
70 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Learning from evolving data streams

Jacob Montiel‡∗

https://youtu.be/sw85SCv847Y

F

Abstract—Ubiquitous data poses challenges on current machine learning sys-
tems to store, handle and analyze data at scale. Traditionally, this task is tackled
by dividing the data into (large) batches. Models are trained on a data batch and
then used to obtain predictions. As new data becomes available, new models
are created which may contain previous data or not. This training-testing cycle
is repeated continuously. Stream learning is an active field where the goal is
to learn from infinite data streams. This gives rise to additional challenges to
those found in the traditional batch setting: First, data is not stored (it is infinite),
thus models are exposed only once to single samples of the data, and once
processed those samples are not seen again. Models shall be ready to provide
predictions at any time. Compute resources such as memory and time are
limited, consequently, they shall be carefully managed. The data can drift over
time and models shall be able to adapt accordingly. This is a key difference with
respect to batch learning, where data is assumed static and models will fail in
the presence of change. Model degradation is a side-effect of batch learning
in many real-world applications requiring additional efforts to address it. This
papers provides a brief overview of the core concepts of machine learning
for data streams and describes scikit-multiflow, an open-source Python library
specifically created for machine learning on data streams. scikit-multiflow is built
to serve two main purposes: easy to design and run experiments, easy to extend
and modify existing methods.

Index Terms—machine learning, data streams, concept drift, scikit, open-
source

Introduction

The minimum pipeline in machine learning is composed of: (1)
data collection and processing, (2) model training, and (3) model
deployment. Conventionally, data is collected and processed in
batches. Although this approach is state-of-the-art in multiple ap-
plications, it is not suitable in the context of evolving data streams.
The batch learning approach assumes that data is sufficiently large
and accessible. This is not the case in streaming data where data
is available one sample at a time, and storing it is impractical
given its (theoretically) infinite nature. In addition, non-stationary
environments require to run the pipeline multiple times in order
to minimize model degradation, in other words maintain optimal
performance. This is especially challenging in fast-changing envi-
ronments where efficient and effective adaptation is vital.

As a matter of fact, multiple real-world machine learning
applications exhibit the characteristics of evolving data streams,
in particular we can mention:

* Corresponding author: jacob.montiel@waikato.ac.nz
‡ Department of Computer Science, University of Waikato

Copyright © 2020 Jacob Montiel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

• Financial markets generate huge volumes of data daily.
For instance, the New York Stock Exchange captures 1
terabyte of information each day1. Depending on the state
of such markets and multiple external factors data can
become obsolete quickly rendering it useless for creating
accurate models. Predictive models must be able to adapt
fast to be useful in this dynamic environment.

• Predictive maintenance. The contribution of IoT to the
digital universe is substantial. Data only from embedded
systems accounted for 2% of the world’s data in 2013,
and is expected to hit 10% by 20202. IoT sensors are
used to monitor the health of multiple systems, from
complex systems such as airplanes to simpler ones such
as household appliances. Predictive systems are required
to react fast to prevent disruptions from malfunctioning
elements.

• Online fraud detection. The speed of reaction of an au-
tomatic system is also an important factor in multiple
applications. As a case in point, VisaNet has a capacity (as
of June 2019) to handle more than 65,000 transactions per
second3. Fraud detection in online banking involves ad-
ditional challenges beside data collection and processing.
Fraud detection systems must adapt quickly to changes
such as consumer behavior (for example during holidays),
the stability of the financial markets, as well as the fact that
attackers constantly change their behavior to beat these
systems.

• Supply chain. Several sectors use automatic systems in
their supply chain to cope with the demand for products
efficiently. However, the COVID-19 pandemic brought to
attention the fragility of these systems to sudden changes,
e.g., in less than 1 week, products related to the pandemic
such as face masks filled the top 10 searched terms in
Amazon4. Many automatic systems failed to cope with
change resulting in the disruption in the supply chain.

• Climate change. Environmental science data is a
quintessential example of the five v’s of big data: volume,
velocity, variety, veracity, and value. In particular, NASA’s
Earth Science Data and Information System project, holds
24 petabytes of data in its archive and distributed 1.3 bil-
lion files in 20175. Understanding environmental data has
many implications in our daily lives, e.g., food production
can be severally impacted by climate change, disruption
of the water cycle has resulted in a rise of heavy rains
with the associated risk of floodings. IoT sensors are now
making environmental data available at a faster rate and

https://youtu.be/sw85SCv847Y
mailto:jacob.montiel@waikato.ac.nz

LEARNING FROM EVOLVING DATA STREAMS 71

Fig. 1: Batch learning systems are characterized by the investment
in resources like memory and training time as the volume of data
increases. Once a reasonable investment threshold is reached, data
becomes unusable turning into a missed opportunity. On the other
hand, efficient management of resources makes stream learning an
interesting alternative for big data applications.

machine learning systems must adapt to this new norm.

As shown in the previous examples, dynamic environments
pose an additional set of challenges to batch learning systems.
Model degradation is a predominant problem in multiple real-
world applications. As enough data has been generated and col-
lected, proactive users might decide to train their models to make
sure that they agree with the current data. This is complicated for
two reasons: First, batch models (in general) are not able to use
new data into account, so the machine learning pipeline must be
run multiples times as data is collected over time. Second, the
decision for such an action is not trivial and involves multiple
aspects. For example, should a new model be trained only on
new data? This depends on the amount of variation in the data.
Small variations might not be enough to justify retraining and
re-deploying a model. This is why a reactive approach is predom-
inantly employed in the industry. Model degradation is monitored
and corrective measures are enforced if a user-defined threshold is
exceeded (accuracy, type I, and type II errors, etc.). Fig. 1 depicts
another important aspect to consider, the tradeoff between the
investment in resources such as memory and time (and associated
cost) and the pay-off in predictive performance. In stream learning,
resource-wise efficiency is fundamental, predictive models not
only must be accurate but also must be able to handle theoretically
infinite data streams. Models must fit in memory no matter the
amount of data seen (constant memory). Additionally, training
time is expected to grow sub-linearly with respect to the volume
of data processed. New samples must be processed as soon as they
become available so it is vital to process them as fast as possible
to be ready for the next sample in the stream.

Machine learning for streaming data

Formally, the task of supervised learning from evolving data
streams is defined as follows. Consider a stream of data S =
{(~xt ,yt)}|t = 1, . . . ,T where T → ∞. Input ~xt is a feature vector
and yt the corresponding target where y is continuous in the case
of regression and discrete for classification. The objective is to

1. How Big Data Has Changed Finance, Trevir Nath, Investopedia, June
2019.

2. The Digital Universe of Opportunities: Rich Data and the Increasing
Value of the Internet of Things, IDC, April 2014.

3. Visa fact sheet, July 2019.
4. Our weird behavior during the pandemic is messing with AI models. Will

Douglas Heaven. MIT Technology Review. May 11, 2020.
5. Big data goes green, Neil Savage, Nature Index 2018 Earth and Environ-

mental Sciences, June 2018

predict the target ŷ for an unknown sample ~x. For illustrative
purposes, this paper focuses on the classification task.

In stream learning, models are trained incrementally, one
sample at a time, as new samples (~xt ,yt) become available. Since
streams are theoretically infinite, the training phase is non-stop and
predictive models are continuously updating their internal state in
agreement with incoming data. This is fundamentally different
from the batch learning approach, where models have access to all
(available) data during training. As previously mentioned, in the
stream learning paradigm, predictive models must be resource-
wise efficient. For this purpose, a set of requirements [BHKP11]
must be fulfilled by streaming methods:

• Process one sample at a time, and inspect it only once.
The assumption is that there is not enough time nor space
to store multiple samples, failing to meet this requirement
implies the risk of missing incoming data.

• Use a limited amount of memory. Data streams are
assumed infinite, thus storing data for further processing
is impractical.

• Work in a limited amount of time. In other words, avoid
bottlenecks generated by time-consuming tasks which in
the long run could make the algorithm fail.

• Be ready to predict at any point. Stream models are con-
tinuously updated and must be able to provide predictions
at any point in time.

Concept drift

A challenging element of dynamic environments is the chances
that the underlying relationship between features X and target(s)
~y can evolve (change) over time. This phenomenon is known as
Concept Drift. Real concept drift is defined as changes in the
posterior distribution of the data p(~y|X). Real concept drift means
that the unlabeled data distribution does not change, whereas data
evolution refers to the unconditional data distribution p(X). In
batch learning, the joint distribution of data p(X ,~y) is, in general,
assumed to remain stationary. In the context of evolving data
streams, concept drift is defined between two points in time to, t1
as

pt0(X ,~y) 6= pt1(X ,~y)

Concept drift is known to harm learning [GZB+14]. The following
patterns, shown in Fig. 2, are usually considered:

• Abrupt. When a new concept is immediately introduced.
The transition between concepts is minimal. In this case,
adaptation time is vital since the old concept becomes is
no longer valid.

• Incremental. It can be interpreted as the transition from
an old concept into a new concept where intermediate
concepts appear during the transition.

• Gradual. When old and new concepts concur within the
transition period. It can be challenging since both concepts
are somewhat valid during the transition.

• Recurring. If an old concept is seen again as the stream
progresses. For example, when the data corresponds to a
periodic phenomenon such as the circadian rhythm.

• Outliers. Not to be confused with true drift. A drift
detection method must be robust to noise, in other words,
minimize the number of false positives in the presence of
outliers or noise.

72 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: Drift patterns depicted as the change of mean data values over time. Note that an outlier is not a change but noise in the data. This
figure is based on [GZB+14].

Although the continuous learning nature of stream methods
provides some robustness to concept drift, specialized methods
have been proposed to detect drift. Multiple methods have been
proposed in the literature, [GZB+14] provides a thorough survey
of this topic. In general, the goal of drift detection methods is to
accurately detect changes in the data distribution while showing
robustness to noise and being resources-wise efficient. Drift-aware
methods use specialized detection mechanisms to react faster and
efficiently to drift. For example, the Hoeffding Tree algorithm
[DH00], a kind of decision tree for data streams, does not handle
concept drift explicitly, whereas the Hoeffding Adaptive Tree
[BG09] uses ADaptive WINdowing (ADWIN) [BG07] to detect
drifts. If a drift is detected at a given branch, an alternate branch
is created and eventually replaces the original branch if it shows
better performance on new data.

ADWIN, a popular drift detection method with mathematical
guarantees, keeps a variable-length window of recent items; guar-
anteeing that there has been no change in the data distribution
within the window. Internally, two sub-windows (W0,W1) are used
to determine if a change has happened. With each new item
observed, the average values of items in W0 and W1 are compared
to confirm that they correspond to the same distribution. If the
distribution equality no longer holds, then an alarm signal is raised
indicating that drift has occurred. Upon detecting a drift, W0 is
replaced by W1 and a new W1 is initialized.

Performance evaluation

Predictive performance P of a given model h is usually measured
using some loss function ` that evaluates the difference between
expected (true) class labels y and the predicted class labels ŷ.

P(h) = `(y, ŷ)

A popular and straightforward loss function for classification is the
zero-one loss function which corresponds to the notion of whether
the model made a mistake or not when predicting.

`(y, ŷ) =

{
0, y = ŷ
1, y 6= ŷ

Due to the incremental nature of stream leaning methods, special
considerations are used to evaluate their performance. Two preva-
lent methods in the literature are holdout [Koh95] and prequential
[Daw84] evaluation. Holdout evaluation is a popular method in
both batch and stream learning where testing is performed on an
independent set of samples. On the other hand, prequential eval-
uation, is specific to the stream setting. In prequential evaluation,
tests are performed on new data samples before they are used to
train (update) the model. The benefit of this approach is that all
samples are used for both test and training.

This is just a brief overview of machine learning for streaming
data. However, it is important to mention that the field of machine
learning for streaming data covers other tasks such as regression,
clustering, anomaly detection, to name a few. We direct the reader

to [GRB+19] for an extensive and deeper description of this field,
the state-of-the-art, and its active challenges.

The scikit-multiflow package

scikit-mutliflow [MRBA18] is a machine learning library for
multi-output/multi-label and stream data written in Python. Devel-
oped as free and open-source software and distributed under the
BSD 3-Clause License. Following the SciKits philosophy, scikit-
multiflow extends the existing set of tools for scientific purposes.
It features a collection of state-of-the-art methods for classifica-
tion, regression, concept drift detection and anomaly detection,
alongside a set of data generators and evaluators. scikit-multiflow
is designed to seamlessly interact with NumPy [vCV11] and SciPy
[VGO+20]. Additionally, it contributes to the democratization
of stream learning by leveraging the popularity of the Python
language. scikit-multiflow is mainly written in Python, and some
core elements are written in Cython [BBC+11] for performance.

scikit-multiflow is intended for users with different levels
of expertise. Its conception and development follow two main
objectives:

1) Easy to design and run experiments. This follows the
need for a platform that allows fast prototyping and
experimentation. Complex experiments can be easily per-
formed using evaluation classes. Different data streams
and models can be analyzed and benchmarked under
multiple conditions, and the amount of code required
from the user is kept to the minimum.

2) Easy to extend existing methods. Advanced users can cre-
ate new capabilities by extending or modifying existing
methods. This way users can focus on the details of their
work rather than on the overhead when working from
scratch

scikit-multiflow is not intended as a stand-alone solution for
machine learning. It integrates with other Python libraries such as
Matplotlib [Hun07] for plotting, scikit-learn [PVG+11] for incre-
mental learning6 compatible with the streaming setting, Pandas
[pdt20] for data manipulation, Numpy and SciPy for numerical
and scientific computations. However, it is important to note that
scikit-multiflow does not extend scikit-learn, whose main focus
in on batch learning. A key difference is that estimators in scikit-
multiflow are incremental by design and training is performed by
calling multiple times the partial_fit() method. The ma-
jority of estimators implemented in scikit-multiflow are instance-
incremental, meaning single instances are used to update their
internal state. A small number of estimators are batch-incremental,
where mini-batches of data are used. On the other hand, calling
fit() multiple times on a scikit-learn estimator will result in it
overwriting its internal state on each call.

As of version 0.5.0, the following sub-packages are available:

6. Only a small number of methods in scikit-learn are incremental.

LEARNING FROM EVOLVING DATA STREAMS 73

• anomaly_detection: anomaly detection methods.
• data: data stream methods including methods for batch-

to-stream conversion and generators.
• drift_detection: methods for concept drift detec-

tion.
• evaluation: evaluation methods for stream learning.
• lazy: methods in which generalization of the training

data is delayed until a query is received, e.g., neighbors-
based methods such as kNN.

• meta: meta learning (also known as ensemble) methods.
• neural_networks: methods based on neural networks.
• prototype: prototype-based learning methods.
• rules: rule-based learning methods.
• transform: perform data transformations.
• trees: tree-based methods,

In a nutshell

In this section, we provide a quick overview of different elements
of scikit-multiflow and show how to easily define and run exper-
iments in scikit-multiflow. Specifically, we provide examples of
classification and drift detection.

Architecture

Here we describe the basic components of scikit-multiflow. The
BaseSKMObject class is the base class. All estimators in
scikit-multiflow are created by extending the base class and the
corresponding task-specific mixin(s): ClassifierMixin,
RegressorMixin, MetaEstimatorMixin and
MultiOutputMixin.

The ClassifierMixin defines the following methods:

• partial_fit -- Incrementally train the estimator with
the provided labeled data.

• fit -- Interface used for passing training data as batches.
Internally calls partial_fit.

• predict -- Predict the class-value for the passed unla-
beled data.

• predict_proba -- Calculates the probability of a sam-
ple pertaining to a given class.

During a learning task, three main tasks are performed: data is
provided by the stream, the estimator is trained on incoming data,
the estimator performance is evaluated. In scikit-multiflow, data is
represented by the Stream class, where the next_sample()
method is used to request new data. The StreamEvaluator
class provides an easy way to set-up experiments. Implementations
for holdout and prequential evaluation methods are available. A
stream and one or more estimators can be passed to an evaluator.

Classification task

In this example, we will use the SEA generator. A stream gen-
erator does not store any data but generates it on demand. The
SEAGenerator class creates data corresponding to a binary
classification problem. The data contains 3 numerical features,
from which only 2 are relevant for learning7. We will use the data
from the generator to train a Naive Bayes classifier. For compact-
ness, the following examples do not include import statements,
and external libraries are referenced by standard aliases.

As previously mentioned, a popular method to monitor the
performance of stream learning methods is the prequential eval-
uation. When a new data sample (X, y) arrives: 1. Predictions

are obtained for the new data sample (X) to evaluate how well the
model performs. 2. Then the new data sample (X, y) is used
to train the model so it updates its internal state. The prequential
evaluation can be easily implemented as a loop:

stream = SEAGenerator(random_state=1)
classifier = NaiveBayes()

n_samples = 0
correct_cnt = 0
max_samples = 2000

Prequential evaluation loop
while n_samples < max_samples and \
stream.has_more_samples():

X, y = stream.next_sample()
Predict class for new data
y_pred = classifier.predict(X)
if y[0] == y_pred[0]:

correct_cnt += 1
Partially fit (train) model with new data
classifier.partial_fit(X, y)
n_samples += 1

print('{} samples analyzed.'.format(n_samples))
print('Accuracy: {}'.format(correct_cnt / n_samples))

> 2000 samples analyzed.
> NaiveBayes classifier accuracy: 0.9395

The previous example shows that the Naive Bayes classifier
achieves an accuracy of 93.95% after processing all the samples.
However, learning from data streams is a continuous task and a
best-practice is to monitor the performance of the model at differ-
ent points of the stream. In this example, we use an instance of
the Stream class as it provides the next_sample() method to
request data and the returned data is a tuple of numpy.ndarray.
Thus, the above loop can be easily modified to read from other data
structures such as numpy.ndarray or pandas.DataFrame.
For real-time applications where data is actually represented as a
stream (e.g. Google’s protocol buffers), the Stream class can be
extended to wrap the necessary code to interact with the stream.

The prequential evaluation method is implemented in the
EvaluatePrequential class. This class provides extra func-
tionalities including:

• Easy setup of different evaluation configurations
• Selection of different performance metrics
• Visualization of performance over time
• Ability to benchmark multiple models concurrently
• Saving evaluation results to a csv file

We can run the same experiment on the SEA data.
This time we compare two classifiers: NaiveBayes and
SGDClassifier (linear SVM with SGD training). We use the
SGDClassifier in order to demonstrate the compatibility with
incremental methods from scikit-learn.

stream = SEAGenerator(random_state=1)
nb = NaiveBayes()
svm = SGDClassifier()
Setup the evaluation
metrics = ['accuracy', 'kappa',

'running_time', 'model_size']
eval = EvaluatePrequential(show_plot=True,

max_samples=20000,
metrics=metrics)

Run the evaluation

7. Some data generators and estimators use random numbers generators.
When set, the random_state parameter enforces reproducible results.

74 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Performance comparison between NaiveBayes and SGDClassifier using the EvaluatePrequential class.

eval.evaluate(stream=stream, model=[nb, svm],
model_names=['NB', 'SVM']);

We set two metrics to measure predictive performance: accuracy
and kappa statistics [Coh60] (for benchmarking classification
accuracy under class imbalance, compares the models accuracy
against that of a random classifier). During the evaluation, a
dynamic plot displays the performance of both estimators over
the stream, Fig. 3. Once the evaluation is completed, a summary
is displayed in the terminal. For this example and considering the
evaluation configuration:

Processed samples: 20000
Mean performance:
NB - Accuracy : 0.9430
NB - Kappa : 0.8621
NB - Training time (s) : 0.56
NB - Testing time (s) : 1.31
NB - Total time (s) : 1.87
NB - Size (kB) : 6.8076
SVM - Accuracy : 0.9560
SVM - Kappa : 0.8984
SVM - Training time (s) : 4.70
SVM - Testing time (s) : 1.73
SVM - Total time (s) : 6.43
SVM - Size (kB) : 3.4531

In Fig. 3, we observe the evolution of both estimators as they are
trained on data from the stream. Although NaiveBayes
has better performance at the beginning of the stream,
SGDClassifier eventually outperforms it. In the plot
we show performance at multiple points, measured by the given
metric (accuracy, kappa, etc.) in two ways: Mean corresponds to
the average performance on all data seen previously, resulting
in a smooth line. Current indicates the performance over a
sliding window with the latest data from the stream, The

size of the sliding window can be defined by the user and is
useful to analyze the ’current’ performance of an estimator. In
this experiment, we also measure resources in terms of time
(training + testing) and memory. NaiveBayes``is faster
and uses slightly more memory. On the other
hand, ``SGDClassifier is slower and has a smaller
memory footprint.

Concept drift detection

For this example, we will generate a synthetic data stream. The
first 1000 samples of the stream contain a sequence from a normal
distribution with µa = 0.8, σa = 0.05, followed by 1000 samples
from a normal distribution with µb = 0.4, σb = 0.2, and the last
1000 samples from a normal distribution with µc = 0.6, σc = 0.1.
The distribution of data in the described synthetic stream is shown
in Fig. 4.

Fig. 4: Synthetic data simulating a drift. The stream is composed by
two distributions of 500 samples.

random_state = np.random.RandomState(12345)
dist_a = random_state.normal(0.8, 0.05, 1000)

LEARNING FROM EVOLVING DATA STREAMS 75

Fig. 5: Benchmarking the Hoeffding Tree vs the Hoeffding Adaptive Tree on presence of drift.

dist_b = random_state.normal(0.4, 0.02, 1000)
dist_c = random_state.normal(0.6, 0.1, 1000)
stream = np.concatenate((dist_a, dist_b, dist_c))

We will use the ADaptive WINdowing (ADWIN) drift detection
method. The goal is to detect that drift has occurred after samples
1000 and 2000 in the synthetic data stream.

drift_detector = ADWIN()

for i, val in enumerate(stream_int):
drift_detector.add_element(val)
if drift_detector.detected_change():

print('Change detected at index {}'.format(i))

drift_detector.reset()

> Change detected at index 1055
> Change detected at index 2079

Impact of drift on learning

Concept drift can have a significant impact on predictive perfor-
mance if not handled properly. Most batch models will fail in the
presence of drift as they are essentially trained on different data.
On the other hand, stream learning methods continuously update
themselves and can adapt to new concepts. Furthermore, drift-
aware methods use change detection methods to trigger mitigation
mechanisms if a change in performance is detected.

In this example, we compare two popular stream models: the
HoeffdingTreeClassifier, and its drift-aware version, the
HoeffdingAdaptiveTreeClassifier.

For this example, we will load the data from a csv file using
the FileStream class. The data corresponds to the output of the
AGRAWALGenerator with 3 gradual drifts at the 5k, 10k, and

15k marks. A gradual drift means that the old concept is gradually
replaced by a new one, in other words, there exists a transition
period in which the two concepts are present.

stream = FileStream("agr_a_20k.csv")
ht = HoeffdingTreeClassifier(),
hat = HoeffdingAdaptiveTreeClassifier()
Setup the evaluation
metrics = ['accuracy', 'kappa', 'model_size']
eval = EvaluatePrequential(show_plot=True,

metrics=metrics,
n_wait=100)

Run the evaluation
eval.evaluate(stream=stream, model=[hy, hat],

model_names=['HT', 'HAT']);

The summary of the evaluation is:

Processed samples: 20000
Mean performance:
HT - Accuracy : 0.7279
HT - Kappa : 0.4530
HT - Size (kB) : 175.8711
HAT - Accuracy : 0.8070
HAT - Kappa : 0.6122
HAT - Size (kB) : 122.0986

The result of this experiment is shown in Fig. 5. Dur-
ing the first 5K samples, we see that both methods be-
have in a very similar way, which is expected as the
HoeffdingAdaptiveTreeClassifier essentially works
as the HoeffdingTreeClassifier when there is no drift.
At the 5K mark, the first drift is observable by the sudden
drop in the performance of both estimators. However, notice that
the HoeffdingAdaptiveTreeClassifier has the edge
and recovers faster. The same behavior is observed after the
drift in the 15K mark. Interestingly, after the drift at 10K,

76 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

the HoeffdingTreeClassifier is better for a small pe-
riod but is quickly overtaken. In this experiment, we can also
see that the current performance evaluation provides richer in-
sights on the performance of each estimator. It is worth not-
ing the difference in memory between these estimators. The
HoeffdingAdaptiveTreeClassifier achieves better per-
formance while requiring less space in memory. This indicates that
the branch replacement mechanism triggered by ADWIN has been
applied, resulting in a less complex tree structure representing the
data.

Real-time applications

We recognize that previous examples use static synthetic data for
illustrative purposes. However, the goal is to work on real-world
streaming applications where data is continuously generated and
must be processed in real-time. In this context, scikit-multiflow
is designed to interact with specialized streaming tools, providing
flexibility to the users to deploy streaming models and tools in
different environments. For instance, an IoT architecture on an
edge/fog/cloud computing environment is proposed in [CW19].
This architecture is designed to capture, manage, process, ana-
lyze, and visualize IoT data streams. In this architecture, scikit-
multiflow is the stream machine learning library inside the pro-
cessing and analytics block.

In the following example, we show how we can leverage
existing Python tools to interact with dynamic data. We use
Streamz8 to get data from Apache Kafka. The data from the
stream is used to incrementally train, one sample at a time,
a HoeffdingTreeClassifier model. The output on each
iteration is a boolean value indicating if the model correctly
classified the last sample from the stream.

from streamz import Stream
from skmultiflow.trees import HoeffdingTreeClassifier

@Stream.register_api()
class extended(Stream):

def __init__(self, upstream, model, **kwargs):
self.model = model
super().__init__(upstream, **kwargs)

def update(self, x, who=None):
Tuple x represents one data sample
x[0] is the features array and
x[1] is the target label
y_pred = self.model.predict(x[0])
incrementally learn the current sample
self.model.partial_fit(x[0], x[1])
output indicating if the model
correctly classified the sample
self._emit(y_pred == x[1])

s_in = Stream.from_kafka(**config)
ht = HoeffdingTreeClassifier()

s_learn = s.map(read).extended(model=ht)
out = s_learn.sink_to_list()

s_in.start()

Alternatively, we could define two nodes, one for training and one
for predicting. In this case, we just need to make sure that we
maintain the test-then-train order.

8. https://github.com/python-streamz/streamz

Get scikit-multiflow

scikit-multiflow work with Python 3.5+ and can be used on
Linux, macOS, and Windows. The source code is publicly
available in GitHub. The stable release version is available via
conda-forge (recommended) and pip:

$ conda install -c conda-forge scikit-multiflow

$ pip install -U scikit-multiflow

The latest development version is available in the project’s repos-
itory: https://github.com/scikit-multiflow/scikit-multiflow. Stable
and development versions are also available as docker images.

Conclusions and final remarks

In this paper, we provide a brief overview of machine learning for
data streams. Stream learning is an alternative to standard batch
learning in dynamic environments where data is continuously gen-
erated (potentially infinite) and data is non-stationary but evolves
(concept drift). We present examples of applications and describe
the challenges and requirements of machine learning techniques
to be used on streaming data effectively and efficiently.

We describe scikit-multiflow, an open-source machine learning
library for data streams in Python. The design of scikit-multiflow
is based on two principles: to be easy to design and run experi-
ments, and to be easy to extend and modify existing methods. We
provide a quick overview of the core elements of scikit-multiflow
and show how it can be used for the tasks of classification and
drift detection.

Acknowledgments

The author is particularly grateful to Prof. Albert Bifet from the
Department of Computer Science at the University of Waikato for
his continuous support. We also thank Saulo Martiello Mastelini
from the Institute of Mathematics and Computer Sciences at the
University of São Paulo, for his active collaboration on scikit-
multiflow and his valuable work as one of the maintainers of the
project. We thank interns who have helped in the development of
scikit-multiflow and the open-source community which motivates
and contributes in the continuous improvement of this project.
We gratefully acknowledge the reviewers from the SciPy 2020
conference for their constructive comments.

REFERENCES

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing
in Science Engineering, 13(2):31 –39, 2011. doi:10.1109/
MCSE.2010.118.

[BG07] Albert Bifet and Ricard Gavalda. Learning from Time-Changing
Data with Adaptive Windowing. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 443–448, 2007.
doi:10.1137/1.9781611972771.42.

[BG09] Albert Bifet and Ricard Gavalda. Adaptive Learning from Evolv-
ing Data Streams. In 8th International Symposium on Intelligent
Data Analysis, pages 249–260, 2009. doi:10.1007/978-3-
642-03915-7_22.

[BHKP11] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. Data stream mining a practical approach, 2011.

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37–46, 1960.
doi:10.1177/001316446002000104.

[CW19] Hung Cao and Monica Wachowicz. Analytics everywhere for
streaming iot data. In 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS),
pages 18–25, 2019. doi:10.1109/IOTSMS48152.2019.
8939171.

https://github.com/python-streamz/streamz
https://github.com/scikit-multiflow/scikit-multiflow
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939171
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939171

LEARNING FROM EVOLVING DATA STREAMS 77

[Daw84] A Philip Dawid. Present position and potential developments:
Some personal views: Statistical theory: The prequential ap-
proach. Journal of the Royal Statistical Society. Series A (Gen-
eral), pages 278–292, 1984.

[DH00] Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’00,
pages 71–80. ACM, 2000.

[GRB+19] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Bard-
dal, and João Gama. Machine learning for streaming data: State
of the art, challenges, and opportunities. SIGKDD Explor. Newsl.,
21(2):6–22, 2019. doi:10.1145/3373464.3373470.

[GZB+14] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift adap-
tation. ACM Computing Surveys, 46(4):1–37, 2014. doi:
10.1145/2523813.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing
in Science & Engineering, 9(3):90–95, 2007. doi:10.1109/
MCSE.2007.55.

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelli-
gence, volume 14, pages 1137–1145, 1995.

[MRBA18] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
Scikit-Multiflow: A Multi-output Streaming Framework. Journal
of Machine Learning Research, 19(72):1–5, 2018. URL: http:
//jmlr.org/papers/v19/18-251.html.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas,
February 2020. doi:10.5281/zenodo.3509134.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[vCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing
in Science Engineering, 13(2):22–30, 2011. doi:10.1109/
MCSE.2011.37.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:https://doi.org/10.1038/s41592-019-
0686-2.

http://dx.doi.org/10.1145/3373464.3373470
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Machine learning for streaming data
	Concept drift
	Performance evaluation

	The scikit-multiflow package
	In a nutshell
	Architecture
	Classification task
	Concept drift detection
	Impact of drift on learning
	Real-time applications
	Get scikit-multiflow

	Conclusions and final remarks
	Acknowledgments
	References

