma: Value foo of type <class ’str’> cannot be
converted using OnlyType(float). Raised error: value foo
not convertible into type <class ’float’>.

Previously, the equivalent error would be "TypeError: must be
real number, not str", the error would not be raised until running
the simulation, and the line setting sigma would not be in the stack
trace given.

Logging and Accessing Data

Logging simulation data for analysis is a critical feature of molec-
ular simulation software packages. Up to now, HOOMD-blue
has supported logging through an analyzer interface that simply
accepted a list of quantities to log, where the set of valid quantities
was based on what objects had been created at any point and
stored to the global state. The creation of the base _Operation
class has allowed us to simultaneously simplify and increase the
flexibility of our logging infrastructure. The Loggable metaclass
of _Operation allows all subclasses to expose their loggable
quantities by marking Python properties or methods to query.

The actual task of logging data is accomplished by the
Logger class, which provides an interface for logging most
HOOMD-blue objects and custom user quantities. In the example
script from the General API Design section above, we show that
the Logger can add an operation’s loggable quantities using
the += operator. The utility of this class lies in its intermediate
representation of the data. Using the HOOMD-blue namespace as
the basis for distinguishing between quantities, the Logger maps
logged quantities into a nested dictionary. For example, logging
the Lennard-Jones pair potentials total energy would produce this
dictionary by a Logger object {'md': {'pair': {'LJ':
{'energy': (-1.4, 'scalar')}}}} where 'scalar'
is a flag to make processing the logged output easier. In real
use cases, the dictionary would likely be filled with many other
quantities.

Version 3.0 of HOOMD-blue uses properties extensively to
expose object data such as the total potential energy of all pair

potentials, the trial move acceptance rate in MC integrators, and
thermodynamic variables like temperature or pressure, all of which
can be used directly or stored through the logging interface. To
support storing these properties, the logging is quite general and
supports scalars, strings, arrays, and even generic Python objects.
By separating the data collection from the writing to files, and by
providing such a flexible intermediate representation, HOOMD-
blue can now support a range of back ends for logging; moreover,
it offers users the flexibility to define their own. For instance,
while logging data to text files or standard out is supported out
of the box, other back ends like MongoDB, Pandas [McK], and
Python pickles can now be implemented on top of the existing
logging infrastructure. Consistent with the new approach to log-
ging, HOOMD-blue version 3.0 makes simulation output an opt-in
feature even for common outputs like performance and thermody-
namic quantities. In addition to this improved flexibility in storage
possibilities, for HOOMD-blue version 3.0 we have exposed more
of an object’s data than had previously been available through
adding new properties to objects. For example, pair potentials now
expose per-particle potential energies at any given time (this data
is used to color Figure (1)).

In conjunction with the deferred initialization model, the new
logging infrastructure also allows us to more easily export an
object’s state (not to be confused with the simulation state). Due to
the switch to deferred initialization, all operation state information
is now stored directly in Python, so we have made object state a
loggable quantity. All operations also provide a from_state
factory method that can reconstruct the object from the state,
dramatically increasing the restartability of simulations since the
state of each object can be saved at the end of a given run and read
at the start of the next.

from hoomd.hpmc.integrate import Sphere

sphere = Sphere.from_state('example.gsd', frame=-1)

This code block would create a Sphere object with the parame-
ters stored from the last frame of the gsd file example.gsd.

User Customization

A major improvement in HOOMD-blue version 3 is the ease with
which users can customize their simulations in previously impos-
sible ways. The changes that enable this improvement generally
come in two flavors, the generalization of existing concepts in
HOOMD-blue and the introduction of a completely new Action
class that enables the user to inject arbitrary actions into the
simulation loop. In this section, we first discuss how concepts like
periods and groups have been generalized from previous iterations
of HOOMD-blue and then show how users can inject completely
novel routines to actually modify the behavior of simulations.

Triggers

In HOOMD-blue version 2.x, everything that was not run on
every timestep had a period and phase associated with it. The
timesteps the operation was run on could then be determined by
the expression, timestep % period - phase == 0. In
our refactoring and development, we recognized that this concept
could be made much more general and consequently more flexible.
Objects do not have to be run on a periodic timescale; they just
need some indication of when to run. In other words, the opera-
tions needed to be triggered. The Trigger class encapsulates this

28 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

concept, providing a uniform way of specifying when an object
should run without limiting options. Trigger objects return a
Boolean value when called with a timestep (i.e. they are functors).
Each operation that requires triggering is now associated with a
corresponding Trigger instance which informs the simulation
when the operation should run. The previous behavior is now
available through the Periodic class in the hoomd.trigger
module. However, this approach enables much more sophisticated
logic through composition of multiple triggers such as Before
and After which return True before or after a given timestep
with the And, Or, and Not subclasses that function as logical
operators on the return value of the composed Triggers.

In addition to the flexibility the Trigger class provides by
abstracting out the concept of triggering an operation, we use
pybind11 to easily allow subclasses of the Trigger class in
Python. This allows users to create their own triggers in pure
Python that will execute in HOOMD-blue’s C++ back end. An
example of such a subclass that reimplements the functionality of
HOOMD-blue version 2.x can be seen below.

from hoomd.trigger import Trigger

class CustomTrigger(Trigger):
def __init__(self, period, phase=0):

super().__init__()
self.period = period
self.phase = phase

def __call__(self, timestep):
v = timestep % self.period - self.phase == 0
return v

User-defined subclasses of Trigger are not restricted to simple
algorithms or even stateless ones; they can implement arbitrarily
complex Python code as demonstrated in the Large Examples
section’s first code snippet.

Variants

Variant objects are used in HOOMD-blue to specify
quantities like temperature, pressure, and box size which
can vary over time. Similar to Trigger, we generalized
our ability to linearly interpolate values across timesteps
(hoomd.variant.linear_interp in HOOMD-blue ver-
sion 2.x) to a base class Variant which generalizes the concept
of functions in the semi-infinite domain of timesteps t ∈ Z+

0 .
This allows sinusoidal cycling, non-uniform ramps, and other
behaviors. Like Trigger, Variant can be a direct subclass
of the C++ class. An example of a sinusoidal cycling variant is
shown below.

from math import sin
from hoomd.variant import Variant

class SinVariant(Variant):
def __init__(self, frequency, amplitude,

phase=0, center=0):
super().__init__()
self.frequency = frequency
self.amplitude = amplitude
self.phase = phase
self.center = center

def __call__(self, timestep):
tmp = self.frequency * timestep
tmp = sin(tmp + self.phase)
return self.amplitude * tmp + self.center

def _min(self):

return self.center - self.amplitude

def _max(self):
return self.center + self.amplitude

ParticleFilters

Unlike Trigger or Variant, ParticleFilter is not a gen-
eralization of an existing concept but the splitting of one class into
two. However, this split is also targeted at increasing flexibility and
extensibility. In HOOMD-blue version 2.x, the ParticleGroup
class and subclasses served to provide a subset of particles within
a simulation for file output, application of thermodynamic integra-
tors, and other purposes. The class hosted both the logic for storing
the subset of particles and filtering them out from the system.
After the refactoring, ParticleGroup is only responsible for
the logic to store and perform some basic operations on a set
of particle tags (a means of identifying individual particles), while
the new class ParticleFilter implements the selection logic.
This choice makes ParticleFilter objects lightweight and
provides a means of implementing a State instance-specific
cache of ParticleGroup objects. The latter ensures that we
do not create multiples of the same ParticleGroup which can
occupy large amounts of memory. The caching also allows the
creation of many of the same ParticleFilter object without
needing to worry about memory constraints.

ParticleFilter can be subclassed (like Trigger and
Variant), but only through the CustomParticleFilter
class. This is necessary to prevent some internal details from
leaking to the user. An example of a CustomParticleFilter
that selects only particles with positive charge is given below.

from hoomd.filter import CustomParticleFilter

class PositiveCharge(CustomParticleFilter):
def __init__(self, state):

super().__init__(state)

def __hash__(self):
return hash(self.__class__.__name__)

def __eq__(self, other):
return type(self) == type(other)

def find_tags(self, state):
with state.cpu_local_snapshot as data:

mask = data.particles.charge > 0
return data.particles.tag[mask]

Custom Actions

In HOOMD-blue, we distinguish between the objects that perform
an action on the simulation state (called Actions) and their con-
taining objects that deal with setting state and the user interface
(called Operations). Through composition, HOOMD-blue offers
the ability to create custom actions in Python and wrap them
in our _CustomOperation subclasses (divided on the type
of action performed) allowing the execution of the action in the
Simulation run loop. The feature makes user created actions
behave indistinguishably from native C++ actions. Through cus-
tom actions, users can modify state, tune hyperparameters for
performance, or observe parts of the simulation. In addition,
we are adding a signal for Actions to send that would stop a
Simulation.run call. This would allow actions to stop the
simulation when they complete, which could be useful for tasks
like tuning MC trial move sizes. With respect to performance,

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 29

with zero copy access to the data on the CPU or GPU, custom
actions can also achieve high performance using standard Python
libraries like NumPy, SciPy, Numba, CuPy and others. Below we
show an example of an Action that switches particles of type
initial_type to type final_type with a specified rate
each time it is run. This action could be refined to implement
a reactive MC move reminiscent of [GSJ] or to have a variable
switch rate. These exercises are left to the reader.

import hoomd
from hoomd.filter import (

Intersection, All, Type)
from hoomd.custom import Action

class SwapType(Action):
def __init__(self, initial_type,

final_type, rate, filter=All()):
self.final_type = final_type
self.rate = rate
self.filter = Intersection(

[Type(initial_type), filter])

def act(self, timestep):
state = self._state
final_type_id = state.particle_types.index(

self.final_type)
tags = self.filter(state)
with state.cpu_local_snapshot as snap:

tags = np.intersect1d(
tags, snap.particles.tag, True)

part = data.particles
filtered_index = part.rtags[tags]
N_swaps = int(len(tags) * self.rate)
mask = np.random.choice(filtered_index,

N_swaps,
replace=False)

part.typeid[mask] = final_type_id

Conclusion

With modern simulation analysis packages such as freud [RDH+],
MDTraj [MBH+], and MDAnalysis [GLB+], [MDWB], initial-
ization tools such as mbuild and foyer, and visualization packages
like OVITO and plato [SD] using Python APIs, HOOMD-blue,
built from the ground up with Python in mind, fits in seamlessly.
Version 3.0 improves upon this and presents a Pythonic API that
encourages customization. Through enabling Python subclassing
of C++ classes, introducing custom actions, and exposing data in
zero-copy arrays/buffers, we allow HOOMD-blue users to utilize
the full potential of Python and the scientific Python community.

Acknowledgements

This research was supported by the National Science Founda-
tion, Division of Materials Research Award # DMR 1808342
(HOOMD-blue algorithm and performance development) and by
the National Science Foundation, Office of Advanced Cyberin-
frastructure Award # OAC 1835612 (Pythonic architecture for
MoSDeF). Hardware provided by NVIDIA Corp. is gratefully ac-
knowledged. This research was supported in part through compu-
tational resources and services supported by Advanced Research
Computing at the University of Michigan, Ann Arbor.

Appendix

In the appendix, we will provide more substantial applications of
features new to HOOMD-blue.

Trigger that detects nucleation

This example demonstrates a Trigger that returns true when
a threshold Q6 Steinhardt order parameter [SNR] (as calculated
by freud) is reached. Such a Trigger could be used for BCC
nucleation detection which could trigger a decrease in cooling
rate, a more frequent output of simulation trajectories, or any other
desired action. Also, in this example we showcase the use of the
zero-copy rank-local data access. This example also requires the
use of ghost particles, which are a subset of particles bordering a
MPI rank’s local box. Ghost particles are known by a rank, but
the rank is not responsible for updating them. In this case, ghost
particles are required for computing the Q6 value for particles near
the edges of the current rank’s local simulation box.

import numpy as np
import freud
from mpi4py import MPI
from hoomd.trigger import Trigger

class Q6Trigger(Trigger):
def __init__(self, simulation, threshold,

mpi_comm=None):
super().__init__()
self.threshold = threshold
self.state = simulation.state
nr = simulation.device.num_ranks
if nr > 1 and mpi_comm is None:

raise RuntimeError()
elif nr > 1:

self.comm = mpi_comm
else:

self.comm = None
self.q6 = freud.order.Steinhardt(l=6)

def __call__(self, timestep):
with self.state.cpu_local_snapshot as data:

part = data.particles
box = data.box
aabb_box = freud.locality.AABBQuery(

box, part.positions_with_ghosts)
nlist = aabb_box.query(

part.position,
{'num_neighbors': 12,
'exclude_ii': True})

Q6 = np.nanmean(self.q6.compute(
(box, part.positions_with_ghosts),
nlist).particle_order)

if self.comm:
return self.comm.allreduce(

Q6 >= self.threshold,
op=MPI.LOR)

else:
return Q6 >= self.threshold

Pandas Logger Back-end

Here we highlight the ability to use the Logger class to create a
Pandas back end for simulation data. It will store the scalar and
string quantities in a single pandas.DataFrame object while
each array-like object is stored in a separate DataFrame object.
All DataFrame objects are stored in a single dictionary.

import pandas as pd
from hoomd.custom import Action
from hoomd.util import (

dict_flatten, dict_filter, dict_map)

def is_flag(flags):
def func(v):

return v[1] in flags
return func

30 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

def not_none(v):
return v[0] is not None

def hnd_2D_arrays(v):
if v[1] in ['scalar', 'string', 'state']:

return v
elif len(v[0].shape) == 2:

return {
str(i): col
for i, col in enumerate(v[0].T)}

class DataFrameBackEnd(Action):
def __init__(self, logger):

self.logger = logger

def act(self, timestep):
log_dict = self.logger.log()
is_scalar = is_flag(['scalar', 'string'])
sc = dict_flatten(dict_map(dict_filter(

log_dict,
lambda x: not_none(x) and is_scalar(x)),
lambda x: x[0]))

rem = dict_flatten(dict_map(dict_filter(
log_dict,
lambda x: not_none(x) \

and not is_scalar(x)),
hnd_2D_arrays))

if not hasattr(self, 'data'):
self.data = {

'scalar': pd.DataFrame(
columns=[

'.'.join(k) for k in sc]),
'array': {

'.'.join(k): pd.DataFrame()
for k in rem}}

sdf = pd.DataFrame(
{'.'.join(k): v for k, v in sc.items()},
index=[timestep])

rdf = {'.'.join(k): pd.DataFrame(
v, columns=[timestep]).T

for k,v in rem.items()}
data = self.data
data['scalar'] = data['scalar'].append(sdf)
data['array'] = {

k: v.append(rdf[k])
for k, v in data['array'].items()}

REFERENCES

[AGG] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer.
HOOMD-blue: A Python package for high-performance
molecular dynamics and hard particle Monte Carlo sim-
ulations. 173:109363. URL: http://www.sciencedirect.
com/science/article/pii/S0927025619306627, doi:10.1016/j.
commatsci.2019.109363.

[ALT] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General
purpose molecular dynamics simulations fully implemented on
graphics processing units. 227(10):5342–5359. URL: http://www.
sciencedirect.com/science/article/pii/S0021999108000818, doi:
10.1016/j.jcp.2008.01.047.

[AMS+] Mark James Abraham, Teemu Murtola, Roland Schulz,
Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik Lin-
dahl. GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to su-
percomputers. 1-2:19–25. URL: http://www.sciencedirect.
com/science/article/pii/S2352711015000059, doi:10.1016/j.
softx.2015.06.001.

[AW] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics.
I. General Method. 31(2):459–466. URL: https://aip.scitation.org/
doi/abs/10.1063/1.1730376, doi:10.1063/1.1730376.

[BCR+] Surendra Byna, Jerry Chou, Oliver Rubel, Prabhat, Homa
Karimabadi, William S. Daughter, Vadim Roytershteyn, E. Wes
Bethel, Mark Howison, Ke-Jou Hsu, Kuan-Wu Lin, Arie Shoshani,

Andrew Uselton, and Kesheng Wu. Parallel I/O, analysis, and
visualization of a trillion particle simulation. In SC ’12: Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12. doi:
10.1109/SC.2012.92.

[BvdSvD] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen.
GROMACS: A message-passing parallel molecular dynamics im-
plementation. 91(1):43–56. URL: http://www.sciencedirect.com/
science/article/pii/001046559500042E, doi:10.1016/0010-
4655(95)00042-E.

[CCD+] David A. Case, Thomas E. Cheatham, Tom Darden, Holger
Gohlke, Ray Luo, Kenneth M. Merz, Alexey Onufriev, Car-
los Simmerling, Bing Wang, and Robert J. Woods. The
Amber biomolecular simulation programs. 26(16):1668–
1688. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
20290, doi:10.1002/jcc.20290.

[CG] Peter T Cummings and Justin B Gilmer. Open-source molecular
modeling software in chemical engineering. 23:99–105. URL: http:
//www.sciencedirect.com/science/article/pii/S2211339819300073,
doi:10.1016/j.coche.2019.03.008.

[DEG] Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer.
Predictive Self-Assembly of Polyhedra into Complex Struc-
tures. 337(6093):453–457. URL: https://science.sciencemag.org/
content/337/6093/453, arXiv:22837525, doi:10.1126/
science.1220869.

[DZK+] Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B.
Best, and Jeetain Mittal. Sequence determinants of protein phase
behavior from a coarse-grained model. 14(1):e1005941. URL:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.
pcbi.1005941, doi:10.1371/journal.pcbi.1005941.

[EGK+] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. Graphviz and dynagraph – static and
dynamic graph drawing tools. In Graph Drawing Software, pages
127–148. Springer-Verlag.

[ESC+] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGib-
bon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, An-
drew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P.
Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM 7:
Rapid development of high performance algorithms for molec-
ular dynamics. 13(7):e1005659. URL: https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1005659, doi:10.
1371/journal.pcbi.1005659.

[FIE] Yue Fan, Takuya Iwashita, and Takeshi Egami. How ther-
mally activated deformation starts in metallic glass. 5(1):1–
7. URL: https://www.nature.com/articles/ncomms6083, doi:10.
1038/ncomms6083.

[GKNV] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-phong Vo. A Technique for Drawing Directed Graphs.
19(3):214–230.

[GLB+] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E.
Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L.
Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein.
MDAnalysis: A Python Package for the Rapid Analysis of Molecu-
lar Dynamics Simulations. pages 98–105. URL: https://conference.
scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.
25080/Majora-629e541a-00e.

[GNA+] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynam-
ics simulations on GPUs. 192:97–107. URL: http://www.
sciencedirect.com/science/article/pii/S0010465515000867, doi:
10.1016/j.cpc.2015.02.028.

[GSJ] Sharon C. Glotzer, Dietrich Stauffer, and Naeem Jan. Monte
Carlo simulations of phase separation in chemically reac-
tive binary mixtures. 72(26):4109–4112. URL: https://
link.aps.org/doi/10.1103/PhysRevLett.72.4109, doi:10.1103/
PhysRevLett.72.4109.

[GTK+] Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C.
Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt
Kremer, and Torsten Stuehn. ESPResSo++ 2.0: Advanced methods
for multiscale molecular simulation. 238:66–76. URL: http://www.
sciencedirect.com/science/article/pii/S0010465518304399, doi:
10.1016/j.cpc.2018.12.017.

[Hun] John D. Hunter. Matplotlib: A 2D Graphics Environment. 9(3):90–
95. doi:10.1109/MCSE.2007.55.

[JRM] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. Pybind11

http://www.sciencedirect.com/science/article/pii/S0927025619306627
http://www.sciencedirect.com/science/article/pii/S0927025619306627
http://dx.doi.org/10.1016/j.commatsci.2019.109363
http://dx.doi.org/10.1016/j.commatsci.2019.109363
http://www.sciencedirect.com/science/article/pii/S0021999108000818
http://www.sciencedirect.com/science/article/pii/S0021999108000818
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.softx.2015.06.001
https://aip.scitation.org/doi/abs/10.1063/1.1730376
https://aip.scitation.org/doi/abs/10.1063/1.1730376
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1109/SC.2012.92
http://dx.doi.org/10.1109/SC.2012.92
http://www.sciencedirect.com/science/article/pii/001046559500042E
http://www.sciencedirect.com/science/article/pii/001046559500042E
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1016/0010-4655(95)00042-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
http://dx.doi.org/10.1002/jcc.20290
http://www.sciencedirect.com/science/article/pii/S2211339819300073
http://www.sciencedirect.com/science/article/pii/S2211339819300073
http://dx.doi.org/10.1016/j.coche.2019.03.008
https://science.sciencemag.org/content/337/6093/453
https://science.sciencemag.org/content/337/6093/453
http://arxiv.org/abs/22837525
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005941
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005941
http://dx.doi.org/10.1371/journal.pcbi.1005941
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
http://dx.doi.org/10.1371/journal.pcbi.1005659
http://dx.doi.org/10.1371/journal.pcbi.1005659
https://www.nature.com/articles/ncomms6083
http://dx.doi.org/10.1038/ncomms6083
http://dx.doi.org/10.1038/ncomms6083
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://dx.doi.org/10.25080/Majora-629e541a-00e
http://dx.doi.org/10.25080/Majora-629e541a-00e
http://www.sciencedirect.com/science/article/pii/S0010465515000867
http://www.sciencedirect.com/science/article/pii/S0010465515000867
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2015.02.028
https://link.aps.org/doi/10.1103/PhysRevLett.72.4109
https://link.aps.org/doi/10.1103/PhysRevLett.72.4109
http://dx.doi.org/10.1103/PhysRevLett.72.4109
http://dx.doi.org/10.1103/PhysRevLett.72.4109
http://www.sciencedirect.com/science/article/pii/S0010465518304399
http://www.sciencedirect.com/science/article/pii/S0010465518304399
http://dx.doi.org/10.1016/j.cpc.2018.12.017
http://dx.doi.org/10.1016/j.cpc.2018.12.017
http://dx.doi.org/10.1109/MCSE.2007.55

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 31

– Seamless operability between C++11 and Python. URL: https:
//github.com/pybind/pybind11.

[KSJ+] Christoph Klein, János Sallai, Trevor J. Jones, Christopher R.
Iacovella, Clare McCabe, and Peter T. Cummings. A Hierarchical,
Component Based Approach to Screening Properties of Soft Mat-
ter. In Randall Q Snurr, Claire S. Adjiman, and David A. Kofke,
editors, Foundations of Molecular Modeling and Simulation: Select
Papers from FOMMS 2015, Molecular Modeling and Simulation,
pages 79–92. Springer. URL: https://doi.org/10.1007/978-981-10-
1128-3_5, doi:10.1007/978-981-10-1128-3_5.

[KST+] Christoph Klein, Andrew Z. Summers, Matthew W. Thompson,
Justin B. Gilmer, Clare McCabe, Peter T. Cummings, Janos
Sallai, and Christopher R. Iacovella. Formalizing atom-typing
and the dissemination of force fields with foyer. 167:215–
227. URL: http://www.sciencedirect.com/science/article/pii/
S0927025619303040, doi:10.1016/j.commatsci.2019.
05.026.

[LPS] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A LLVM-based Python JIT compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM ’15, pages 1–6. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/2833157.2833162, doi:10.
1145/2833157.2833162.

[Mar] Marcus G. Martin. MCCCS Towhee: A tool for Monte
Carlo molecular simulation. 39(14-15):1212–1222. URL:
https://doi.org/10.1080/08927022.2013.828208, doi:10.1080/
08927022.2013.828208.

[MBH+] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harri-
gan, Christoph Klein, Jason M. Swails, Carlos X. Hernández,
Christian R. Schwantes, Lee-Ping Wang, Thomas J. Lane, and
Vijay S. Pande. MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories. 109(8):1528–
1532. URL: http://www.sciencedirect.com/science/article/pii/
S0006349515008267, doi:10.1016/j.bpj.2015.08.015.

[McK] Wes McKinney. Data Structures for Statistical
Computing in Python. pages 56–61. URL: https:
//conference.scipy.org/proceedings/scipy2010/mckinney.html,
doi:10.25080/Majora-92bf1922-00a.

[MDWB] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B.
Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for
the analysis of molecular dynamics simulations. 32(10):2319–
2327. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
21787, doi:10.1002/jcc.21787.

[MRR+] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of
State Calculations by Fast Computing Machines. 21(6):1087–
1092. URL: https://aip.scitation.org/doi/abs/10.1063/1.1699114,
doi:10.1063/1.1699114.

[NBB+] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Mar-
tin Buchholz, Wolfgang Eckhardt, Alexander Heinecke, Stephan
Werth, Hans-Joachim Bungartz, Colin W. Glass, Hans Hasse, Jad-
ran Vrabec, and Martin Horsch. Ls1 mardyn: The Massively Par-
allel Molecular Dynamics Code for Large Systems. 10(10):4455–
4464. URL: https://doi.org/10.1021/ct500169q, doi:10.1021/
ct500169q.

[PGM+] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\ textquotesingle Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8026–8037. Curran Asso-
ciates, Inc. URL: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[Pli] S. Plimpton. Fast parallel algorithms for short-range molecular
dynamics. URL: https://www.osti.gov/biblio/10176421, doi:10.
2172/10176421.

[PVG+] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Pe-
ter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu
Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning
in Python. 12(85):2825–2830. URL: http://jmlr.org/papers/v12/
pedregosa11a.html.

[RDH+] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P.
Spellings, Joshua A. Anderson, and Sharon C. Glotzer. Freud:
A software suite for high throughput analysis of particle sim-
ulation data. page 107275. URL: http://www.sciencedirect.
com/science/article/pii/S0010465520300916, doi:10.1016/j.
cpc.2020.107275.

[SCW] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker.
An overview of the Amber biomolecular simulation package.
3(2):198–210. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/wcms.1121, doi:10.1002/wcms.1121.

[SD] Matthew Spellings and Bradley D. Dice. Plato. URL: https://
github.com/glotzerlab/plato.

[SDS+] David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman,
Kenneth M. Mackenzie, Joseph A. Bank, Cliff Young, Martin M.
Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow,
Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jef-
frey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul
Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and
Brian Towles. Millisecond-scale molecular dynamics simulations
on Anton. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 1–11.
Association for Computing Machinery. URL: https://doi.org/10.
1145/1654059.1654126, doi:10.1145/1654059.1654126.

[SMAG] Matthew Spellings, Ryan L. Marson, Joshua A. Anderson, and
Sharon C. Glotzer. GPU accelerated Discrete Element Method
(DEM) molecular dynamics for conservative, faceted particle
simulations. 334:460–467. URL: http://www.sciencedirect.
com/science/article/pii/S0021999117300244, doi:10.1016/j.
jcp.2017.01.014.

[SMM+] Jindal K. Shah, Eliseo Marin-Rimoldi, Ryan Gotchy Mullen,
Brian P. Keene, Sandip Khan, Andrew S. Paluch, Neeraj
Rai, Lucienne L. Romanielo, Thomas W. Rosch, Brian
Yoo, and Edward J. Maginn. Cassandra: An open source
Monte Carlo package for molecular simulation. 38(19):1727–
1739. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
24807, doi:10.1002/jcc.24807.

[SNR] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti.
Bond-orientational order in liquids and glasses. 28(2):784–
805. URL: https://link.aps.org/doi/10.1103/PhysRevB.28.784,
doi:10.1103/PhysRevB.28.784.

[Sto] John Edward Stone. An effiicient library for parallel ray trac-
ing and animation. URL: http://jedi.ks.uiuc.edu/~johns/tachyon/
papers/thesis.pdf.

[Stu] Alexander Stukowski. Visualization and analysis of atom-
istic simulation data with OVITO–the Open Visualization Tool.
18(1):015012. URL: https://doi.org/10.1088%2F0965-0393%
2F18%2F1%2F015012, doi:10.1088/0965-0393/18/1/
015012.

[TGM+] Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto,
Co D. Quach, Parashara Shamaprasad, Alexander H. Yang,
Christopher R. Iacovella, Clare McCabe, and Peter T. Cummings.
Towards molecular simulations that are transparent, reproducible,
usable by others, and extensible (TRUE). 118(9-10):e1742938.
URL: https://doi.org/10.1080/00268976.2020.1742938, doi:10.
1080/00268976.2020.1742938.

[vdWCV] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
13(2):22–30. doi:10.1109/MCSE.2011.37.

[VGO+] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt.
SciPy 1.0: Fundamental algorithms for scientific computing in
Python. 17(3):261–272. URL: https://www.nature.com/articles/
s41592-019-0686-2, doi:10.1038/s41592-019-0686-2.

[WWS+] Florian Weik, Rudolf Weeber, Kai Szuttor, Konrad Breitsprecher,
Joost de Graaf, Michael Kuron, Jonas Landsgesell, Henri Menke,
David Sean, and Christian Holm. ESPResSo 4.0 – an ex-
tensible software package for simulating soft matter systems.
227(14):1789–1816. URL: https://doi.org/10.1140/epjst/e2019-
800186-9, doi:10.1140/epjst/e2019-800186-9.

[zot] CuPy. URL: https://cupy.chainer.org/.

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.1007/978-981-10-1128-3_5
http://dx.doi.org/10.1007/978-981-10-1128-3_5
http://www.sciencedirect.com/science/article/pii/S0927025619303040
http://www.sciencedirect.com/science/article/pii/S0927025619303040
http://dx.doi.org/10.1016/j.commatsci.2019.05.026
http://dx.doi.org/10.1016/j.commatsci.2019.05.026
https://doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
https://doi.org/10.1080/08927022.2013.828208
http://dx.doi.org/10.1080/08927022.2013.828208
http://dx.doi.org/10.1080/08927022.2013.828208
http://www.sciencedirect.com/science/article/pii/S0006349515008267
http://www.sciencedirect.com/science/article/pii/S0006349515008267
http://dx.doi.org/10.1016/j.bpj.2015.08.015
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://dx.doi.org/10.25080/Majora-92bf1922-00a
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21787
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
https://aip.scitation.org/doi/abs/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
https://doi.org/10.1021/ct500169q
http://dx.doi.org/10.1021/ct500169q
http://dx.doi.org/10.1021/ct500169q
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.osti.gov/biblio/10176421
http://dx.doi.org/10.2172/10176421
http://dx.doi.org/10.2172/10176421
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://www.sciencedirect.com/science/article/pii/S0010465520300916
http://www.sciencedirect.com/science/article/pii/S0010465520300916
http://dx.doi.org/10.1016/j.cpc.2020.107275
http://dx.doi.org/10.1016/j.cpc.2020.107275
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
http://dx.doi.org/10.1002/wcms.1121
https://github.com/glotzerlab/plato
https://github.com/glotzerlab/plato
https://doi.org/10.1145/1654059.1654126
https://doi.org/10.1145/1654059.1654126
http://dx.doi.org/10.1145/1654059.1654126
http://www.sciencedirect.com/science/article/pii/S0021999117300244
http://www.sciencedirect.com/science/article/pii/S0021999117300244
http://dx.doi.org/10.1016/j.jcp.2017.01.014
http://dx.doi.org/10.1016/j.jcp.2017.01.014
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24807
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24807
http://dx.doi.org/10.1002/jcc.24807
https://link.aps.org/doi/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1103/PhysRevB.28.784
http://jedi.ks.uiuc.edu/~johns/tachyon/papers/thesis.pdf
http://jedi.ks.uiuc.edu/~johns/tachyon/papers/thesis.pdf
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1080/00268976.2020.1742938
http://dx.doi.org/10.1080/00268976.2020.1742938
http://dx.doi.org/10.1080/00268976.2020.1742938
http://dx.doi.org/10.1109/MCSE.2011.37
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1140/epjst/e2019-800186-9
https://doi.org/10.1140/epjst/e2019-800186-9
http://dx.doi.org/10.1140/epjst/e2019-800186-9
https://cupy.chainer.org/

	Introduction
	General API Design
	Simulation, Device, State, Operations
	Deferred C++ Initialization

	Logging and Accessing Data
	User Customization
	Triggers
	Variants
	ParticleFilters
	Custom Actions

	Conclusion
	Acknowledgements
	Appendix
	Trigger that detects nucleation
	Pandas Logger Back-end

	References

