Proceedings of the 19th

Python in Science Conference

July 6 - July 12 e Austin, Texas

PROCEEDINGS OF THE 19TH PYTHON IN SCIENCE CONFERENCE

Edited by Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David Shupe.

SciPy 2020
Austin, Texas
July 6 - July 12, 2020

Copyright (©) 2020. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https:/ /doi.org/10.25080 /Majora-342d178e-02b

ORGANIZATION

Conference Chairs

JONATHAN GUYER, NIST
CORRAN WEBSTER, Enthought, Inc.

Program Chairs

GIL FORSYTH, CapitalOne

MATT HABERLAND, Cal Poly

NIcoLAs HUG, Columbia University
PAUL IVANOV, Bloomberg

MADICKEN MUNK, University of Illinois

Communications

TANIA ALLARD, Microsoft
MATT DAVIS, Populus

Birds of a Feather

MATTHIAS BUSSONNIER, University of California, Merced
]ULIE HOLLEK, Mozilla

Proceedings

MEGHANN AGARWAL, Oracle

CHRIS CALLOWAY, University of North Carolina
DILLON NIEDERHUT, Novi Labs

DAVID SHUPE, Caltech’s IPAC Astronomy Data Center

Financial Aid

ScOTT COLLIS, Argonne National Laboratory
ERIC MA, Novartis Institutes for Biomedical Research
NADIA TAHIRI, Université de Montréal

Tutorials

ALEXANDRE CHABOT-LECLERC, Enthought, Inc.
MIKE HEARNE, USGS
SERAH RONO, The Carpentries

Sprints
RYAN MAY, University Corporation for Atmospheric Research

JUAN NUNEZ-IGLESIAS, Monash University
DHARHAS POTHINA, US Army Engineer Research and Development Center

Diversity

CELIA CINTAS, IBM Research Africa
MELISSA WEBER MENDONCA, Federal University of Santa Catarina

Activities
PAUL ANZEL, HEB

KYLE NEIMEYER, Oregon State University
INESSA PAWSON, Albus Code

Sponsors

JiLL COWAN, Enthought, Inc.
KRISTEN LEISER, Enthought, Inc.

Financial

CHRIS CHAN, Enthought, Inc.
BiLL COWAN, Enthought, Inc.
Job1 HAVRANEK, Enthought, Inc.

Logistics
JiLL COWAN, Enthought, Inc.
KRISTEN LEISER, Enthought, Inc.

Proceedings Reviewers

ADRIAN HEILBUT
ALBERTO ANTONIETTI
ALEJANDRO WEINSTEIN
AMIR KHALIGHI
ANDREW REID
ANGELOS KRYPOTOS
ANIRUDH ACHARYA
BARGAVA SUBRAMANIAN
CALVIN MCCARTER
CHRIS CALLOWAY
CYRUS HARRISON
DANIEL CHEN

DAVID NICHOLSON
DAVID SHUPE
DHAVIDE ARULIAH
DILLON NIEDERHUT
FILIPE FERNANDES
GAJENDRA DESHPANDE
HIMEL MALLICK
HOMIN LEE

HONGSUP SHIN
HORACIO VARGAS GUZMAN
IsHA CHATURVEDI
IVAN MARROQUIN
JAIME ARIAS

KAY SUN

KELVIN LEE

KIRTAN DAVE

MARKUS ERWEE
MARTIN DURANT
MATT CRAIG
MATTHEW BENEDICT
MEGHANN AGARWAL
MICHAEL JOSEPH
MICHAEL SARAHAN
MIKE MCCARTY
NADIA TAHIRI

OLAV VAHTRAS

SAKET CHOUDHARY
SANDHYA PRABHAKARAN
SARVESH NIKUMBH
SCOTT SIEVERT

SERGE GUELTON
TzU-CHI YEN

YINGWEI YU

YU FENG

ACCEPTED TALK SLIDES

TREATING GRIDDED GEOSPATIAL DATA AS POINT DATA TO SIMPLIFY ANALYTICS, Christine Smit, and Hailiang Zhang,
and Mahabaleshwara Hegde, and Faith Giguere, and Long Pham

doi.org/10.25080/Majora-342d178e-019

ARKOUDA: TERASCALE DATA SCIENCE AT INTERACTIVE RATES, Benjamin Albrecht, and Michael Merrill, and William
Reus, and Brad Chamberlain

doi.org/10.25080/Majora-342d178e-01a

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS, Henry Schreiner, and Hans Dembinski, and Jim
Pivarski, and Shuo Liu

doi.org/10.25080/Majora-342d178e-01b

OPEN-SOURCE BIOIMAGE ANALYSIS SOFTWARE TO ACCELERATE DRUG DISCOVERY, Anne Carpenter
doi.org/10.25080/Majora-342d178e-01c

CUSIGNAL - GPU ACCELERATING SCIPY SIGNAL WITH NUMBA AND CUPY, Adam Thompson, and Matt Nicely, and
Graham Markall, and Brad Rees

doi.org/10.25080/Majora-342d178e-01d

FRICTIONLESS DATA FOR REPRODUCIBLE BIOLOGY, Lilly Winfree

doi.org/10.25080/Majora-342d178e-01e

INTERACTIVE SUPERCOMPUTING WITH]UPYTER AT THE NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING
CENTER, Rollin Thomas, and Shane Canon, and Shreyas Cholia, and Matt Henderson, and Kelly Rowland, and Jon Hays,
and William Krinsman, and Justin Ley, and Labanya Mukhopadhyay, and Trevor Slaton
doi.org/10.25080/Majora-342d178e-01f

PROJECT MJOLNIR: A MODULAR, OPEN-SOURCE PLATFORM FOR DEVELOPING SCIENTIFIC IOT SENSOR NETWORKS,
C.A.M. Gerlach

doi.org/10.25080/Majora-342d178e-020

PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES, Niels Bantilan
doi.org/10.25080/Majora-342d178e-021

MOLECULAR INFRASTRUCTURE FOR MODELING VIRUSES WITH PYTHONIC-MEDIATED PACKAGES: PYF4ALL, Horacio
V. Guzman

doi.org/10.25080/Majora-342d178e-022

PYHF: A PURE PYTHON STATISTICAL FITTING LIBRARY WITH TENSORS AND AUTOGRAD, Matthew Feickert
doi.org/10.25080/Majora-342d178e-023

BRINGING GPU SUPPORT TO DATASHADER: A RAPIDS CASE STUDY, Jon Mease
doi.org/10.25080/Majora-342d178e-024

LEARNING FROM EVOLVING DATA STREAMS, Jacob Montiel

doi.org/10.25080/Majora-342d178e-025

SPATIAL ALGORITHMS AT SCALE WITH SPATIALPANDAS, Dharhas Pothina, and Kim Pevey, and Adam Lewis
doi.org/10.25080/Majora-342d178e-026

ACCEPTED POSTERS

DECENTRALIZED, DETERMINISTIC ROBOT SWARM CONTROL USING BLOB METHODS FOR PDES, Matt Haberland,
and Katy Craig, and Karthik Elamvazhuthi, and Olga Turanova
doi.org/10.25080/Majora-342d178e-018

ScIPY TooLS PLENARIES

HOLOVi1z: WHAT’S NEW AND WHAT’S NEXT, James A. Bednar
doi.org/10.25080/Majora-342d178e-028

SCIPY TOOLS PLENARY ON MATPLOTLIB, Elliott Sales de Andrade
doi.org/10.25080/Majora-342d178e-029

SCIPY TOOLS PLENARY ON NUMBA, Siu Kwan Lam
doi.org/10.25080/Majora-342d178e-02a

LIGHTNING TALKS

BUILDING AN AUTOML SYSTEM FOR FUN AND NON-PROFIT, Niels Bantilan
doi.org/10.25080/Majora-342d178e-027

SCHOLARSHIP RECIPIENTS

OPETUNDE ADEPOJU, Venture Garden Group

DANIEL ALTHVIZ MORE, Spyder

ROHIT ARORA, University of Texas at Austin

SHREYAS BAPAT, Indian Institute of Technology Mandi

WAMBA TCHINDA CLAUDIN, UNIVERSITY OF YAOUNDE 1
CHRISTOPHER CURRIN, IBRO-Simons Computational Neuroscience Imbizo
SAYANTAN DAS, None

GAJENDRA DESHPANDE, KLS Gogte Institute of Technology, Belagavi
KADAMBARI DEVARAJAN, University of Massachusetts at Amherst
DIANA DIAZ, Wayne State University

ATANAS DOMMO, University of Yaounde 1

GEZEHAGN GUTEMA EGGI, Arsi University

SAM FRIEDMAN, Texas A&M University

JAMIL GAFUR, Los Alamos National Lab

BYRON GEOFFREY, Nova Southeastern University

JUANITA GOMEZ, Spyder IDE

MAXWELL GROVER, University of Illinois at Urbana-Champaign
STEPHANNIE JIMENEZ GACHA, Spyder IDE

ESHIN JOLLY, Dartmouth College

SALOMON KABONGO KABENAMUALU, African Master in Machine Intelligence, University of Ghana
JosHUA KALOGNIA, Council for scientific and Industrial Research-Institute for Scientific and Technological Information
TETSUO KOYAMA, GetFEM++

GUILHERME LEOBAS, Quansight - Numba

EDGAR ANDRES MARGFFOY TUAY, Spyder IDE

KRYSTAL MAUGHAN, University of Vermont

ABIGAIL MCGOVERN, Monash University

JESSICA MEJIA, University of South Florida

AMBER NADEEM, Zilltech.net

EMILIAN NGATUNGA, University of Dodoma

SOLOMON NSUMBA, Makerere University Al and Data Science lab, Uganda
ESTHER ODUNTAN, African Institute of Mathematical Sciences

OLAIDE OJOMO, University of Texas at Austin

AKSHAY PAROPKARI, University of California, Merced

WAISWA PHILIP, Uganda Technology and Management University
MRIDUL SETH, econ-ark

SHUBHAM SHARMA, Geospoc

SCOTT SIEVERT, University of Wisconsin-Madison

HORACIO VARGAS GUZMAN, Institute Josef Stefan, Slovenian Research Council
YUE WU, University of Georgia

SUBHADITYA MUKHERJEE, None

ERMIYAS BIRHANU BELACHEW, None

TCHAMBOU TCHOUONGSI LANDRY, None

ZAC HATFIELD DODDS, Australian National University

LAUREN BIERMANN, Plymouth Marine Laboratory

CONTENTS

Preface 1
Meghann Agarwal, Julie Hollek, Dillon Niederhut

Securing Your Collaborative Jupyter Notebooks in the Cloud using Container and Load Balancing Services 2
Haw-minn Lu, Adrian Kwong, José Unpingco

Quasi-orthonormal Encoding for Machine Learning Applications 11
Haw-minn Lu
Fluctuation X-ray Scattering real-time app 18

Antoine Dujardin, Elliott Slaugther, Jeffrey Donatelli, Peter Zwart, Amedeo Perazzo, Chun Hong Yoon

HOOMD-blue version 3.0 A Modern, Extensible, Flexible, Object-Oriented API for Molecular Simulations 24
Brandon L. Butler, Vyas Ramasubramani, Joshua A. Anderson, Sharon C. Glotzer

Compyle: a Python package for parallel computing 32
Aditya Bhosale, Prabhu Ramachandran

Netlist Analysis and Transformations Using SpyDrNet 40
Dallin Skouson, Andrew Keller, Michael Wirthlin

Introduction to Geometric Learning in Python with Geomstats 48
Nina Miolane, Nicolas Guigui, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant, Johan

Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, Thomas Gerald,

Paul Chauchat, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec

Network visualizations with Pyvis and VisJS 58
Giancarlo Perrone, Jose Unpingco, Haw-minn Lu

Boost-histogram: High-Performance Histograms as Objects 63
Henry Schreiner, Hans Dembinski, Shuo Liu, Jim Pivarski

Learning from evolving data streams 70
Jacob Montiel
Awkward Array: JSON-like data, NumPy-like idioms 78

Jim Pivarski, lanna Osborne, Pratyush Das, Anish Biswas, Peter ElImer

High-performance operator evaluations with ease of use: libCEED’s Python interface 85
Valeria Barra, Jed Brown, Jeremy Thompson, Yohann Dudouit

AS))ectraI Anal\l/ysis of Mitochondrial Dynamics: A Graph-Theoretic Approach to Understanding Subcellular Pathology 91
arcus Hill, Mojtaba Fazli, Rachel Mattson, Meekail Zain, Andrew Durden, Allyson T Loy, Barbara Reaves, Abigail
Courtney, Frederick D Quinn, S Chakra Chennubhotla, Shannon P Quinn

Matched Filter Mismatch Losses in MPSK and MQAM Using Semi-Analytic BEP Modeling 98
Mark Wickert, David Peckham

Having your cake and eating it: Exploiting Python for programmer productivity and performance on micro-core architectures
using ePython 107
Maurice Jamieson, Nick Brown, Sihang Liu

pandera: Statistical Data Validation of Pandas Dataframes 116
Niels Bantilan

Combining Physics-Based and Data-Driven Modeling for Pressure Prediction in Well Construction 125
Oney Erge, Eric van Oort

Pydra - a flexible and lightweight dataflow engine for scientific analyses 132
Dorota Jarecka, Mathias Goncalves, Christopher J. Markiewicz, Oscar Esteban, Nicole Lo, Jakub Kaczmarzyk, Satrajit
Ghosh

Leading magnetic fusion energy science into the big-and-fast data lane
Ralph Kube, R Michael Churchill, Jong Youl Choi, Ruonan Wang, Scott Klasky, CS Chang, Minjun J. Choi, Jinseop
Park

SHADOW: A workflow scheduling algorithm reference and testing framework
Ryan W. Bunney, Andreas Wicenec, Mark Reynolds

Software Engineering as Research Method: Aligning Roles in Econ-ARK
Sebastian Benthall, Mridul Seth

Falsify your Software: validating scientific code with property-based testing
Zac Hatfield-Dodds

Towards an Unsupervised Spatiotemporal Representation of Cilia Video Using A Modular Generative Pipeline
Meekail Zain, Sonia Rao, Nathan Safir, Quinn Wyner, Isabella Humphrey, Alex Eldridge, Chenxiao Li, BahaaEddin
AlAila, Shannon Quinn

140

148

156

162

166

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Preface

Meghann Agarwall, Julie Hollek®, Dillon Niederhut**

SciPy 2020, the 19th annual Python in Science Conference,
was held July 6-12, virtually via the conference platform Crowd-
cast. Due to the COVID-19 pandemic, the SciPy conference was
held online. The SciPy Conference brings together a community
of researchers, engineers, and programmers dedicated to the ad-
vancement of scientific computing through open source Python
software.

The two main conference themes for 2020 were high
performance computing; and, machine learning and data sci-
ence. Discipline-specific symposia included astronomy and as-
trophysics; biology and bioinformatics; materials science; earth,
ocean, geology, and atmospheric science; and a new symposium
dedicated to fostering conversations among maintainers of the
open source infrastructure that help power the worlds of scientific
discovery and engineering. As was the case in 2019, there were
plenary sessions for updates about key scientific software libraries,
and three sessions of the ever-popular lightning talks, which this
year included SciPy’s youngest speaker, Artash Nath, discussing
machine learning approaches in exoplanet research.

The first conference keynote lecture was delivered by Anne
Carpenter, who discussed the history of CellProfiler in the context
of developing academic software, current application of the scien-
tific software stack to problems in biology, and future directions
for tasks like drug discovery, powered by machine learning.
Andrew Chael delivered the second keynote, about the large, inter-
organizational effort to take the first photograph of black hole
MS87, and the role of scientific software in that project. This year’s
diversity plenary was given by Bonny McClain, who delivered
an interactive lecture about bias in data, and how to think about
measuring what people haven’t thought about measuring before.

The online format permitted a larger-than-usual number of
participants, ultimately attracting 1412 participants from a record-
breaking 57 countries, making this the largest SciPy Conference
yet. Participants reported that they enjoyed the broader access to
beginner tutorials for popular libraries like PyTorch and xarray --
something that would not be possible without having the confer-
ence at least partially online. Birds of a Feather (BoF) sessions
were organized around the topics of packaging, diversity, Python
in education, hardware, and SciPy 2021 with great attendance due
to the online format. Sprints that usually gather around tables in
conference rooms took the conversation to virtual tables using a

9 Oracle

§ Mozilla

« Corresponding author: dillon.niederhut@ gmail.com
¥ Novi Labs

Copyright © 2020 Meghann Agarwal et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

variety of technologies for text and voice chat. The online format
did come with its own set of challenges, in particular, promoting
serendipitous conversations that are typical in the “hallway track”
at the event along with the typical audience interaction seen in BoF
sessions and groups of participants trekking in the Austin heat to
enjoy tacos or other fine Austin fare and each others’ company.

Of this year’s conference attendees, 22% identify as women,
continuing SciPy’s trend in increasing participation of people
from minoritized communities. The organizers identified LGBTQ,
African American, Native American, Middle Eastern, and His-
panic/Latinx scientists as still underrepresented at the conference,
and targets for future equity and inclusion efforts. With this in
mind, SciPy announced a new initiative to provide additional
scholarship funding for Black, Indigenous, and People of Color
(BIPOC) to attend the conference, starting in 2021.!

While the global circumstances have been disruptive to all
facets of life, their effect on the conference was greatly mitigated,
largely due to the superhuman efforts of Jill Cowan and Kristen
Leiser. In particular, Jill started organizing for SciPy in 2014,
and over time has become the heart of the conference. Atten-
dees regularly remark that SciPy is the most open and friendly
conference that they attend, and typically add that they recall that
the first moment they felt this way was upon meeting Jill at the
registration desk. To add an editorial note, the SciPy Conference
would not be where it is today without Jill’s leadership over the
last six years; and, our own efforts as committee chairs have been
made significantly lighter due to her hard work. Jill is leaving the
conference this year for a well-deserved retirement, but she will
always be remembered in the community that she helped build.

We dedicate this work, the 19th Python in Science Conference
Proceedings, to Jill Cowan.

On behalf of the SciPy 2020 organizers,

Meghann Agarwal
Julie Hollek
Dillon Niederhut

1. The full statement is available at https://www.scipy2020.scipy.org/
support-of-black-communities

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Securing Your Collaborative Jupyter Notebooks in the
Cloud using Container and Load Balancing Services

Haw-minn Lu**, Adrian Kwong*, José Unpingco*

Abstract—Jupyter has become the go-to platform for developing data applica-
tions but data and security concerns, especially when dealing with healthcare,
have become paramount for many institutions and applications dealing with
sensitive information. How then can we continue to enjoy the data analysis and
machine learning opportunities provided by Jupyter and the Python ecosystem
while guaranteeing auditable compliance with security and privacy concerns?
We will describe the architecture and implementation of a cloud based plat-
form based on Jupyter that integrates with Amazon Web Services (AWS) and
uses containerized services without exposing the platform to the vulnerabilities
present in Kubernetes and JupyterHub. This architecture addresses the HIPAA
requirements to ensure both security and privacy of data. The architecture uses
an AWS service to provide JSON Web Tokens (JWT) for authentication as well
as network control. Furthermore, our architecture enables secure collaboration
and sharing of Jupyter notebooks. Even though our platform is focused on
Jupyter notebooks and JupyterLab, it also supports R-Studio and bespoke ap-
plications that share the same authentication mechanisms. Further, the platform
can be extended to other cloud services other than AWS.

Index Terms—data science, infrastructure, jupyter, rstudio

Introduction

This paper focuses on secure implementation of Jupyter Note-
books and Jupyter Labs in a cloud based platform and more
specifically on Amazon Web Services (AWS) though many archi-
tectures and methods described here are applicable to other cloud
platforms. As Jupyter is the mainstay of scientific programming in
python, the ability to analyze data in a secure environment enables
the researcher to access data that is either sensitive or encumbered
by compliance to regulations such as Health Insurance Portability
and Accountability Act (HIPAA) which might otherwise not be
available.

Security is paramount for applications that process sensitive
data in areas such as defense, finance, and healthcare. Broadly
speaking, security regulations can be characterized in terms of
authentication (verifying the credentials of users and their access
to resources), encryption (data is encrypted at rest and in transit),
auditing (providing surveillance of key resources) and vulnerabil-
ity mitigation (antivirus and security updates).

In the architecture section, we describe how our architecture
using AWS Elastic Container Service (ECS) facilitates encryption

x Corresponding author: hlu@westhealth.org
Gary and Mary West Health Institute

Copyright © 2020 Haw-minn Lu et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

at-rest and in-transit and integrates an application load balancer
(ALB) for authentication.

In the Applications and Authentication section, we dive into
the details of the ALB and how JSON Web Tokens (JWT) facilitate
integration with Jupyter and RStudio.

In the Security and Compliance section, we address the en-
cryption of the underlying cloud architecture, auditing capabilities,
and mitigation of vulnerabilities.

Our specific implementation satisfies privacy and security
concerns and can serve as a starting point to develop customized
solutions for related use cases.

Background

To implement a cloud based Jupyter compute platform is not
difficult. Project Jupyter includes Jupyter Hub, which provides a
proxy and container management. In particular the Zero to Jupyter
Hub with Kubernetes project, [Pro20] provides a framework to
implement Jupyter Hub on a Kubernetes platform. It is intended
as a quick method to deploy a cluster of Jupyter notebooks or
Jupyter labs easily. However, it has many significant drawbacks.

First, Kubernetes is notoriously difficult to secure and has
many vulnerabilities that are not addressed by default as evidenced
by these recommendations for securing a Kubernetes cluster
[Mar18]. One of the primary reasons is Kubernetes is immensely
complex.

Second, Zero to Jupyter Hub with Kubernetes to date does
not have a simple solution to the problem of encryption in transit
(encryption of all data over a network). All proposed solutions
(e.g., istio orweave)rely on yet another overlay in Kubernetes
making the solution even more complicated.

Literature on securing Jupyter in the cloud is scant but so-
lutions to individual issues can sometimes be found searching
through blogs, github issues and help sites. In this paper, the
reader is given a solution that can meet most security concerns in
one place, while not placing an undue burden on the end user or the
system administrator. The mantra of security through simplicity is
adopted.

Architecture

There are two distinct levels of architecture described. The cloud
architecture comprises the various cloud services which is the
lower layer of virtualization. The container architecture is the top
layer virtualization built on top of the cloud architecture.

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 3

|
1
|
1
|
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
a

Persistent
, Storage
| (ObjectiveFS)

Fig. 1: Cloud Architecture.

Cloud Architecture

The basic cloud architecture is shown in Fig. 2. It consists of an
identity provider (IDP) used to authenticate a user, an application
load balancer (ALB) to regulate user access through authentica-
tion, and a fleet of elastic cloud computer compute (EC2) instances
to instantiate the containers. Finally, ECS manages the containers
deployed on the EC2 cluster.

Elastic Container Service: ECS is a container orches-
tration service. A container is instantiated as an ECS task. ECS
provides a resource called a task definition that allow for the
configuration of the container image, the environment variables,
command override and container port.

Taking the most naive approach, ECS can be instructed to start
a task based on a task definition. After the task has fully started,
the host among the EC2 instances and the mapped port (the port
on the EC2 node which is mapped to the container port) is known.
At this point, one could write a monitoring function to detect when
a task has started, retrieve the specific host and mapped port and
create a listener rule for the application load balancer.

Instead of this cumbersome procedure, ECS provides another
resource called a service. A service can manage many aspects
of tasks within ECS including the number of tasks and a target
group associated with the service. For our purposes managing the
number means selecting a desired count of 1 or 0 depending on
whether the container is running or has been automatically culled
due to inactivity. A target group is a collection of host ports or
serverless AWS Lambda functions, to which a listener rule can
direct network traffic. In short by specifying a target group to a
service, the host and mapped port are automatically assigned to
the target group when a task has fully started.

Application Load Balancer: AWS’s ALB can comprise
multiple listeners to support multiple protocols. To maintain secu-
rity, enforcement of HTTPS should be maintained either by not
including a listener for HTTP or providing an HTTP listener that
redirects all requests to HTTPS.

AWS’s ALB, through a listener, is able to direct exter-
nal HTTPS requests to various components. Based on lis-
tener rules, a request can be directed on the basis of
both the hostname and the path. As an example, we
use a path to specify a user and a service such as
Jupyter (for example, domain.com/user_id/Jupyter or

domain.com/user_id/rstudio), this allows us to give
each user their own container.

Each listener rule maps a path, hostname or both to a particular
target group. Since we use an ECS service, we can assign a
particular service to a target group. The service then manages
which ports and EC2 instances are part of the target group.

While the ALB can enforce encryption from the end user to
the ALB, the container application (e.g., Jupyter) should also
be configured to listen only for HTTPS. In this manner, the
communication from the end user to the ALB is encrypted as
is the communication from the ALB to the container application,
ensuring end to end encryption.

Furthermore the application load balancer is also configured
to perform authentication from an OpenID Connect (OIDC) com-
pliant IDP. This eliminates the need for multiple messages to be
passed when using either SAML or OAuth. Upon authentication,
the ALB attaches three fields to the header of the http request
x—amzn-oidc-accesstoken, x—amzn-oidc—-identity
and x-amzn-oidc-data which can be used by the end applica-
tion to confirm the user’s identity and validate the authentication.
An example of this process as implemented in a Jupyter notebook
is described below.

For our IDP, we use Okta since it allows us to federate identity
services to additional sign on services. This allows us to onboard
collaborators and allow the collaborators to manage their users.

Shared Storage: In order to facilitate persistence across
containers and also collaboration, ECS orchestrates containers on
EC2 instances instead of AWS’s Fargate product (Fargate facili-
tates containers in a serverless fashion but does not provide a host
to mount an ObjectiveFS file system). Persistent storage can be
mounted on the underlying EC2 instances. Individual containers
can access the persistent storage by bind mounting the persistent
storage. To meet security compliance of encryption at rest, the
persistent storage should be encrypted. We elected to use the third
party ObjectiveFS for cost reasons though native AWS resources
such as elastic file system (EFS) can be used provided that both
the file system and the network communications to the file system
are encrypted. [Ser20c] ObjectiveFsS is a secure file system backed
by AWS simple storage service (S3). It should be noted to meet
encryption in transit compliance requirements that any network
attached storage must have network communications encrypted.
For example, the base network file system (nfs) protocol is not.

As a specific example with Jupyter notebooks we mount per-
sistent storage as /media/home/. For a given user say user_a
we bind mount /home/jovyan to /media/home/user_a
so that while in the container the user sees /home/jovyan the
home directory the users files are actually stored in the persistent
storage in a user_a subdirectory. This configuration has two
advantages. Only one persistent volume is needed to support all
users’ home directories minimizing costs and within the container
all users see /home/jovyan thus eliminating the need to build a
separate Jupyter container image for each user.

With this configuration, multiple services can use the same
home directory. For example, in our R Studio deployment
/home/rstudio is also mapped to /media/home/user_a.
Furthermore, we also can provide a persistent volume for
shared directories. For example, for all users on project_a
we bind mount /home/jovyan/projects/project_a to
/media/projects/project_a where the persistent volume
is mounted to /media/projects.

user_a

user_b

Fig. 2: Cloud Architecture.

Resource Summary: To securely implement the above
cloud architecture, each container instance for each user has a
set of resources associated with it. First, a task definition is
created for each user, this enables customized bind mounts as
described above. Additionally, custom environment variables or
task commands can also be supplied through the task definition.
The task definition can also direct logging the the appropriate
AWS CloudWatch stream.

Each user also has a ECS service, ALB listener rule and target
group associated with it. This allows the seamless management of
connecting a user to the desired container instance.

Finally each service has an AWS TAM role associated with
it, this ensures the user has only the access rights to our AWS
cloud that are need by the user. Beyond the rights to operate the
container task, additional rights might include access to certain S3
storage or certain AWS Secrets Manager. As an example, we use
the AWS Secrets Manager to manage user’s credentials to various
databases and public/private keys.

To simplify management of the per user resources, an AWS
CloudFormation template is used to ensure consistency and uni-
formity among cloud resources whenever a new container in-
stance/user combination is spun up. As an example, our Cloud-
Formation template contains an IAM role, listener rule, target
group, task definition, and an ECS service. Each template is then
customized to spin up a CloudFormation stack for each user and
application combination.

Container Architecture

The architecture in terms of container comprises a persistent
hub container, an optional ephemeral provisioner container, and
an assortment of semi-persistent application containers such as
Jupyter notebook. In an alternative deployment, AWS Lambda
functions can be functionally substituted for the hub container,
but for the sake of simplicity only the container version of the hub
is described.

The application containers are described as semi-persistent as
they can be started on demand and culled when one or more
inactivity criteria has been reached. This can be achieved by
updating the associated service to have a desired count of 1 to
start or a desired count of 0 to cull.

We adopted a url path routing convention to access each
application such as domain.com/user_id/application

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Container Management: The heart of the system is the
hub container. To facilitate ALB authentication, two listener rules
are provided. One rule allows anyone to connect, so that the hub
can present a login page (with single sign on and IDP this looks
like a single login button). The login action redirects the browser
to a url which forces authentication via the ALB. Though this step
is not necessary, it provides a cue that makes for a smoother user
experience.

Since the hub container may be given privileges to set IAM
roles for the application services, the role under which the hub
service runs can have a boundary policy attached to it [Ser20d].
This ensures that any role created by the hub service is constrained
to include the boundary policy. This prevents the hub from being
able to create an arbitrary role should the container become
compromised.

The provisioner container is an ephemeral task which is run
with the persistent storage mounted. The provisioner can create
a home directory for a user the first time the user logs in
and provision the directory with any necessary files. While the
functionality of the provisioner container could be incorporated in
the hub container. Separation allows the provisioner to run with
minimal cloud privileges (IAM role) and allows the hub to have
no access to the shared home directory, so in the event the hub
container is compromised the user’s file system is not exposed.
Also, with separation the hub does not have to have access to
the file system so it can be refactored and deployed as a Lambda
function. Furthermore the provisioner container runs very briefly
further limiting the vulnerability window.

Once authenticated, the user can elect to connect to an appli-
cation container. This can occur under three circumstances: the
user’s application container is still running, the user’s application
container has been culled, or the user has never started the
application before. If the container is still running, the user is
immediately redirected to the container. If the container has been
culled, the service is updated to a desired count of 1. If the
application has never been started by the user, resources to spin
up the service are created such as by creating a CloudFormation
stack.

Additionally, an option to "decommission" an application can
be presented where the CloudFormation stack can be deleted.

Culling: The best practice for culling an application is to
have the application upon exiting, set the desired count to O of its
corresponding service.

For the example of Jupyter, the start up scripts for both Jupyter
notebook and Jupyter lab contains the following snippet with
main imported from different places:

' main_ ':
= re.sub(r' (-script\.pyw?|\.exe)?$",
"', sys.argv[0])

if _ _name__ ==
sys.argv[0]

sys.exit (main())

Rather than just exiting after main completes, a modified start up
script updates the desired count of the corresponding service to
0. Since boto3 essentially wraps API calls to AWS, a delay
before termination is needed to ensure the update API call is
received before terminating the task. Failure to change the desired
count will only result in the service restarting the container upon
termination.

if name == '_ _main__':

sys.argv[0] = re.sub(r' (-script\.pyw?|\.exe)?s"',
"', sys.argv[0])

main ()

session = boto3.Session()

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 5

ecs = session.client ("ecs", region_name)

ecs.update_service (cluster=cluster_name,
service=service_name,
desiredCount=0)

Sleep for 2 minutes give service time to update

time.sleep (120)

Code to retrieve the region_name, cluster_name, and
service_name, are omitted for clarity, but they can be retrieved
from environment variables (set in task definition), passed via
sys.argv or even by calls to boto3. Though the first two
options are simpler.

The above modification to the start up scripts
ensures that when Jupyter exits the task count is
zero. However, in order for this to be meaningful
culling parameters in the Jupyter configuration such as
c.NotebookApp.shutdown_no_activity_timeout
c.MappingKernelManager.cull_connected,
c.MappingKernelManager.cull_idle_timeout
and c¢.MappingKernelManager.cull_interval, as
well as setting a shell timeout (e.g., TMOUT environment variable
are set) in the event a terminal is open.

Authentication and Applications

As mentioned above, the bulk of the authentication is performed
by the ALB. However, it is important for the individual application
to validate a request forwarded by the ALB, for two reasons.
Validation prevents potential security vulnerabilities due to a
misconfiguration in the system or exposes security vulnerabili-
ties during the initial system debugging. Additionally, validation
ensures that the identity of the user is what is expected. The ALB
ensures that the user has validly authenticated, but it is up to the
application to ensure that the correct user has connected.

Validation is achieved through the JWT token presented in the
x—amzn-oidc—data header by the ALB. These JWT tokens
are signed by a public key retrievable from AWS ensuring that
only the ALB could have signed them. Within the JWT token, the
kid field represents the key ID for the public key. To validate, the
key ID should be extracted and corresponding public key should
be retrieved from AWS. With the public key, the JWT token can
then be validated. We use the python—-jose module available on
PyPi. The sub field in the JWT token is the same as the OIDC ID
which is also presented in the x—amzn-oidc-identity field.
The application should then verify this is OIDC ID associated with
the expected user.

To deploy an application securely in our infrastructure, in
addition to validating the authentication, the application container
should meet four more requirements. It should have a configurable
base url as the ALB will forward requests to the application with
the base url prefix. It should communicate to the ALB over HTTPS
to ensure end to end encryption. It should provide a url to respond
to pings sent by the ALB for health checks. It should validate that
the mounted home container belongs to the user.

The solution to the last requirement is for our provisioner
to write an . id file in the user’s home directory containing the
user’s ID. This file is written by root and is only readable. The
application upon startup or authenticaation can verify that the user
has the correct home directory mounted. This requirement is a
safeguard against misconfiguration and can be omitted if one is
confident that the system is not misconfigured.

Jupyter

Implementing authentication for Jupyter notebook/lab is par-
ticularly challenging as they do not combe with a pluggable
authentication module, unlike JupyterHub. In order to imple-
ment validation, the source file login.py must be modi-
fied. This file is usually located in the notebook/auth/
directory in your site-packages or dist-packages di-
rectory. Since Jupyter notebook and JupyterLab are not truly
separate applications (in fact they are interchangeable using
the path /tree or /lab), the same login.py file fa-
cilitates authentication for both. If you build using a stan-
dard docker image such as jupyter/base-notebook
or any of its derivative notebooks, this directory would
be /opt/conda/lib/python3.x/site-packages direc-
tory. Please note that the specific python version may vary depen-
dent on which version of the docker container is used and whether
subsequent additional install modules might force a rollback of
python versions.

The specific modification to the login.py file in-
volves replacing two methods, the get method and the
get_user_token class method of the LoginHandler class.

Unaltered, the method get determines whether the
current_user is set indicating the user has been logged in.
If not authenticated, the function presents a login page. Our mod-
ification simply adds an additional check that if current_user
is not set, we validate the JWT token in header to determine
additionally whether the user is authenticated. It should also be
noted that the function is also decorated as a coroutine to make
the function asynchronous as the verification may require network
access to retrieve a public key.

@Qtornado.gen.coroutine
def get (self):
authenticated = False
if self.current_user:
authenticated = True
else:
if self.verify_Jjwt():
authenticated=True
if authenticated:
next_url = self.get_argument ('next',
default=self.base_url)
self._redirect_safe (next_url)

else:
self._render ()

The other method to be replaced is the get_user_token.
Unaltered, the method returns the authorization token used as part
of a notebook/lab minimal authentication scheme. This token is
normally supplied as a query string in the URL or through the
login page. We bypass this mechanism altogether. Instead, we
examine the request header for a JWT token supplied by AWS
and validate it. If it is successful we provide a token. As far as
the rest of the notebook code the value of the token is not used so
we supply a random string. Our version of get_user_token
uses a local cache to store retrieved public keys and previously the
previously decoded user ID.
@classmethod
def get_user_token(cls, handler):

"""Tdentify the user based on

Authorization header

Returns:
- uuid if
- None 1if not
wn

authenticated

authenticated = False
if cls.verify_oidc (handler):
authenticated = True
else:
oidc_jwt handler.request.headers\
.get ('x—amzn-oidc-data')
if oidc_jwt:

try:
header = jwt.get_unverified_headers(
oidc_jwt)
except JOSEError:
return None
kid = header.get ('kid")
if kid and kid == user_cache.get ('kid') \
and user_cache.get ('pk'"):
try:
token = jwt.decode (oidc_jwt,

user_cache['pk'])
except JOSEError:
return None
oidc_id = handler.request.headers\
.get ('x—amzn-oidc-identity")

if token['sub'] == oidc_id:
authenticated = True
user_cache['jwt'] = oidc_jwt
user_cache['user_id'] = oidc_id
if authenticated:
return uuid.uuid4 () .hex

else:
return None

In addition to the two modified methods, we supply two
helper methods verify_jwt for get and verify_oidc for
get_user_token. They perform the token validation and cache
management. Additional code which can read identifiers in persis-
tent volumes and verify they match the user who is authenticated
can also be added to ensure two authenticated users don’t have
access to the other’s containers.
def verify_ jwt (self):
global user_cache
oidc_id = self.request.headers\
.get ('x—amzn-oidc-identity")
oidc_jwt = self.request.headers\
.get ('x—amzn-oidc-data')

if not oidc_jwt:
self.log.warning ("No JWT Token in Header")
return False

if (user_cache.get ('user_id') == oidc_id and \
user_cache.get ('Jjwt') == oidc_jwt):
return True

try:

header = jwt.get_unverified_headers (oidc_jwt)
except JOSEError as e:

self.log.error ("JWT failed to decode: {}"\

.format (e))
return False

kid = header.get ('kid")

if not kid:
self.log.error ("No Key ID in JWT token")
return False

if kid != user_cache.get ('kid'"):
if 'pk' in user_cache:
del user_cache['pk']

if not 'pk' in user_cache:
try:
r = requests.get (PK_SERVER + kid)
TODO treat return code
user_cache['pk'] = r.text
user_cache['kid'] = kid
except requests.RequestException as e:

\

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

RStudio
server

s

\ - O O - e . . - . . - . .
Fig. 3: Inside the RStudio Container
self.log.error ("Requests Error: {}"\

.format (e))
return False
try:
token = jwt.decode (oidc_jwt,
user_cache['pk'])
except JOSEError as e:
self.log.info ("JWT failed to validate: {}"\
.format (e))
return False
if token['sub'] != oidc_id:
self.log.error("User ID in token doesn't
"match user ID in header")
return False
user_cache['user_id'] = oidc_id
user_cache['jwt'] = oidc_jwt
@classmethod

def verify_oidc(cls, handler):
global user_cache
oidc_id = handler.request.headers\
.get ('x—amzn-oidc-identity")
oidc_jwt = handler.request.headers\
.get ("x—amzn-oidc-data')

if not oidc_id or not oidc_jwt:
return False

if oidc_id != user_cache.get ('user_id'):
return False

if oidc_jwt != user_cache.get ('jwt'):
return False

try:

- mm o o o o o o o o o =

header = jwt.get_unverified_headers (oidc_jwt)

except JOSEError:
return False

kid = header.get ('kid")

if kid != user_cache.get ('kid'):
return False

return True

To meet the other requirements for Jupyter, the base_url
configuration needs to be set to ensure that the route is properly
interpreted. Furthermore, we use this base_url as the health
check url which responds with a 302 code. A self-signed certifi-
cate is automatically generated when the container starts and that
certificate is then used to configure Jupyter to run over HTTPS.

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 7

RStudio

Our implementation of RStudio Server on the same cloud platform
is non-invasive to the code base, but more complicated architec-
turally. Since RStudio does not have a way to set the base URL of
the application, a proxy is required to rewrite the HTTPS request
paths. We use an nginx proxy to rewrite requests to RStudio
Server using the proxy_redirect directive.

Figure shows the application structure within the RStudio
container. A proxy communicates with the ALB and routes some
requests to a custom app used for authentication and handling the
health checks and others to the RStudio server. Since communi-
cations between the proxy, app and RStudio server are all within
the container and not exposed, they do not require encryption to
satisfy compliance. A self-signed certificate is created upon con-
tainer startup that enables nginx to communicate over HTTPS to
the ALB.

For authentication, RStudio Server maintains authentication
session information in a cookie. So with nginx we capture, the
auth-sign-in URL and redirect it to an lightweight webapp
whose sole function is to authenticate the user, set the cookie and
redirect the browser to RStudio Server. Since the app is necessary
in this configuration, we also configure the app to respond to a
/ping request issued by the ALB target group’s health check.

The authentication code 1is nearly identical to the
verify_jwt function written above for Jupyter. The cookie
consists of three pieces, a user ID (which we retain as
the default rstudio as we retained jovyan for the
Jupyter notebook, to prevent the need to build a separate
docker image for each user), the expiry and an HMAC
256 signature, signed with a secret typically stored at
/var/lib/rstudio-server/secure-cookie—-key in-
side the container. The following snippet of code implements this.
from urllib.parse import quote
from Crypto.Hash import HMAC
from Crypto.Hash import SHA256

import base64
import datetime

utc = datetime.datetime.utcnow ()
expiry = utc + datetime.timedelta (days)
now = expiry.strftime('%a, b %Y SH:$M:%$S GMT')
dig = base64.b6dencode (\
HMAC.new (secret,

"{0}{1}".format (username, now),
digestmod=SHA256) .digest ())
cookie = quote ("{0}[{1}|{2}".format (username,
now,
dig.decode()),
)
response.set_cookie ('user-id', cookie)

The days is the number of days til the cookie expires, and
username is the user name (i.e. rstudio). In the above snippet,
the cookie is attacked to a Flask response.

Virtual Network Computing (VNC) Containers

There are many desktop apps for Linux which may also be useful
to deploy via a web application on a cloud cluster such as pre-
sented here. The following implementation allows the deployment
of such applications such as Orange and Falcon through the use of
a web VNC client to a VNC server running in a container.

This is based on the Docker Headless VNC Container project
[Con19] as a blueprint using the xf ce4 window manager. Since it
appears that the project has been inactive for over a year we adopt

7 Y

7 N

vnc
server

69°\

N\

0OS

I
[

[

[

[

1 6901
T ||[hovinC
[

[

[

[

|

—n mm o o o o B Em o Em o Em we

\ s’

Fig. 4: Inside a VNC Container

its Dockerfile as a starting point but do not use the docker
images as a building block.

Figure 4 shows the application structure within a headless
VNC container. NoVNC [noV20] is used as a web to vnc
proxy which connects via VNC to a local vnc server which in
accordance to the Docker Headless VNC Container project is
tigerVNC [Tig20]. Through the VNC server graphically oriented
operating system commands and applications can be executed.
In our container tigerVNC is unchanged and is installed just
as it is in the headerless project’s Dockerfile. The noVNC
project comprises a novnc and websockify component. No
changes were made to the novnc component except to alter the
parameters use to start websockify. Therefore the focus of the
customization is on the websockify component.

Fortunately, websockify permits authentication plugins.
The plugin is a simple class with an authenticate
method which accepts the headers, target_host and
target_port as parameters. Upon success it returns and on
failure it raises an AuthenticationError exception. Since
the body of the code is essentially the same as the verify_jwt
method descirbed for Jupyter, the code is not repeated here.

It should be noted that in the container by default the VNC
server listens on port 5901 and the novnc client listens on port
6901. It is recommended that only port 6901 be exposed so that
only the novnc client can directly communicate with the VNC
server as the VNC password in this environment is not well
protected. By only exposing port 6901, knowledge of the VNC
password can not be exploited to bypass the authentication.

Furthermore, the web server within the websockify project
is located in websockifyserver.py and is based on
SimpleHTTPServer. It may be desirable to create a custom
handler or custom do_GET method to handle issues such as pro-
viding a base URL, health check URL for the ALB’s target group,
or to implement templating if desired. A self-signed certificate is
generated in a launch.sh as self.pem which the webserver will
automatically detect and run using HTTPS.

Once this base container image is built with those customiza-
tions. Applications such as Orange or Falcon can be added, thus
not limiting the cloud system to web applications.

Custom Applications

In developing your own bespoke applications, a layer of authenti-
cation can be employed. In consideration of developing or adapt-

8

ing your own application, you should provide an unauthenticated
URL for the ALB’s health check and be equipped to configure the
base URL. Authentication can be easily plugged into most web
server frameworks.

As a simple example, using flask authentication can be in-
corporated into a custom login_required decorator, so that
for any protected URL the request is authenticated before being
processed. Once again the decorator could be implemented with
code similar to that of jwt_verify described above.

Security and Compliance

In our cloud architecture, the bulk of the security and compliance
is built into the EC2 instances serving as nodes behind the ALB
and built into features of the ALB. By keeping most of the
security external to the containers, container images need less
customization for security purposes making it easier to support
a wide variety of container images and container apps.

The preferred method to implement security, compliance, and
even maintenance services on an EC2 instance is to install the
appropriate software in an Amazon machine image (AMI). By
building a customized AMI based off an optimized Amazon
ECS reference AMI [Ser20b] but including the desired additional
services installed, an fully equipped EC2 instance can be spun up
quickly and features such as autoscaling can easily be applied.

Specifics to security and compliance implementations are
described in the following subsections including encryption at rest,
access controls, auditing and other agents.

Encryption at Rest

As previoiusly mentioned, persistent storage and associated file
system protocol are encrypted give both encryption in transit and
encryption at rest for the persistent storage. However, it is also
important that the base file system of the EC2 instances are also
encrypted to fully ensure encryption at rest. There are two impor-
tant aspects of ensuring encryption at rest for the base file system.
First the attached file system such as elastic block storage (EBS)
must be encrypted. This is accomplished by selecting encryption
when creating the EC2 instance or within a launch configuration.
Fortunately, AWS now offers an account-level option where EBS
volumes are encrypted by default for any EBS volumes created
in that given account. We highly recommend this option as it will
mitigate the chances of misconfiguration.

Furthermore, the AMI used to create EC2 instances must also
be encrypted. A common technique for doing so is to build an
machine snapshot will all the agents and services desired then
encrypt the snapshot. Regardless for what techinque is used.
the AMI’s should be encrypted to satisfy any requirements for
encryption at rest.

Access Control

Another security concern is controlling the internet access from
the container. The reason is two fold. First, controlling access
allows us to prevent users from within a container from accessing
potentially malicious websites. Second, should a container become
compromised we want to mitigate the compromised container’s
ability to escalate privileges or pivot to other services within
the organization. While AWS through the use of security groups
and access control lists provide a coarse ability to regulate what
destinations are accessible, we favor more fine grain control.
There are two aspects of this finer grain control, first we use
an on-host firewall to control outbound access from the hosted

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

containers. Second we funnel all traffic from each container to a
proxy.

For the firewall, we use iptables using the following
commands:

iptables —--insert DOCKER-USER --in-interface docker0 \
-0 eth0 -j DROP

iptables —-insert DOCKER-USER \
——destination 169.254.169.254 ——jump REJECT \
--reject-with icmp-port-unreachable

iptables -t nat -A PREROUTING -i docker0 \

-d 172.17.0.1 -p tcp —--dport 8888 -j RETURN
iptables -t nat —-A PREROUTING -i docker0 \

-d 172.17.0.1 -p tcp —-J DNAT --to-destination :2

The first command blocks all internet traffic coming from the
docker0 interface (where the containers must route through) to
the ethO interface which is the external interface. The second
command (see [Cos18]) blocks access to the node specific meta-
data service, which typical contains information about the EC2
instance and credentials for that instance.d. Blocking this prevents
a compromised container from accessing the metadata about the
EC2 instances blocking a potential escalation in privileges to that
of the EC2 node. The third and fourth commands allows the
container access to the EC2 instance (which in the docker world
is IP address 172.17.0.1) only on port 8888, where the proxy
is configured to listen. All other access is routed to port 2 which
has no active listeners.

On the container side, the environment variables
http_proxy and https_proxy must be set to forward
all http and https request to the EC2 instance at port 8888. In
addition the no_proxy environment variable should be set to
allow some traffic not to be forced into the proxy. Of course,
localhost (and corresponding IP address 127.0.0.1) do
not require proxy as the traffic doesn’t leave the container. In
addition, the metadata IP address 169.254.169.254 should
be allowed out so that the iptables rule regarding the metadata
traffic can be enforced. Finally, the IP address 169.254.169.2
is used by the ECS agent.

Two methods can be used to address the environment vari-
ables. Either we can add the environment variables to the task
definition when an application service created or it can defined in
the container’s Dockerfile with the following lines:

ENV http proxy=http://172.17.0.1:8888/
ENV httry yroxy=http://172.17.0.1:8888/
ENV no_proxy=localhost,127.0.0.1,\

169.254.169.254,169.254.170.2

Because of the iptables rules a misconfiguration that fails to
set the proper environment variables results in loss of access and
not a vulnerability.

The proxy can then determine whether to route the connection
request directly externally or through an external outbound gate-
way which could include a company firewall so that broad based
policies could be applied. For the proxy we selected t inyproxy
because it is lightweight and allows gateway credentials to be em-
bedded in the proxy configuration pushing the burden of gateway
credentials to the proxy and not the container or application of the
container.

Auditing

Beyond security reasons, many regulations such as HIPAA require
auditing for compliance. Our approach is two fold. We use the

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 9

ALB logging capabilities to track access to application containers
and authentication. We use a logging agent to track potential
privilege escalation or other security concerns on the underlying
EC2 host.

The ALB provides logging [Ser20a] which will log all access
to the application containers to an S3 bucket. Because in our
architecture all authentication is performed using the ALB all
authentication attempts both successful and more importantly
failures are also logged to the bucket. Many third party log
management tools are configurable to digest logs stored in this
manner including Loggly, Splunk, Sumo Logic.

Another good practice is to set the target S3 bucket in a
separate AWS account and only grant privileges to the logging
account to write to the bucket but not delete. This ensure that even
if a container or the EC2 instance is compromised, the logs can
not be tampered with.

To supplement the auditing and monitoring capability one or
more logging agents are installed on the EC2 instance. Essentially,
this agent transmits logs of interest such as the system log
syslog to an external log management system. Through this
mechanism behaviours such as privilege escalation (e.g. sudo)
are tracked. We use both the native AWS logging agent and a third
party logging agent.

With both mechanisms in place, the preferred log management
system can be configured to provide alarms when severe incidents
occurs and generate reports of incidents as may be required by
compliance requirements.

Other Useful Agents

Building a custom AMI image to spin up an EC2 instance to sup-
port our ECS cluster affords the opportunity to install additional
agents to meet security, compliance and maintenance needs. Our
best practices is to the include the following additional agents in
the AMI. Some of agents are provided by AWS while some are
third party.

ECS Agent: The AWS ECS agent is required in order for
the EC2 instance to serve ECS containers. However, periodically
updating the ECS agent is important in that potential vulnera-
bilities may be fixed and newer agents offer more features to
aid in maintenance. Furthermore, proper configuration of features
can aid in security as well. For example, the ECS agent can be
configure so that the maximum lifetime of an EC2 instance is set.
This is particularly useful if the AMIs for the EC2 instances are
constantly being updated with security patches etc. The limited
lifetime guarantees that the EC2 instances running will not be
based on an AMI that is too out of date.

Systems Manager Agent: Another useful AWS Agent
that can be employed is the AWS Systems Manager Agent (SSM)
[Ser20e]. The SSM agent allows the “Systems Manager to update,
manage and configure” the EC2 instances. This agent makes
it easier to maintain EC2 instances in a centralized manner.
Once again keeping an EC2 instance up to date helps reduce
vulnerabilities on the node.

Anti-virus: An antivirus or antimalware agent is also
recommended. The antivirus should be one that is container aware
and that the container awareness feature should be active. This
would facilitate pinpointing the specific container that may be
compromised. Container systems such as docker are not complete
virtualizations. Processes that run in a container run as processes
in the native host, as such an antivirus agent inside can monitor

processes that occur “inside a container”. Container aware an-
tivirus agents makes mitigation in a container environment easier.
In our particular configuration, we use Sophos as the antivirus but
you may have your own preferences.

Intrusion Detection: Another useful agent to be deployed
on the EC2 instance is an intrusion detection agent. Like this
antivirus agent, an intrusion detection agent that has container
awareness capabilities is desirable and should have the capability
activated. The intrusion detection agent looks for activities that
are anomalous and when high risk activity is detected, it will
gather as much information around the incident as it can. We use
ThreatStack for our intrusion detection.

Conclusion

Presented here is a secure, collaborative infrastructure for deploy-
ing a cloud computation resources vital to our organization for
scientific analysis of health related data on the Jupyter platform.
The primary purpose of our infrastructure is to provide Jupyter
in this environment as well as other tools such as RStudio. Our
Data Science and infrastructure team is small so building a com-
pliant infrastructure that requires little maintenance is paramount.
Equally important is to safeguard against opening vulnerabilities
due to misconfigurations. By following the suggestions presented
here, misconfigurations err on the side of loss of functionality
rather than introducing vulnerabilities.

The architecture presented here was successful in a recently
performed penetration test. We hired a third party company that
specializes in penetration testing and gave them normal user rights
to a Jupyter notebook container and challenged them to escaped
the container. The penetration testers was unable to escape the
container to other parts of the system or escalate privileges to gain
additional access to resources.

While the recommendations and architecture shown here rely
heavily on AWS resources. No doubt elements and counterparts
can be found in other cloud services such as Google Cloud and
Microsoft Azure.

Snippets of code, Dockerfile, commands and other resources
presented here and the corresponding poster are available at
West Health’s github repository at https://github.com/WestHealth/
scipy2020/tree/master/cloud_infrastructure.

REFERENCES

[Con19] ConSol Misc GmbH. Docker container images with "headless" vnc
session, 2019. URL: https://github.com/ConSol/docker-headless-
vnc-container.

Ciro S. Costa. Blocking ec2 metadata service from docker containers

in aws, Aug 2018. URL: https://ops.tips/blog/blocking-docker-

containers-from-ec2-metadata/.

[Marl8] Andrew Martin. 11 ways (not) to get hacked, 2018. URL: https:
/Ikubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/.

[noV20] noVNC. novnc, 2020. URL: https://novnc.com/info.html.

[Pro20] Project Jupyter. Zero to jupyterhub with kubernetes, 2020. URL:
https://zero-to-jupyterhub.readthedocs.io/en/latest/.

[Ser20a] Amazon Web Services. Access logs for your application
load balancer, 2020. URL: https://docs.aws.amazon.com/
elasticloadbalancing/latest/application/load-balancer-access-
logs.html.

[Ser20b] Amazon Web Services. Amazon ecs-optimized amis, 2020. URL:
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
ecs-optimized_ AMILhtml.

[Ser20c] Amazon Web Services. Data encryption in efs, 2020. URL: https:
/ldocs.aws.amazon.com/efs/latest/ug/encryption.html.

[Ser20d] Amazon Web Services. Permissions boundaries for iam entities,
2020. URL: https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies_boundaries.html.

[Cos18]

10 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

[Ser20e] Amazon Web Services. Working with ssm agent, 2020. URL:
https://docs.aws.amazon.com/systems-manager/latest/userguide/

ssm-agent.html.
[Tig20] TigerVNC. Tigervnc, 2020. URL: https://tigervnc.org/.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Quasi-orthonormal Encoding for Machine Learning
Applications

Haw-minn Lu®*

Abstract—Most machine learning models, especially artificial neural networks,
require numerical, not categorical data. We briefly describe the advantages and
disadvantages of common encoding schemes. For example, one-hot encoding
is commonly used for attributes with a few unrelated categories and word
embeddings for attributes with many related categories (e.g., words). Neither
is suitable for encoding attributes with many unrelated categories, such as
diagnosis codes in healthcare applications. Application of one-hot encoding for
diagnosis codes, for example, can result in extremely high dimensionality with
low sample size problems or artificially induce machine learning artifacts, not
to mention the explosion of computing resources needed. Quasi-orthonormal
encoding (QOE) fills the gap. We briefly show how QOE compares to one-hot
encoding. We provide example code of how to implement QOE using popular
ML libraries such as Tensorflow and PyTorch and a demonstration of QOE to
MNIST handwriting samples.

Index Terms—machine learning, classification, categorical encoding

Introduction

While most popular machine learning methods such as deep
learning require numerical data as input, categorical data is very
common. For example, a person’s vitals could be a combination
of both, they could include height, weight (numerical) and gender,
race (categorical). The challenge is to convert the categorical data
into a vector of some sort.

One-hot encoding which is discussed in the next section is very
commonly used in machine learning but has the drawback that it
can increase the dimensionality of the data by the cardinality of
the category. For small category, this is not a significant issue but
when categories with high cardinality are present, many problems
can arise as described below.

Quasiorthonormal encoding (QOE) is a generalization of the
one-hot encoding and exploits the fact that in high dimensional
vector spaces, two random vectors are almost always orthogonal.
The concept originated with Kirkovd and Kainen [KK96]. In
many ways, QOE functions the same as one-hot encoding but
does not increase the dimensionality of the data to the same
degree as one-hot encoding. Historically, QOE was considered
for a method of encoding words but modern techniques such as
word embeddings are now considered the state of the art method
for encoding language.

x Corresponding author: hlu@westhealth.org
Gary and Mary West Health Institute

Copyright © 2020 Haw-minn Lu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Some advantages to QOE include a reduction of dimensional-
ity over that of using one-hot encoding thus limiting effects of the
“curse of dimensionality”! or the problem of high dimension low
sample size (HDLSS). The advantage over other encodings such
as binary, hash, etc. is that it does not induce artificial geometric
relationships that can cause downstream bias in the results because
each label in a category remains mathematically near orthogonal
to the other labels.

We will briefly survey classic encoding methods, discuss
the theoretical aspects of QOE, and present a detailed example
implementation of QOE in tensorflow.

Background

Coding methods can be categorized as classic, contrast, Bayesian
and word embeddings. Classic, contrast and Bayseian encoding
are given a good overview treatment by Hale’s blog [Hall8] with
examples to be found as part of the scikit-learn category
encoding package [McG16]. Both contrast encoding and Bayesian
encoding use the statistics of the data to facilitate encoding. These
two categories may be of use when more statistical analysis is
required, however there has not been widespread adoption of these
encoding techniques for machine learning.

Word embeddings are their own special category. [GK19].
Word embeddings are used to represent words, phrases or even
entire documents as a vector so that similar meanings/concepts
are mapped to vectors that are close in the target vector space.
Additionally, it is adapted for encoding a large categorical features
(i.e., words) into a relatively lower dimensional space.

The remainder of the section will describe some common
classic categorical encodings

Ordinal Encoding

To begin our overview of fundamental encoding methods, we start
with Ordinal (Label) Encoding. Ordinal encoding is the simplest
and perhaps most naive approach encoding for a categorical
feature --- one simply assigns a number to each member of a
category. This is often how data from surveys are encoded into
spreadsheets for easy storage and calculation of basic statistics.
An associated data dictionary is used to convert the values back
and forth between a number and a category. Take for example the
case of gender, male could be encoded as 1 and female as 2, with
a data dictionary as follows: { 'male': 1, 'female': 2}

1. Mukhtar [Muk19] gives a good explanation of the curse of dimensionality
as applied to data science.

Make Ordinal One-Hot
Toyota 1 (1,0,0,0,0)
Honda 2 (0,1,0,0,0)
Subaru 3 (0,0,1,0,0)
Nissan 4 (0,0,0,1,0)
Mitsubishi 5 (0,0,0,0,1)

TABLE 1: Examples of Ordinal and One-Hot Encodings

Make Ordinal as Binary Binary Code
Toyota 1 001 0,0,1)
Honda 2 010 (0,1,0)
Subaru 3 011 0,1,1)
Nissan 4 100 (1,0,0)
Mitsubishi 5 101 (1,0,1)

TABLE 2: Example of Binary Codes

Suppose we have three categories of ethnic groups: White,
Black, and Asian. Under ordinal encoding, suppose White is
encoded as 1, Black is encoded as 2 and Asian is encoded as 3.
If a machine learning classification is somehow confused between
Asian and White and decides to split the difference and report
the in-between value (2) which encodes Black. The issue is that
arbitrary gradation between 1 and 3 introduces a natural interpo-
lation (2) that may be nonsense. Thus, the natural ordering of the
numbers imposes an ordered geometrical relationship between the
categories that does not apply.

Nonetheless there are situations where ordinal encoding makes
sense. For example, a ‘rate your satisfaction’ survey typically
encodes five levels (1) terrible, (2) acceptable (3) mediocre, (4)
good, (5) excellent.

One Hot Encoding

This is the most common encoding used in machine learning. One
hot encoding takes a category with cardinality N and encodes each
categorical value with an N-dimensional vector with a single ‘1’
and the remainder ‘0’s. Take as an example encoding five makes of
Japanese Cars: Toyota, Honda, Subaru, Nissan, Mitsubishi. Table
1 shows a comparison of coding between ordinal and one-hot
encodings.

The advantage is that one hot encoding does not induce an
implicit ordering or between categories. The primary disadvantage
is that the dimensionality of the problem has increased with corre-
sponding increases in complexity, computation and “the curse of
high dimensionality”. This easily leads to the high dimensionality
low sample size (HDLSS) situation, which is a problem for most
machine learning methods.

Binary Encoding, Hash Encoding, BaseN Encoding

Somewhere in between these two are binary encoding, hash
encoding, and baseN encoding. Binary encoding simply labels
each category with a unique binary code and converts the binary
code to a vector. Using the previous example of the Japanese car
makes, table 2 shows an example of binary encoding.

Hash encoding assigns each category an ordinal value that
is then converted into a binary hash value that is encoded as
an n-tuple in the same fashion as the binary encoding. You can

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

as Ternary Balanced
Make Ordinal Ternary Code Ternary Code
Toyota 1 01 0,1) (0,1)
Honda 2 02 (0,2) 0,-1)
Subaru 3 10 (1,0) (1,0)
Nissan 4 11 (1,1) (1,1)
Mitsubishi 5 12 (1,2) (1,-1)

TABLE 3: Example of Ternary Codes

view hash encoding as binary encoding applied to the hashed
ordinal value. Hash encoding has several advantages. First, it
is open ended so new categories can be added later. Second,
the resultant dimensionality can be much lower than one-hot
encoding. The chief disadvantage is that categories can collide
if two categories accidentally map into the same hash value. This
is a hash collision and must be fixed separately using a resolution
mechanism. Bernardi’s blog [Ber18] provides a good treatment of
hash coding.

Finally, baseN encoding is a generalization of binary encoding
that uses a number base other than 2 (binary). Table 3 is an
example of the Japanese car makes using base 3.

A disadvantage of all three of these techniques is that while it
does reduce the dimension of the encoded feature, artificial geo-
metric relationships may creep in between unrelated categories.
For example, (0.7,0.7) may be confusion between Toyota
and Honda or a weak Subaru result, although the effect is not
as pronounced as ordinal encoding.

Decoding

Of course, with categorical encoding, the ability to decode an
encoded vector back to a category can be very important. If the
categorical variable is only an input to a machine learning system,
retrieving a category may not be very important. For example, one
may have a product rating model which delivers a rating based on
a number of variables, some numeric like price, but others might
be categorical like color, but since the output does not require
category decoding, it is not important.

In an application such as categorization or imputation [GW 18],
retrieving the category from a vector is crucial. In training a
modern classification model, a categorical output is often subject
to an activation function which converts a vector into a probability
of each category such as a softmax function. Essentially, the
softmax is a continuous and differentiable version of a ‘“hard
max” function which would assign a 1 to the vector representing
the most likely category and a O to all the other categories. The
conversion to a probability distribution allows the use of a negative
log likelihood loss function rather than the standard root mean
squared error.

Typically, other classic encoding methods use thresholds to
rectify a vector first into a binary or n-ary value then decode the
vector back to a label in accordance to the encoding. This makes
these values difficult to use as outputs of machine learning systems
such as neural networks that rely on gradients due to lack of
differentiability. Also, the decoding process is difficult to convert
to a probability distribution, making negative log-likelihood or
crossentropy loss functions more difficult to use.

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS

Theory

In this section, we will briefly define and discuss quasiorthogonal-
ity, show how it relates to one-hot encoding and describe how this
relationship can be used to develop a categorical encoding with
lower cardinality.

Quasiorthogonality

In a suitably high dimensional space, two randomly selected
vectors are very likely to be nearly orthogonal or quasiorthogonal.
In such an n-dimensional vector space, there are sets of K vectors
which are mutually quasiorthogonal where K >> n. A more formal
definition can be stated as follows. Given an €, two vectors X and
y are said to be quasiorthogonal if HI yH < €. This extends the or-
thogonality principle by allowing t{le inner product to not exactly
equal zero. As an extension, we can define a quasiorthonormal
basis by a set of normal vectors {q;} for i =1,...,K such that
lgi-qj| < € and ||q;|| = 1, for all i,j € {1,...,K}, where in
principle for large enough n, K > n.

The question of how large a quasiorthonormal basis can be
found for a given n-dimensional vector space and € is answered in
part by the mathematical literature. [KK20] derived a lower bound
for K as a function of € and n. Namely,

K>

This means that given an €, the size of potential quasiorthonormal
basis grows at least exponentially as n grows.

One Hot Encoding Revisited

Exploiting quasiorthogonality in categorical encoding is analysis
to using orthonormal basis in one-hot encoding. In a typical
machine learning scenario, one hot encoding maps a variable with
n categories into a set of unit vectors in a n-dimensional space:
L ={l;} for i =1...n, then the one hot encoding E; : L — R"
given by /; — u; where u; is an orthonormal basis in R”. The
simplest basis used is w; = (0,0,...,1,0,...,0) where the 1 is in
the ith position which is know as the standard basis for R".

Mapping of a vector back to the original category uses the
argmax function, so for a vector z, argmax(z) =i where z; > z;
for all j # i and the vector z decodes 10 lygmax(z)- Of course,
the argmax function is not easily differentiable which presents
problems in ML learning algorithms that require derivatives. To
fix this, a softer version is used called the softargmax or now as
simply softmax and is defined as follows:

el

softmax(z); = —— (D

j—1€9
for i =1,2,...,n and z = (z1,22,...,24) € R" where z is the
vector being decoded. The softmax function decodes a one-hot
encoded vector into a probability density function which enables
application of negative log likelihood loss functions or cross
entropy losses.

Though one-hot encoding uses unit vectors with one 1 in the
vector hence a hot component. The formalization of the one hot
encoding above allows any orthonormal basis to be used. So to
use a generalized one-hot encoding with orthonormal basis u;,
one would map the label j to u; for encoding where the u; no
longer have to take the standard basis form. To decode an encoded
value in this framework, we would take

i =argmax(z-uj,z-uy,...,Z-Uy,).)

Make Ordinal One-Hot QOE
Toyota 1 ug qi
Honda 2 up q2
Subaru 3 us q3
Nissan 4 uy q4
Mitsubishi 5 us qs

TABLE 4: Example of Quasiorthonormal Encoding

This reduces to argmax(z) for the standard basis. Thus, the
softmax function can be expressed as the following,

eZ‘ll,'

softmax(z); = = 3)
j=1¢""

Encoding

The principle behind QOE is simple. A quasiorthonormal basis
{q;} is substituted for the orthonormal basis {u;} described above.
So given a quasiorthonormal basis, we can define a QOE for a set
L= {ll} by li — q;.

Decoding z under QOE would use a gargmax function anal-
ogous to the argmax function for one-hot encoding as shown in
equation 4, which is nearly identical to equation 2.

A qn) @

Analogous to the softmax function shown of equation 3, is a
gsoftmax function which can be expressed as

i =argmax(z-q,z-qa,...

gt

ST ®

gsoftmax(z); = T

The only real difference in the formulation is that while still
operating in R” we are encoding K > n labels.

Returning to our example of Japanese car makes, table 4 shows
one-hot encoding and QOE of the five manufacturers. In the table,
encodings are represented simply as vectors where u; are unit
vectors in R and q; are a set of quasiorthonormal vectors in R3.
It can be shown that such a quasiorthonormal can be found in
[SHS20] with the minimum mutual angle of 66°. In short, the
difference between one-hot encoding and QOE is that the one-hot
requires 5 dimensions and in this case QOE requires only 3.

Implementation
Mathematical

While equations 4 and 5 describe precisely mathematically how to
implement decoding and activation functions. A literal implemen-
tation would not exploit the modern vectorized and accelerated
computation available in such packages as numpy, tensorflow
[AABT15] and pytorch.

To better exploit built-in functions of these packages, we define
the following n X K change of coordinates matrix

Q: q1 q2 qk

This transformation makes it easier to convert a set of parallel
operations into matrix operations for which these aforementioned

14

computational packages are well suited. Mathematically, the trans-
formation maps the representation of a category encoded by QOE
to a vector representing one hot encoding. Understanding this
transformation makes it simple to express argmax or softmax
function’s quasiorthoromal variant by equations 6 and 7, respec-
tively.

gargmax(z) = argmax(Qz) (6)

and
gsoftmax(z) = softmax(Qz). @)

The tensorflow and pytorch packages both supply opti-
mized softmax functions as does scipy when using numpy ar-
rays, making implementation of QOE not only easy, but efficient.
Not only will using native functions accelerated performance, it
can exploit features such as auto differentiation built into the native
functions --- a useful property when using the gsoftmax function
as an activation function.

Since the matrix manipulation operations and input/output
shape definitions differ from package to package, we provide a
gsoftmax implementation in several popular packages. In order to
facilitate the most general format possible, in our examples, we
will express the quasiorthogonal basis as a list of list, but the input
and the output is expressed in the appropriate native class (e.g.
numpy .ndarray in numpy).

Numpy

For numpy, the implementation is straight-forward and follows
equation 7 almost literally and is given below.
def gsoftmax(x, basis):

gx = np.matmul (np.asarray (basis), x)
return softmax (gx)

Since gsoftmax given above requires the basis as a parameter as
well as the input vector, it is a parameterized activation function. In
many packages, only unparameterized functions can be used. The
following function factory or metafunction can be used to return
a gsoftmax function for a given basis, rather than encoding the
function above in a 1ambda expression.

def gsoftmax (basis):

def func(x):
gx = np.matmul (np.asarray (basis), x)

return softmax (gx)
return func

The softmax function used above can be found in
scipy.special.softmax or can easily be written as
def softmax (x):

ex=np.exp (x)
return ex/np.sum(ex)

Tensorflow

For tensorflow, the following segment of code is an im-
plementation of the gsoftmax functions. By using native
tensorflow functions, the resultant gsoftmax function will
be automatically differentiated in a backwards neural network
pass. It is also worth noting that quite often due to the way
tensorflow performs batch processing, the input to the activa-
tion function is not a vector but an array of vectors as a Tensor
class.

def gsoftmax(x, basis):

gx = tf.matmul (tf.constant (basis), x,

transpose_b=True)
return tf.nn.softmax (tf.transpose (gx))

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

A metafunction version of gsoftmax is also presented as this is
used below in our example of MNIST handwriting classification
employing QOE.
def gsoftmax (basis):
def func(x):
gx = tf.matmul (tf.constant (basis), x,
transpose_b=True)
return tf.nn.softmax (tf.transpose (gx))
return func

Pytorch

Presented below is a version of the gsoftmax function imple-
mented using pytorch primitives. The use of the squeeze and
unsqueeze operations convert between a 1-dimensional vector
and a 2-dimension matrix having one column. This function is
only designed to accept vector inputs. In some models, especially
image related models, outputs of some layers may be multidimen-
sional arrays. If your use case requires a multidimensional input
to the gsoftmax function the code may need alteration.

def gsoftmax(x, basis):

gx = torch.mm(torch.tensor (basis),

x.unsqueeze (0) .t ()) .t () .squeeze ()
return torch.nn.functional.softmax (gx,dim=0)

Construction of an Quasiorthonormal set

It is difficult to find explicit constructions of quasiorthonormal
sets in the literature. Several methods are mentioned by Kainen
[Kai92], but these constructions are theoretical and hard to follow.
There are a number of combinatorial problems related to such as
spherical codes [Eri20] and Steiner Triple Systems [LR17], which
strive to find optimal solutions. These are extremely complicated
mathematical constructions and not every optimal solution has
been found.

Since in a high dimensional space, two random vectors are
likely to be quasiorthogonal, it is tempting to take a brute force
approach and simply randomly select k vectors at random and
test the set. This approach is reasonable for small dimensions or
small k. However, the set must have every vector be mutually
quasiorthogonal and combinatoric complications quickly set in.

Suppose, the probability of any two vectors being quasiorthog-

onal to a given € is p. Since there are (];) pairs of vectors, the

probability that you have a quasiorthogonal set is p(é) To put in
concrete terms, if two random vectors have a 99% chance of being
quasiorthogonal. Picking a set of 20 is only 14% and 30 is around
1%. Other factors conspire to make this difficult including the in-
creasing computational complexity and the geometric differences
between a cube and sphere become more pronounced as k and N
Srow.

As a practical matter, optimal solutions are not necessary as
long as the desired characteristics of the quasiorthonormal basis
are obtained. As an example, while an optimal solution finds 28
quasiorthonormal vectors with dot products of 0.5 or under are
possible in seven dimensions, you may only need 10 vectors.
In other words, a suboptimal solution may yield fewer vectors
that are possible for a given dimension, or a larger dimension
may be required to obtain the desired number of vectors that is
theoretically needed.

One practical way to construct a quasiorthonormal basis is
to use spherical codes which has been studied in greater detail.
Spherical codes try to find a set of points on the n-dimensional
hypersphere such that the minimum distance between two points

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS

is maximized. In most constructions of spherical codes, a given
point’s antipodal point is also in that code set. So in order to get
a quasiorthogonal set, for each pair of antipodal points, only one
element of the pair is selected. Perhaps to better understand the
relationship, between quasiorthonormal basis and spherical codes
is that a set of spherical codes can be constructed by taking every
vector in a quasiorthonormal basis and add its antipodal point.
The area of algorithmically finding a quasiorthonormal basis is
scant as is finding suboptimal spherical codes. However, one such
method was investigated by Gautam and Vaintrob [GV12]. Per-
haps the easiest way to obtain a quasiorthonormal basis is to use
spherical codes as described above but obtain the spherical code
from the vast compliation of sphere codes by Sloane [SHS20].

Simple Example and Comparison

To demonstrate how QOE can be used in machine learning, we
provide a simple experiment/demonstration. This demonstration
in addition to showing how to construct a classification system
using QOE gives an sense of the effect of QOE on accuracy.
As an initial experiment, we applied QOE to classification of
the Modified National Institute of Standards and Technology
(MNIST) handwriting dataset [LC10], using the 60000 training
examples with 10000 test examples. As there are 10 categories,
we needed sets of quasiorthonormal bases with 10 elements. We
took the spherical code for 24 points in 4-dimensions, giving us 12
quasi-orthogonal vectors. The maximum pairwise dot product was
0.5 leading to an angle of 60°. We also took the spherical code
for 56 points in 7-dimensions, giving 28 quasi-orthogonal vectors.
The maximum pairwise dot product was .33 leading to an angle
of a little over 70°.

We used a hidden layer with 64 units with a ReLU activation
function. Next there is a 20% dropout layer to mitigate overtrain-
ing, then an output layer whose width depends on the encoding
used. We selected for this demonstration to use one of the simplest
models hence there are no convolutional or pooling layers used
as often seen in other sample MNIST handwriting classifiers.
The following example is implemented using tensorflow and
keras.

Validating the QSoftmax Function

We begin by validating the gsoftmax function as provided
above. This is done by first constructing a reference model built
on tensorflow and keras in the standard way. In fact this
example is nearly identical to the presented in the Quickstart for
Beginners guide [Tenl9] for tensorflow with the exception
that we employ a separate Activation for clarity.
normal_model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input_shape= (28, 28)),
tf.keras.layers.Dense (64, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.2),
tf.keras.layers.Dense (10)
tf.keras.layers.Activation(tf.nn.softmax)

1)

To validate that the gsoftmax function and the use of a Lambda
layer is properly used, the gsoftmax metafunction is used with
the identity matrix to represent the basis. Mathematically, the
resultant gsoftmax function in the Lambda layer is exactly the
softmax function. The code is shown below:

sanity_model = tf.keras.models.Sequential ([

tf.keras.layers.Flatten (input_shape= (28, 28)),
tf.keras.layers.Dense (64, activation=tf.nn.relu),

15

Number of One Hot 7-Dimensional 4-Dimensional
Epochs Encoding QOE QOE

10 97.53% (97.30%) 97.24% (96.94%) 95.65% (95.15%)
20 97.68% (98.02%) 97.49% (97.75%) 95.94% (96.15%)

TABLE 5: Results of MNIST QOE Experiment

tf.keras.layers.Dropout (0.2),
tf.keras.layers.Dense (10)
tf.keras.layers.Lambda (gsoftmax (numpy.identity (10,
dtype=numpy.float32)))
1)

This should function identically as the reference model because
it tests that the gsoftmax function operates as expected (which it
does in this case). This is useful for troubleshooting if you have
difficulty.

Examples on Quasiorthonormal Basis

To recap, for the two QOE experiments we take a set of 10
mutually quasiorthonormal vectors from a four dimensional space,
and from a seven dimensional space all derived from spherical
codes from tables mentioned above, and only took 10 vectors.
For the code, the basis for each experiment are labeled basis4
and basis7, respectively. This leads to the following models,
basis4_model and basis7_model.
basis4_model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input_shape= (28, 28)),
tf.keras.layers.Dense (64, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.2),
tf.keras.layers.Dense (4),

tf.keras.layers.Lambda (gsoftmax (basis4))

1)

basis7_model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input_shape= (28, 28)),
tf.keras.layers.Dense (64, activation=tf.nn.relu),
tf.keras.layers.Dropout (0.2),
tf.keras.layers.Dense(7),
tf.keras.layers.Lambda (gsoftmax (basis7))

1)

Table 5 shows the mean of the accuracy over three training runs
of the validation data with training data in parentheses.

From these results, it is clear that there is some degradation in
performance as the number of dimensions is reduced, but clearly
QOE can be used leading to a tradeoff between accuracy and
resource reduction from the reduction of dimensionality.

Extending to Spherical Encodings
A Deeper Look at Softmax

In principle, to recover a category from a potentially noisy encoded
vector, the dot product of the encoded vector against each basis
vector in accordance with equation 2 whether the basis is orthonor-
mal or quasiorthonormal. If one takes a deeper dive into equations
3 and 5, it is interesting to see what these functions are doing.
Figure 1 shows on the left, randomly selected values in a circle of
radius 6. On the right shows the vectors after the softmax function
is applied. Clearly with a few stragglers, most points either move
very close to either of the basis vectors (0,1) or (1,0). Upon
a cursory sampling of the output of the last Dense layer prior
to application of the softmax function, shows that each vector
component averages about 5.5 so a radius of 6 approximates the
what a softmax function might encounter.

® . ° 0.8 o

e o 06 b
o 0.4
(]

0.2

-6 0.0

-6 -4 -2 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0
Random Points Softmax Applied to Random Points

Fig. 1: Softmax on an orthonormal basis

° .
.
et ® . 0.75 " LY
4 o0 o) . %,
® e ® %o 0s0{ &
2 . g e ? ® ° °
. ° e ® ° 025 e,
. e o i
0 oo o 3% . e %,
e, O 0.00 « &
[°®
2 ® | -o02s 0
. .
. -0.50
—a]
. -0.75
-6

-6 -4 -2 0 2 4 6
Random Points

-0.50 -0.25 0.00 025 050 0.75 1.00
Softmax Applied to Random Points

Fig. 2: Softmax on a quasiorthogonal basis

Similarly, figure 2 shows the same type of distribution of
randomly selected values and the right shows the effect after
a quasiorthonormal softmax is applied with three basis vectors.
Since the gsoftmax function maps the two dimensional input
into a three-dimensional space, the three-dimensional vectors are
mapped back down to two dimensions using the quasiorthonormal
basis. Again with the exception of a few stragglers, most points
move very close to one of the three basis vectors.

Because the expectation on one-hot encoding is that the value
of a given vector component be either O or 1 and that negative val-
ues are not expected even in a noisy environment. This is evident
in figure 1, where the results are all in the first quadrant (i.e. no
negative values). This raises the question could the negative values
be exploited with minimal detrimental effects?

While equation 5 is intended to accept a quasiorthonormal
basis, functionally there is no reason why this equation need
be limited to a quasiorthonormal basis. The equation still make
sense if {q;} were replaced by any collection of normal vectors.
However, the question remains as to how well that would work.
So to exploit the negative regions of the coordinate system, we
can see graphically what would happen if we add the antipodal
vectors (—1,0) and (0,—1) to our standard orthonormal basis,
{(1,0),(0,1)}. Applying the same type of random vector analysis
to the gsoftmax function we get figure 3.

. 1.00
«® %20 [.‘..\
4 . o . ° 0.75 «® o
L]
[]
, o *.- e oo 0" 0.50 N .,
e o .
e° 0.25 ° L]
0 .l -' . 0.00 ’0
o o,° : o, °p
(d 25 ® o
-2 L . L] '. ° 0 . ® g 00
. * ° -0.50 °
e °
- ° o .
4 - 2 -0.75 s °
0% o® ° es,®
6 ° -1.00)

-4 -2 0 2 4 6 -1.0 -0.5 0.0 0.5 1.0

Random Points Softmax Applied to Random Points

Fig. 3: Softmax on encoded values using an orthonormal basis and
antipodal points

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Make One-Hot Spherical
Code
Toyota (1,0,0,0,0) (1,0,0)
Honda (0,1,0,0,0) (-1,0,0)
Subaru (0,0,1,0,0) (0,1,0)
Nissan (0,0,0,1,0) (0,-1,0)
Mitsubishi ~ (0,0,0,0,1) (0,0,1)

TABLE 6: Examples of Spherical Codes

Number of One Hot 5-Dimensional 3-Dimensional

Epochs Encoding Spherical Code Spherical Code
10 97.53% (97.30%) 96.51% (96.26%) 95.37% (94.83%)
20 97.68% (98.02%) 96.82% (97.11%) 95.74% (95.83%)

TABLE 7: Results of MNIST Spherical Coding Experiment

So why not just use a random set of normal vectors? Despite
the intuition a truly random selection will have some clustering.
Geometrically, the set of normal vectors should be as evenly
distributed as possible which is precisely what spherical codes
are.

While it is likely that spherical codes for encoding work fine as
an output such as in classification, there is an implicit relationship
imposed by antipodal vector pairs especially when used as an
input to a system. If you consider the spherical encoding offered
in Table 6, the vector for Toyota is the negative of the vector for
Honda. This is essentially telling any number system that Honda
is the negative of Toyota, which may not be desirable.

With this risk in mind, we can further extend the idea to a
quasiorthogonal basis by adding the antipodal vectors for each
vector in the basis. The result not only doubles the number of
vectors that can be used for encoding, it reduces the problem of
finding a basis to that of finding spherical codes.

Spherical Codes

Spherical codes can be used in place of quasiorthonormal codes
simply by allowing the q; to be a collection of spherical codes
not necessarily quasiorthonormal basis. Table 6 shows how the
example of the five Japanese car makes could be encoded with a
simple spherical code.

Since spherical codes can substitute directly into the equations
for QOE, it is a simple matter to implement spherical codes {s;}
instead of quasiorthonormal basis, {q;}. As such it is a simple
matter to run the same experiment on the MNIST handwriting
samples as we did for QOE. First, a set of codes are defined in
an ndarray called code5 and code3. The variable code5
consists of the standard orthonormal basis in 5 dimensions along
with their antipodal unit vector to produce a set of 10 vectors in 5
dimensions. The variable code3 is taken from [SHS20] for the 3
dimensional spherical codes with 10 vectors. Once these codes are
defined, they can be substituted for basis4 and basis7 in the
sample code above. Table 7 shows the results of the experiment
with training accuracy shown in parentheses.

In this case, the 5-dimensional spherical codes performed close
to the one-hot encoding by not as closely as the 7-dimension QOE
codes. The 3-dimensional spherical codes performed on par with
the 4-dimensional QOE codes.

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS

While the extreme dimensionality reduction from 10 to 4 or 10
to 3 did not yield comparable performance to one-hot encoding,
more modest reductions such as 10 to 7 and 10 to 5 did. It is
worth considering that quasiorthogonal or spherical codes are
much harder to find in low dimensions. One should note that,
though we went from 10 to 7 dimensions, we did not fully exploit
the space spanned by the quasiorthogonal vector set. Otherwise,
we would likely have had the similar results if the categorical
labels had a cardinality of 28 rather than 10.

Conclusion

These reduced dimensionality codes are not expected to improve
accuracy when the training data is plentiful, but to save com-
putation and representation by reducing the dimensionality of
the coded category. As an example, in applications such as au-
toencoders and specifically the imputation architectures presented
by [GW18] and [mLPUI19], where the dimensionality not only
dictates the number of outputs and inputs but also the number
of hidden layers, a reduction in dimensionality has a profound
impact on the size of the model used. Beyond that, the reduced di-
mensionality codes such as QOE and spherical codes can address
problems such as the curse of dimensionality and HDLSS where
for small sample sizes it may improve accuracy.

Though for the exercises presented here, the reduction of
dimensionality is modest and may not seem worth the trouble.
The real benefit of these codes is in extremely high cardinality
situations on the order of hundreds, thousands and beyond, such
as zip codes, area codes, or medical diagnostic codes.

Practically speaking, while algorithms to generate spherical
codes and quasiorthonormal sets are few, [SHS20] has a vast
complication of spherical codes. At the extreme end, a spherical
code with 196,560 vectors is available in 24 dimensions, enough to
encode nearly 100,000 labels using QOE or 200,000 labels using
spherical codes, in just 24 dimensions!

In sum, the advantages of QOE and spherical codes are that
they can reduce the dimensionality of the vector representation
as compared to one-hot encoding, while not inducing artificial
geometric relationships as ordinal or binary codes can. The dis-
advantage is that the accuracy of decoding an encoded vector
in a noisy environment (such as classification output) is slightly
less than one-hot encoding. This tradeoff ability makes QOE and
spherical codes useful tools to be included in a data scientists
toolbox alongside other established categorical coding techniques.

Experiments and code samples are made available at https://
github.com/WestHealth/scipy2020/tree/master/quasiorthonormal.

REFERENCES

[AAB*15] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. URL:
https://www.tensorflow.org/.

Lucas Bernardi. Don’t be tricked by the hashing trick, Jan
2018. URL: https://booking.ai/dont-be-tricked-by-the-hashing-
trick-192a6aae3087.

[Berl18]

[Eri20]

[GK19]

[GV12]

[GW18]

[Hal18]

[Kai92]

[KK96]

[KK20]

[LC10]
[LR17]
[McG16]

[mLPU19]

[Muk19]

[SHS20]

[Ten19]

17

Eric W. Weisstein.
cessed 18-May-2020].
SphericalCode.html.
Luis Gutiérrez and Brian Keith. A systematic literature review
on word embeddings. In Jezreel Mejia, Mirna Mufioz, Alvaro
Rocha, Adriana Pefia, and Marco Pérez-Cisneros, editors, Trends
and Applications in Software Engineering, pages 132141, Cham,
2019. Springer International Publishing. doi:10.1007/978~-
3-030-01171-0_12.

Simanta Gautam and Dmitry Vaintrob. A novel approach to the
spherical codes problem. Technical report, Massachusetts Institute
of Technology, 2012.

Lovedeep Gondara and Ke Wang. Mida: Multiple imputation
using denoising autoencoders. In Dinh Phung, Vincent S. Tseng,
Geoffrey 1. Webb, Bao Ho, Mohadeseh Ganji, and Lida Rashidi,
editors, Advances in Knowledge Discovery and Data Mining,
pages 260-272, Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-319-93040-4_21.

Jeff Hale. Smarter ways to encode categorical data for machine
learning: Exploring category encoders, Sep 2018. URL: https:
/Itowardsdatascience.com/smarter-ways-to-encode-categorical-
data-for-machine-learning-part- 1-of-3-6dca2f71b159.

Paul Kainen. Orthogonal dimension and tolerance. Unpublished
report, Washington DC: Industrial Math, 1992.

V. Kirkové and P. C. Kainen. A geometric method to obtain error-
correcting classification by neural networks with fewer hidden
units. In Proceedings of International Conference on Neural
Networks (ICNN’96), volume 2, pages 1227-1232 vol.2, 1996.
doi:10.1109/ICNN.1996.549073.

Paul C. Kainen and Véra Karkova. Quasiorthogonal Dimension,
pages 615-629. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-31041-7_35.

Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. URL: http://yann.lecun.com/exdb/mnist/.
Charles C Lindner and Christopher A Rodger. Design theory.
CRC press, 2017. doi1:10.1201/9781315107233.

Will McGinnis. Category encoders, 2016. URL: http://contrib.
scikit-learn.org/category_encoders/.

Haw minn Lu, Giancarlo Perrone, and José Unpingco. Multiple
imputation with denoising autoencoder using metamorphic truth
and imputation feedback. In Petra Perner, editor, Machine Learn-
ing and Data Mining in Pattern Recognition, 16th International
Conference on Machine Learning and Data Mining, MLDM 2020,
Amsterdam, The Netherlands, July 20-21, 2020, Proceedings,
pages 197-208. ibai publishing, 2019. URL: http://www.ibai-
publishing.org/html/proceeding2020.php.

Tooba Mukhtar. High dimensional data: Breaking the curse
of dimensionality with python, Apr 2019. URL: https://blog.
datasciencedojo.com/curse-of-dimensionality-python/.

N. J. A. Sloane, R. H. Hardin, and W. D. Smith. Spherical codes:
Nice arrangements of points on a sphere in various dimensions,
2020. [Online; accessed 15-May-2020]. URL: http://neilsloane.
com/packings/.

Tensorflow. Tensorflow 2 quickstart for beginners, 2019. URL:
https://www.tensorflow.org/tutorials/quickstart/beginner/.

Spherical code, 2020. [Online; ac-
URL: https://mathworld.wolfram.com/

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fluctuation X-ray Scattering real-time app

Antoine Duijardin, Elliott Slaugther, Jeffrey Donatelli*$, Peter Zwart!¥, Amedeo Perazzo, Chun Hong Yoon'*

https://youtu.be/IYADJjGOiJhA

Abstract—The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser (X-FEL) facility enabling
scientists to take snapshots of single macromolecules to study their structure
and dynamics. A major LCLS upgrade, LCLS-II, will bring the repetition rate of
the X-ray source from 120 to 1 million pulses per second and exascale High
Performance Computing (HPC) capabilities will be required for the data analysis
to keep up with the future data taking rates.

We present here a Python application for Fluctuation X-ray Scattering
(FXS), an emerging technique for analyzing biomolecular structure from the
angular correlations of FEL diffraction snapshots with one or more particles
in the beam. This FXS application for experimental data analysis is being
developed to run on supercomputers in near real-time while an experiment is
taking place.

We discuss how we accelerated the most compute intensive parts of the
application and how we used Pygion, a Python interface for the Legion task-
based programming model, to parallelize and scale the application.

Index Terms—fluctuation x-ray scattering, free electron laser, real-time analy-
sis, coherent diffractive imaging

Introduction
LCLS-Il, an LCLS upgrade

The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser facility
providing femtosecond pulses with an ultrabright beam approx-
imately one billion times brighter than synchrotrons [WRDI15].
Such a brightness allows it to work with much smaller sample
sizes while the shortness allows imaging below the rotational
diffusion time of the molecules and also outrunning radiation dam-
age. With pulses of such an unprecedented brightness and short-
ness, scientists are able to take snapshots of single macromolecules
without the need for crystallization at ambient temperature.

To push the boundaries of the science available at the light-
source, LCLS is currently being upgraded after 10 years of
operation. The LCLS-II upgrade will progressively increase the
sampling rate from 120 pulses per second to 1 million. At these

9 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park,
CA 94025, USA

Department of Applied Mathematics, Lawrence Berkeley National Labora-
tory, Berkeley, CA USA 94720-8142

§ Center for Advanced Mathematics for Energy Research Applications,
Lawrence Berkeley National Laboratory, Berkeley, CA USA 94720-8142

I Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berke-
ley National Laboratory, Berkeley, CA USA 94720-8142

= Corresponding author: yoon82@slac.stanford.edu

Copyright © 2020 Antoine Dujardin et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

<+

rates, the LCLS instruments will generate multiple terabytes per
second of scientific data and it will therefore be critical to know
what data is worth saving, requiring on-the-fly processing of the
data. Earlier, users could classify and preprocess their data after
the experiment, but this approach will become either prohibitive or
plainly impossible. This leads us to the requirement of performing
some parts of the analysis in real time during the experiment.

Quasi real time analysis of the LCLS-II datasets will require
High Performance Computing, potentially at the Exascale, which
cannot be offered in-house. Therefore, a pipeline to a supercom-
puting center is required. The Pipeline itself starts with a Data
Reduction step to reduce the data size, using vetoing, feature
extraction, and compression in real time. We then pass the data
over the Energy Sciences Network (ESnet) to the National Energy
Research Scientific Computing Center (NERSC). Currently, the
ESNet connection between SLAC and NERSC is 200 Gbps
capable; the plan is to upgrade this link to 400 Gbps by 2026 and to
1 Tbps by 2028. At the end of the pipeline, the actual analysis can
take place on NERSC’s supercomputers. This makes the whole
process, from the sample to the analysis, quite challenging to
change and adapt.

Moreover, LCLS experiments are typically high-risk / high-
reward and involve novel setups, varying levels of requirements,
and durations of only a few days. The novelty in the science can
require adaptations in the algorithms, requiring the data analysis
itself to be highly flexible. Furthermore, we want to give users
as much freedom as possible in the way they analyze their data
without expecting them to have a deep knowledge of large-scale
computer programming.

Therefore, we require real time analysis, high performance
computing capabilities and a complex pipeline, while requiring
enough flexibility to adapt to novel experimental setups and
analysis algorithms. We believe Python helps us achieve this goal
given the tradeoffs involved.

FXS: an example analysis requiring HPC

While a variety of experiments can be performed at LCLS, we
focus here on one specific example: Fluctuation X-ray Scattering
(FXS).

X-ray scattering of particles in a solution is a common
technique in the study of the structure and dynamics of macro-
molecules in biologically-relevant conditions and gives an under-
standing of their function. However, traditional methods currently
used at synchrotrons suffer from the fact that the exposure time is
longer than the rotation time of the particle, leading to the capture
of angularly-averaged patterns. FXS techniques fully utilize the
femtosecond pulses to measure diffraction patterns from multiple

FLUCTUATION X-RAY SCATTERING REAL-TIME APP

Sample

l

XFEL X-rays

l Detector

Fig. 1: Fluctuation X-ray Scattering experiment setup.
In an FXS experiment, femtosecond pulses from an X-ray Free
Electron Laser are shot at a stream of particles in solution. The
scattered light forms a diffraction pattern on the detector, aggregating
the contributions of the different particles.’

identical macromolecules below the sample rotational diffusion
times (Fig. 1). The patterns are then collected to reconstruct a 3D
structure of the macromolecule or measure some of its properties.
This technique was described in the late 1970s [Kam77], [KKB81]
and has been widely used at LCLS [PDM"18], [KDY"17],
[MLS*14], MWQ™16].

While a few hundreds of diffraction patterns might be suffi-
cient to reconstruct a low resolution 3-dimensional structure under
ideal conditions [KDY*17], the number of snapshots required
can be dramatically increased when working with low signal-to-
noise ratios (e.g. small proteins) or when studying low-probability
events. More interestingly, the addition of a fourth dimension,
time, to study dynamical processes expands again the amount
of data required. At these points, hundreds of millions or more
snapshots could be required.

We present here a Python application for FXS data analysis
that is being developed to run on supercomputing facilities at
US Department of Energy national laboratories in near real-time
while an experiment is taking place. As soon as data is produced,
it is passed through a Data Reduction Pipeline on-site and sent
to a supercomputer via ESNet, where reconstructions can be
performed. It is critical to complete this analysis in near real-time
to guide experimental decisions.

In FXS, each diffraction pattern contains several identical
particles in random orientations. Information about the structure
of the individual particle can be recovered by studying the two-
point angular correlation of the data. To do so, the 2D images
are expanded in a 3D, orientation-invariant space, where they are
aggregated using the following formula:

27
C2(,,80) = 2ﬂNZ/ (g, 9)1i(d, 6 +56)do (1)

where I;(g, ¢) represents the intensity of the j-th image, in polar
coordinates. This correlator can then be used as a basis for the
actual 3D reconstruction of the data (Fig. 3), using an algorithm
described elsewhere [DZS15], [PDM™18].

Acceleration: getting the best out of NumPy

The expansion/aggregation step presented in Equation (1) was
originally the most computation intensive part of the application,
representing the vast majority of the computation time. The

1. Copyright © P. Zwart, under the CC BY-SA 4.0 license.

19

original implementation was processing each I;(g,¢) image one
after the other and aggregating the results. This resulted in taking
424 milliseconds per image using NumPy [Oli06], [vdWCV11]
functions and a slightly better performance using Numba [LPS15].
As we illustrate in this section, rewriting this critical step allowed
us to gain a factor of 40 in speed, without any other libraries or
tools. The tests were performed on a node of Cori Haswell.

Let us start by simplifying Equation (1). The integral corre-
sponds to the correlation over /;(q,¢) and I;(¢’,¢). Thanks to the
convolution theorem [Arf85], we have

Ca(q.4.A9) = ZJ’I (Zi(q.0)]Z;(d,9)]l, (2

27cN

where .% represents the Fourier transform over ¢. The inverse
Fourier transform being linear, we can get it outside the sum, and
on the left side. For the simplicity of the argument, we also neglect
all coefficients.

Using y as the equivalent of ¢ in the Fourier transform and
Aj(q,y) as a shorthand for .Z [I;(q, ¢)], we have:

N

Colgrd Ad) = - g WA 3)

2N

We end up with the naive implementation below:

C2 = np.zeros (C2_SHAPE,
for i in range (N_IMGS) :
A = np.fft.fft (images[i], axis=-1)
for j in range (N_RAD_BINS) :
for k in range (N_RAD_BINS) :
C2[j, k, :1 += A[]J] * A[k]

np.complex128)

.conj()

taking 42.4 seconds (for 100 images), using the following param-
eters:

N_IMGS = 100

N_RAD_BINS = 300

N_PHI_BINS = 256

IMGS_SHAPE = (N_IMGS, N_RAD_BINS, N_PHI_BINS)
C2_SHAPE = (N_RAD_BINS, N_RAD_BINS, N_PHI_BINS)

where N_RAD_BINS and N_PHI_BINS represent the image
dimensions over the g- and ¢-axes, as well as the dataset:

images = np.random.random (IMGS_SHAPE)

We note that a typical application would be processing millions of
images, but let us use 100 for the example.

This naive version can be slightly accelerated using the fact
that our matrix is conjugate-symmetric:

C2 = np.zeros (C2_SHAPE,
for i in range (N_IMGS) :

np.complex128)

A = np.fft.fft (images[i], axis=-1)
for j in range (N_RAD_BINS) :
C203, 3, :1 += A[J] = A[j]l.conj()
for k in range(j+1, N_RAD_BINS) :
tmp = A[J] » Alk].conj()
c2[3, k, :] += tmp
C2lk, J, :1 += tmp.conj()

which takes 36.0 seconds. Note that this is only 18% faster, far
from a 2x speed-up.

This naive implementation should not be confused with a pure
Python implementation, which is expected to be slow, since we
already operate on NumPy arrays along the angular axis. Such an
implementation could be approximated by:

A = np.fft.fft (images[i], axis=-1)

for j in range (N_RAD_BINS) :
for k in range (N_RAD_BINS) :

20

for 1 in range (N_PHI_BINS) :

c2lj, k, 11 += A[j, 11 = A[k, 1].conj()

which takes 49.1 seconds per image, i.e. about 100 times slower
than the naive implementation, in accordance with the stereotype
of Python being much slower than other languages for numerical
computing.

A common acceleration strategy is to use Numba:
@numba. jit
def A_to_C2(A):

C2 = np.zeros (C2_SHAPE, np.complexl128)
for j in range (N_RAD_BINS) :

c2[j, 3, =1 += A[J] » A[J]).conj()
for k in range (j+1, N_RAD_BINS) :
tmp = A[Jj] » A[k].conj()
C2[j, k, :]1 += tmp
C2[k, j, :] += tmp.conj()

return C2

C2 = np.zeros (C2_SHAPE,

for i in range (N_IMGS) :
A = np.fft.fft (images[i],
C2 += A_to_C2(n)

np.complex128)

axis=-1)

which takes 38.5 seconds, i.e. 10% faster than the naive imple-
mentation.

When considering our problem size of up to millions of
images, processing images one at a time makes sense. However,
focusing on a small batch as we have been doing in these
examples, a strategy can be to have NumPy and/or Numba work
on arrays of images, rather than the individual images. We then
have the following:

@numba. jit
def As_to_C2(As):

C2 = np.zeros (C2_SHAPE, np.complexl28)
for i in range (N_IMGS) :
A = As[i]
for j in range (N_RAD_BINS) :
C2[(3, 3, :1 += A[3] » A[j].conJ()
for k in range (j+1, N_RAD_BINS) :
tmp = A[J] » A[k].conj()
C2[j, k, :] += tmp
C2[k, 3, :] += tmp.conj()

return C2

As = np.fft.fft (images,
C2 = As_to_C2(As)

axis=-1)

which takes 11.9 seconds, i.e. 3.56 times faster. We note also here
the batching of the Fast Fourier Transform.

However, such an implementation does not sound trivial using
NumPy, although one can recognize a nice (generalized) Einstein
sum in Equation (3), leading to:

As
c2 =

axis=-1)
As,

np.fft.fft (images,

np.einsum('hik, hjk->idk", As.conj())

which corresponds to expressing C2 [i, Jj, k] as the sum over
hof As[h, i, k] * As.conj()[h, J, kI.

This takes 17.9 seconds, which is slower than the version using
Numba per batch. However, we can realize that, at this batch
level, the last axis is independent from the others and that the
underlying alignment of the arrays matters. Thanks to NumPy’s
asfortranarray function, however, that is not an issue. We
then use the F-ordered dataset.
images_F = np.asfortranarray (images)
We observe, for the Einstein sum:

As = np.fft.fft (images_F, axis=-1)

C2 = np.einsum('hik,hjk->1jk', As, As.conj())

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Implementation Time (/100) Speedup
Naive 424 s 1
Numba 38.5s 10%
Numba, batched 119s 3.56x
Einsum, F-order 4.05s 10.5x%
Dot, F-order 1.06 s 40.0x

TABLE 1: Summary of the major time improvements.

taking 4.05 seconds, i.e. 4.42 times faster than the C-ordered
Einstein sum and 10.5 times faster than the naive implementation.

Additionally, it turns out that in our precise case, we can
actually express it as a more optimized dot product:
As = np.fft.fft (images, axis=-1)
C2 = np.zeros (C2_SHAPE, np.complexl128)
for k in range (N_PHI_BINS) :

c2[..., k] += np.dot(As[..., k].T,
As[..., k].conj())

which now brings us down to 1.37 seconds, i.e. 30.9 times faster
than the naive version.

For the F-ordered case, we have:

As = np.fft.fft (images_F, axis=-1)
C2 = np.zeros (C2_SHAPE, np.complexl128, order='F")
for k in range (N_PHI_BINS) :
cz2[..., k] += np.dot(As[..., k].T,
As[..., kl.conj())

taking 1.06 seconds, i.e. 29% faster than the C-ordered case and
40.0 times faster than the naive implementation. We could note
that, at that speed, the main computation gets close to the time
required to perform the Fast Fourier Transform, which is, in our
case at least, faster on C-ordered (107 ms) than F-ordered (230
ms) data. Removing the FFT computation would yield an even
starker contrast (977 ms vs. 499 ms), but would neglect the cost
of the re-alignment.

In conclusion, and as summarized in Table 1, implementing
this algorithm using NumPy or Numba naively gives significant
improvement in computational speed compared to pure Python,
but there is still a lot of room for improvement. On the other hand,
such improvement does not necessarily require using fancier tools.
We showed that batching our computation helped in the Numba
case. From there, a batched NumPy expression looked interesting.
However, it required optimizing the mathematical formulation of
the problem to come up with a canonical expression, which could
then be handed over to NumPy. Finally, the memory layout can
have a sizable impact on the computation, while being easy to
tweak in NumPy.

Parallelization: effortless scaling with Pygion

To parallelize and scale the application we use Pygion, a Python
interface for the Legion task-based programming system [SA19].
In Pygion, the user decorates functions as tasks, and annotates
task parameters with privileges (read, write, reduce), but otherwise
need not be concerned with how tasks execute on the underlying
machine. Pygion infers the dependencies between tasks based on
their privileges and the values of arguments passed to tasks, and
ensures that the program executes correctly, even when running
on a parallel and distributed supercomputer.

To enable the distributed execution, it is necessary to separate
the question of what data is needed in a given task from the

FLUCTUATION X-RAY SCATTERING REAL-TIME APP

Cori Haswell Weak Scaling with Lustre

@ Legion == == Linear

20000

15000

10000

Throughput (Events/s)

5000

Cori Haswell Weak Scaling with Burst Buffer
@ Legion == == Linear

20000
15000

10000

Throughput (Events/s)

5000

Nodes

Fig. 2: Weak scaling behavior on Cori Haswell with Lustre filesystem
(top) and Burst Buffer (bottom,).

The application was run on 100,000 images per node, for up to 64
nodes on Cori Haswell. The Lustre filesystem is a high performance
system running on HDDs attached to the supercomputer. The Burst
Buffer corresponds to SSDs placed within the supercomputer itself
used for per-job storage.

allocation of the data in a given memory or memories. This
reification of the flow of data between tasks is achieved by
declaring regions, similar to multi-dimensional Pandas dataframes
[McK10]. Regions contain fields, each of which is similar to
and exposed as a NumPy array. Regions can be partitioned into
subregions, which can be processed by different tasks, allowing
the parallelism. Note that regions are allocated only when needed,
so it is possible (and idiomatic) to allocate a region which is
larger than any single machine’s memory, and then to partition
into pieces that will be used by individual tasks.

We scale up to 64 Haswell nodes on NERSC’s Cori su-
percomputer using Pygion, with 10 to 30 processes per node,
to reach a throughput of more than 15,000 images per second,
as illustrated in Figure 2. Compared to an equivalent MPI im-
plementation, Pygion is easier to scale out of the box as it
manages load-balancing of tasks across cores, shared memory
(between distinct Python processes on a node) and provides high-
level parallelization constructs. These constructs make it easy to
rapidly explore different partitioning strategies, without writing or
rewriting any communication code. This enabled us to quickly find
a strategy that scales better than the straightforward but ultimately
suboptimal strategy that we initially developed.

As an example, the most computationally intensive part of
our problem is the C»(q,q’,A¢) computation discussed in detail

21

in the section above, which can trivially be parallelized over the
last (angular) axis. However, the image preprocessing and the
Fast Fourier Transform can only be parallelized over the first
(image) axis. Given the size of the data, parallelizing between
nodes would involve a lot of data movement. Parallelizing within
a node, however, could help. In the MPI case, we use MPI to
parallelize between nodes and within a node (MPI+MPI). If we
were to introduce this optimization into such a code, one would
have to create a 2-level structure such as:

In each node:
Define node-level communicator
In each rank:
Receive and pre-process some stacks of images
All-to-all exchange from stacks of images
to angular sections
In each rank:
Process the received angular section

where all the data exchange has to be coded by hand.

In the Pygion case, the ability to partition the data allows us to
create tasks that are unaware of the extent of the regions on which
they operate. We can therefore partition these regions both over
the image axis and the angular one. We end up with:

@task (privileges=[...])
def node_level_task(...):
for i, batch in enumerate (data_batches):
preprocess (input_=batch,
output=A_image_partition[i])
for i in range (NUMBER_OF_PROCESSES) :
process (input_=A_angular_partition[i],
output=C2_angular_partition[i])

where the data exchange is implied by the image-axis par-
tition A_image_partition and the angular-axis partition
A_angular_partition of the same region A.

Results

To test our framework, a dataset of 100,000 single-particle diffrac-
tion images was simulated from a lidless chaperone (mm-cpn) in
its open state, using Protein Data Bank entry 3IYF [ZBS™10].
These images were processed by the algorithm described above
to get the 2-point correlation function, C>(g,q’,A¢), described
in Equation (1). This correlation function was first filtered and
reduced using the methods described in [PDM™ 18], and then the
reconstruction algorithm in [DZS15] was applied to reconstruct
the electron density of the chaperone from the reduced correla-
tions, yielding the reconstruction shown in Figure 3.

To obtain this result, the correlation function was filtered
and reduced using the Multi-Tiered Iterative Filtering (M-TIF)
algorithm [PDM*18]. In particular, M-TIF uses several itera-
tions of Tikhonov regularization, linear pseudo inversion, and
principal component analysis to fit three tiers of expansions to
the data: a Legendre polynomial expansion in theta, a Hankel-
transformed Fourier-Bessel expansion in g and ¢/, and a low-
rank eigenvalue decomposition on the matrices of Fourier-Bessel
coefficients. The number of terms needed in each expansion step
is limited and determined by an upper-bound diameter estimate
of the protein sample. Once these coefficients are determined,
their corresponding series expansions are computed to produce a
filtered correlation function, along with a reduced set of Legendre
polynomial expansion coefficients on a coarse g-grid, which is
used in the reconstruction (See [PDM ™ 18] for more details on the
filtering).

22

Fig. 3: Reconstruction of a lidless chaperone (mm-cpn) in its open
state from simulated diffraction patterns.

The 2-point correlation function was computed on the simulated
dataset as described in the present document. It was then filtered,
reduced, and fed to a reconstruction algorithm described elsewhere
[PDM*18], [DZS15] to yield the reconstruction above.

These Legendre expansion coefficients can be directly related
to the protein sample. In particular, the coefficients are equal to
the inner products of spherical harmonic coefficients of the 3D
intensity function, which is defined as the squared magnitude of
the Fourier transform of the sample’s electron density [Kam77].
This relation can be expressed as two tiers of phase problems
that need to be solved to reconstruct the underlying density: a
hyperphase problem to recover the intensity function from the
Legendre coefficients, and a classical scalar phase problem to
recover the density from the intensity. In order to reconstruct
the sample, we apply the Multi-Tiered Iterative Phasing (M-
TIP) algorithm [DZS15] to the Legendre coefficients computed
from the M-TIF filtering/reduction procedure. M-TIP works by
using a set of computationally efficient projection operators in
a self-consistent iteration to simultaneously solve both tiers of
phase problems and reconstruct the sample from the Legendre
coefficients.

After acceleration and parallelization, we now reach a through-
put of about 230 images per second on a single node of Cori
Haswell. This would allow us to process in real time the output
of an FXS experiment at LCLS-I, which produces 120 images
per second. Such a rapid processing would make possible to
give scientists immediate feedback on the quality of their data.
After scaling to up to 64 nodes, the throughput of about 15,000
images per second would be sufficient to follow up with the early
abilities of LCLS-II, although further acceleration and scaling will
be required to match the data being produced as LCLS-II increases
its pulse rate dramatically over the following years.

Interestingly, one might note from Equations 1, 2, or 3 that
computing the correlation function involves a sum over all the
images. The output of that computation, however, no longer
depends on the number of images in the dataset. The size of the
correlation function Cy(q,q’,A@) is, therefore, only dependent on
the resolution over the ¢, ¢/, and A¢ axes. As a consequence, the
computational complexity of the post-processing of the correlation
function and the reconstruction algorithm does not scale with the
amount of data being processed.

Conclusion

The Linac Coherent Light Source provides scientists with the
ability of X-ray diffraction patterns with much higher brightness

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

and much shorter timescales, allowing experiments not possible
elsewhere. With its upgrades LCLS-II in 2021 and LCLS-II-HE
(High Energy) in 2025, LCLS experiments will produce up to
millions of X-ray pulses per second and generate commensurate
amounts of data. In some cases, such as the FXS technique
described in this paper, the processing of the dataset will require
High Performance Computing at a scale that can no longer be
provided in-house.

We showed that Python gives us and our users the flexi-
bility to adapt the analysis pipeline to new experiments. The
main drawback of Python is that implementing new algorithms
without relying on specialized libraries can be problematically
slow. However, we illustrate with our example that spending some
time optimizing the math of the problem (rather than the code)
and being aware of the strengths and weaknesses of NumPy and
Numba can allow us to achieve drastically better performances,
without the need to develop or use external libraries.

Finally, we used Pygion to manage the parallelization of the
problem, which allows us to design applications that scale much
more naturally than MPI at a given level of coding effort, and
in particular has allowed us to explore different parallelization
strategies more rapidly, leading ultimately to a more scalable
solution than what we otherwise might have been able to find.

Acknowledgement

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. Use of the Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.

REFERENCES

[Arf85] G Arfken. Convolution theorem. In Mathematical Methods
for Physicists, chapter 15.5, pages 810-814. Academic Press,
Orlando, FL, 3 edition, 1985.

Jeffrey J Donatelli, Peter H Zwart, and James A Sethian. It-
erative phasing for fluctuation X-ray scattering. Proceedings
of the National Academy of Sciences of the United States of
America, 112(33):10286-91, 2015. doi:10.1073/pnas.
1513738112.

Zvi Kam. Determination of Macromolecular Structure in
Solution by Spatial Correlation of Scattering Fluctuations.
Macromolecules, 10(5):927-934, 1977. doi:10.1021/
ma60059a009.

Ruslan P. Kurta, Jeffrey J. Donatelli, Chun Hong Yoon, Peter
Berntsen, Johan Bielecki, Benedikt J. Daurer, Hasan Demirci,
Petra Fromme, Max Felix Hantke, Filipe R.N.C. Maia, Anna
Munke, Carl Nettelblad, Kanupriya Pande, Hemanth K.N.
Reddy, Jonas A. Sellberg, Raymond G. Sierra, Martin Svenda,
Gijs Van Der Schot, Ivan A. Vartanyants, Garth J. Williams,
P. Lourdu Xavier, Andrew Aquila, Peter H. Zwart, and Adrian P.
Mancuso. Correlations in Scattered X-Ray Laser Pulses Reveal
Nanoscale Structural Features of Viruses. Physical Review Let-
ters, 119(15), 2017. doi:10.1103/PhysRevLett.119.
158102.

Z Kam, M. H.J. Koch, and J. Bordas. Fluctuation x-ray scattering
from biological particles in frozen solution by using synchrotron
radiation. Proceedings of the National Academy of Sciences of
the United States of America, 78(6 1):3559-3562, 1981. doi:
10.1073/pnas.78.6.3559.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM
15, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2833157.2833162.

[DZS15]

[Kam77]

[KDY*17]

[KKB81]

[LPS15]

FLUCTUATION X-RAY SCATTERING REAL-TIME APP

[McK10]

[MLS*14]

[MWQT16]

[O1i06]

[PDM™* 18]

[SA19]

[vdWCV11]

[WRD15]

[ZBS*10]

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stefan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56—
61,2010. doi:10.25080/Majora—-92b£f1922-00a.
Derek Mendez, Thomas J. Lane, Jongmin Sung, Jonas Sellberg,
Clément Levard, Herschel Watkins, Aina E. Cohen, Michael
Soltis, Shirley Sutton, James Spudich, Vijay Pande, Daniel
Ratner, and Sebastian Doniach. Observation of correlated X-ray
scattering at atomic resolution. Philosophical Transactions of
the Royal Society B: Biological Sciences, 369(1647):20130315,
2014. doi:10.1098/rstb.2013.0315.

Derek Mendez, Herschel Watkins, Shenglan Qiao, Kevin S.
Raines, Thomas J. Lane, Gundolf Schenk, Garrett Nelson,
Ganesh Subramanian, Kensuke Tono, Yasumasa Joti, Makina
Yabashi, Daniel Ratner, and Sebastian Doniach. Angular cor-
relations of photons from solution diffraction at a free-electron
laser encode molecular structure. [UCrJ, 3(6):420-429, 2016.
doi:10.1107/S2052252516013956.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

Kanupriya Pande, Jeffrey J Donatelli, Erik Malmerberg, Lutz
Foucar, Christoph Bostedt, Ilme Schlichting, and Petrus H Zwart.
AD initio structure determination from experimental fluctuation
X-ray scattering data. Proceedings of the National Academy of
Sciences of the United States of America, 115(46):11772-11777,
2018. doi:10.1073/pnas.1812064115.

Elliott Slaughter and Alex Aiken. Pygion: Flexible, Scalable
Task-Based Parallelism with Python. In Proceedings of PAW-
ATM 2019: Parallel Applications Workshop, Alternatives to
MPI+X, Held in conjunction with SC 2019: The International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 58-72. Institute of Electrical and
Electronics Engineers (IEEE), 2019. doi:10.1109/PAW-
ATM49560.2019.00011.

Stéfan van der Walt, Chris Colbert, and Gaél Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science & Engineering, 13:22-30, 2011. doi:
10.1109/MCSE.2011.37.

William E. White, Aymeric Robert, and Mike Dunne. The linac
coherent light source. Journal of Synchrotron Radiation, 22:472—
476, 2015. doi:10.1107/51600577515005196.

Junjie Zhang, Matthew L. Baker, Gunnar F. Schroder,
Nicholai R. Douglas, Stefanie Reissmann, Joanita Jakana,
Matthew Dougherty, Caroline J. Fu, Michael Levitt, Steven J.
Ludtke, Judith Frydman, and Wah Chiu. Mechanism of
folding chamber closure in a group II chaperonin. Nature,
463(7279):379-383, 2010. doi:10.1038/nature08701.

23

24

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

HOOMD-blue version 3.0 A Modern, Extensible,
Flexible, Object-Oriented API for Molecular
Simulations

Brandon L. Butler*, Vyas Ramasubramani*, Joshua A. Anderson?, Sharon C. Glotzer*¥I

https://youtu.be/fIFPYZsOVgI

Abstract—HOOMD-blue is a library for running molecular dynamics and hard
particle Monte Carlo simulations that uses pybind11 to provide a Python in-
terface to fast C++ internals. The package is designed to scale from a single
CPU core to thousands of NVIDIA or AMD GPUs. In developing HOOMD-blue
version 3.0, we significantly improve the application protocol interface (API)
by making it more flexible, extensible, and Pythonic. We have also striven to
provide simpler and more performant entry points to the internal C++ classes
and data structures. With these updates, we show how HOOMD-blue users will
be able to write completely custom Python classes which integrate directly into
the simulation run loop and analyze previously inaccessible data. Throughout
this paper, we focus on how these goals have been achieved and explain design
decisions through examples of the newly developed API.

Index Terms—molecular dynamics, molecular simulations, Monte Carlo simu-
lations, object-oriented

Introduction

Molecular simulation has been an important technique for study-
ing the equilibrium properties of molecular systems since the
1950s. The two most common methods for this purpose are
molecular dynamics and Monte Carlo simulations [MRR "], [AW].
Molecular dynamics (MD) is the application of Newton’s laws of
motion to molecular system, while Monte Carlo (MC) methods
employ a Markov chain to sample from equilibrium configura-
tions. Since their inception these tools have been used to study
numerous systems, examples include colloids [DEG], metallic
glasses [FIE], and proteins [DZK "], among others.

Today many software packages exist for these purposes.
LAMMPS [Pli], GROMACS [BvdSvD], [AMS'], OpenMM
[ESCT], ESPResSo [WWST], [GTK"] and Amber [SCW],
[CCD*] are a few examples of popular MD packages, while
Cassandra [SMM "] and MCCCS Towhee [Mar] provide MC
simulation capabilities. Implementations on high performance
GPUs [SMAG], parallel architectures [NBB "], and the greater
accessibility of computational power have tremendously improved

= Corresponding author: butlerbr@umich.edu

University of Michigan, Department of Chemical Engineering

§ University of Michigan, Department of Material Science and Engineering
9 University of Michigan, Department of Physics

II' University of Michigan, Biointerfaces Institute

Copyright © 2020 Brandon L. Butler et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

<+

the length [BCR™] and time [SDS™] scales of simulations from
those conducted in the mid 1900s. The flexibility and generality
of such tools has dramatically increased the usage of molecular
simulations, which has in turn led to demands for even more
customizable software packages that can be tailored to very spe-
cific simulation requirements. Different tools have taken different
approaches to enabling this, such as the text-file scripting in
LAMMPS, the command line interface provided by GROMACS,
and the Python, C++, C, and Fortran bindings of OpenMM.
Recently, programs that have used other interfaces have also added
Python bindings such as LAMMPS and GROMACS.

In the development of these tools, the requirements for the
software to enable good science became more obvious. Having
computational research that is Transferable, Reproducible, Usable
(by others), and Extensible (TRUE) [TGM "] is necessary for
fully realizing the potential of computational molecular science.
HOOMD-blue is part of the MoSDeF project which seeks to
bring these traits to the wider computational molecular science
community through packages like mbuild [KSJ"] and foyer
[KST*] which are Python packages that generalize generating
initial particle configurations and force fields respectively across
a variety of simulation back ends [CG], [TGM™]. This effort
in increased TRUEness is one of many motivating factors for
HOOMD-blue version 3.0.

HOOMD-blue [ALT], [GNA™], [AGG], an MD and MC
simulations engine with a C++ back end, provides to use a Python
API facilitated through pybind11 [JRM]. The package is open-
source under the 3-clause BSD license, and the code is hosted
on GitHub (https://github.com/glotzerlab/hoomd-blue). HOOMD-
blue was initially released in 2008 as the first fully GPU-enabled
MD simulation engine using NVIDIA GPUs through CUDA.
Since its initial release, HOOMD-blue has remained under active
development, adding numerous features over the years that have
increased its range of applicability, including adding support for
domain decomposition (dividing the simulation box among MPI
ranks) in 2014 and recent developments that enable support for
AMD in addition to NVIDIA GPUs.

Despite its great flexibility, the package’s API still has certain
key limitations. In particular, since its inception HOOMD-blue
has been designed around some maintenance of global state.
The original releases of HOOMD-blue provided Python scripting
capabilities based on an imperative programming model, but it
required that these scripts be run through HOOMD-blue’s mod-

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 25

ified interpreter that was responsible for managing this global
state. Version 2.0 relaxed this restriction, allowing the use of
HOOMD-blue within ordinary Python scripts and introducing the
SimulationContext object to encapsulate the global state
to some degree, thereby allowing multiple largely independent
simulations to coexist in a single script. However, this object
remained largely opaque to the user, in many ways still behav-
ing like a pseudo-global state, and version 2.0 otherwise made
minimal modifications to the HOOMD-blue Python API, which
was largely inspired by and reminiscent of the structure of other
simulation software, particularly LAMMPS.

In this paper, we describe the upcoming 3.0 release of
HOOMD-blue, which is a complete redesign of the API from the
ground up to present a more transparent and Pythonic interface
for users. Version 3.0 aspires to match the intuitive APIs provided
by other Python packages like SciPy [VGO™], NumPy [vdWCV],
scikit-learn [PVG "], and matplotlib [Hun], while simultaneously
adding seamless interfaces by which such packages may be in-
tegrated into simulation scripts using HOOMD-blue. Global state
has been completely removed, instead replaced by a highly object-
oriented model that gives users explicit and complete control
over all aspects of simulation configuration. Where possible, the
new version also provides performant, Pythonic interfaces to data
stored by the C++ back end. Over the next few sections, we will
use examples of HOOMD-blue’s version 3.0 API (which is still
in development at the time of writing) to highlight the improved
extensibility, flexibility, and ease of use of the new HOOMD-blue
APL

General API Design

Rather than beginning with abstract descriptions, we will introduce
the new API by example. The script below illustrates a standard
MD simulation of a Lennard-Jones fluid using the version 3.0
API. Each of the elements of this script is introduced throughout
the rest of this section. We also show a rendering of the particle
configuration in Figure (1).

import hoomd

import hoomd.md
import numpy as np

hoomd.device.Auto ()
hoomd.Simulation (device)

device =
sim =

Place particles on simple cubic lattice.

N_per_side = 14

N = N_per_side #*x% 3

L = 20

xs = np.linspace (0, 0.9,

X, Yy, z = np.meshgrid(xs,

coords = np.array (
(x.ravel (), y.ravel(),

N_per_side)
XS, XS)

z.ravel())).T

One way to define an initial system state 1is
by defining a snapshot and using it to

initialize the system state.

snap = hoomd.Snapshot ()

snap.particles.N = N

snap.configuration.box = hoomd.Box.cube (L)
snap.particles.position[:] = (coords - 0.5) = L
snap.particles.types = ['A']

sim.create_state_from_snapshot (snap)

Create integrator and forces

integrator = hoomd.md.Integrator (dt=0.005)

langevin = hoomd.md.methods.Langevin (
hoomd.filter.All (), kT=1., seed=42)

Fig. 1: A rendering of the Lennard-Jones fluid simulation script
output. Particles are colored by the Lennard-Jones potential energy
that is logged using the HOOMD-blue Logger and GSD class
objects. Figure is rendered in OVITO [Stu] using the Tachyon [Sto]
renderer.

integrator.methods.append (langevin)

nlist = hoomd.md.nlist.Cell ()
1j = hoomd.md.pair.LJ(nlist,
lj.params [('A', '"A')] = dict(
sigma=1., epsilon=1.)
integrator.forces.append (1)

r_cut=2.5)

Set up output

gsd = hoomd.output.GSD('trajectory.gsd', trigger=100)
log = hoomd.logging.Logger ()

log += 17

gsd.log = log

sim.operations.integrator = integrator
sim.operations.analyzers.append (gsd)
sim.run(100000)

Simulation, Device, State, Operations

Each simulation in HOOMD-blue is now controlled through three
main objects which are joined together by the Simulation
class: the Device, State, and Operations classes. Figure (2)
shows this relationship with some core attributes/methods for each
class. Each Simulation object holds the requisite information
to run a full molecular dynamics or Monte Carlo simulation,
thereby circumventing any need for global state information. The
Device class denotes whether a simulation should be run on
CPUs or GPUs and the number of cores/GPUs it should run on. In
addition, the device manages custom memory tracebacks, profiler
configurations, and the MPI communicator among other things.
The State class stores the system data (e.g. particle positions,
orientations, velocities, the system box). As shown in our example,
the state can be initialized from a snapshot, after which the data
can be accessed and modified in two ways. One option is for
users to operate on a new Snapshot object, which exposes
NumPy arrays that store a copy of the system data. To construct
a snapshot, all system data distributed across MPI ranks must be
gathered and combined by the root rank. Setting the state using the
snapshot API requires assigning a modified snapshot to the system
state (i.e. all system data is reset upon setting). The advantages
to this approach come from the ease of use of working with a

26

. . run()
/ Simulation — timestep
State Operations Device
snapshot integrator \ -
cpu_local_snapshot updaters ﬁgmmt;g;ﬁgtor
gpu_local_snapshot analyzers e
particle types tuners :
bond_types computes notice level

Fig. 2: Diagram of core objects with some attributes and methods.
Classes are in bold and orange; attributes and methods are blue.
Figure is made using Graphviz [EGK™], [GKNV].

single object containing the complete description of the state. The
following snippet showcases how this approach can be used to set
the z position of all particles to zero.

snap = sim.state.snapshot
snapshot only stores
if snap.exists:
set all
snap.particles.position(:,
sim.state.snapshot = snap

data on rank 0

z positions to 0

2] =0

The other API for accessing State data is via a zero-copy,
rank-local access to the state’s data on either the GPU or CPU.
On the CPU, we expose the buffers as numpy.ndarray-like
objects through provided hooks such as _ _array_ufunc_
and __array_interface__ . Similarly, on the GPU we mock
much of the CuPy [zot] ndarray class if it is installed; however,
at present the CuPy package provides fewer hooks, so our inte-
gration is more limited. Whether or not CuPy is installed, we use
version 2 of the __cuda_array_interface__ protocol for
GPU access (compatibility with our GPU buffers in Python there-
fore depends on the support of version 2 of this protocol). This
provides support for libraries such as Numba’s [LPS] GPU just-in-
time compiler and PyTorch [PGM"]. We chose to mock NumPy-
like interfaces rather than expose ndarray objects directly out
of consideration for memory safety. To ensure data integrity, we
restrict the data to only be accessible within a specific context
manager. This approach is much faster than using the snapshot
API because it uses HOOMD-blue’s data buffers directly, but
the nature of providing zero-copy access requires that users deal
directly with the domain decomposition since only data for a MPI
rank’s local simulation box is stored by a given rank. The example
below modifies the previous example to instead use the zero-copy
APL

with sim.state.cpu_local_snapshot as data:
data.particles.position[:, 2] = 0

assumes CuPy is installed

with sim.state.gpu_local_snapshot as data:
data.particles.position[:, 2] = 0

The last of the three classes, Operations, holds the different
operations that will act on the simulation state. Broadly, these
consist of 3 categories: updaters, which modify simulation state;
analyzers, which observe system state; and tuners, which tune the
hyperparameters of other operations for performance. Although

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

updaters and analyzers existed in version 2.x (tuners are a version
3.0 split from updaters), these operations have undergone a sig-
nificant API overhaul for version 3.0 to support one of the more
far-reaching changes to HOOMD-blue: the deferred initialization
model.

Operations in HOOMD-blue are generally implemented as
two classes, a user-facing Python object and an internal C++
object which we denote as the action of the operation. On creation,
these C++ objects typically require a Device and a C++ State
in order to, for instance, initialize appropriately sized arrays.
Unfortunately this requirement restricts the order in which objects
may be created since devices and states must exist first. This
restriction could create potential confusion for users who forget
this ordering and would also limit the composability of modular
simulation components by preventing, for instance, the creation
of a simple force field without the prior existence of a Device
and a State. To circumvent these difficulties, the new API has
moved to a deferred initialization model in which C++ objects are
not created until the corresponding Python objects are attached to
a Simulation, a model we discuss in greater detail below.

Deferred C++ Initialization

The core logic for the deferred initialization model is imple-
mented in the _Operation class, which is the base class for
all operations in Python. This class contains the machinery for
attaching/detaching operations to/from their C++ counterparts, and
it defines the user interface for setting and modifying operation-
specific parameters while guaranteeing that such parameters are
synchronized with attached C++ objects as appropriate. Rather
than handling these concerns directly, the _Operation class
manages parameters using specially defined classes that handle
the synchronization of attributes between Python and C++: the
ParameterDict and TypeParameterDict classes. In addi-
tion to providing transparent dict-like APIs for the automatically
synchronized setting of parameters, these classes also provide
strict validation of input types, ensuring that user inputs are
validated regardless of whether or not operations are attached to a
simulation.

Each class supports validation of their keys, and they can be
used to define the structure and validation of arbitrarily nested
dictionaries, lists, and tuples. Likewise, both support default
values, but to a varying degree due to their differing purposes.
ParameterDict acts as a dictionary with additional validation
logic. However, the TypeParameterDict represents a dictio-
nary in which each entry is validated by the entire defined schema.
This distinction occurs often in simulation contexts as simulations
with multiple types of particles, bonds, angles, etc. must specify
certain parameters for each type. In practice this distinction means
that the TypeParameterDict class supports default specifi-
cation with arbitrary nesting, while the ParameterDict has
defaults but these are equivalent to object attribute defaults. An
example TypeParameterDict initialization and use of both
classes can be seen below.

ion of ameterDict
TypeParameterDict (

diameter=float,

ignore_statistics=False,

orientable=False,

len_keys=1)

Specificat Sphere's shape 1

>
]
o]
0]
B
T
i}
I}
)

from hoomd.hpmc.integrate import Sphere

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 27

sphere = Sphere (seed=42)

Set nselect parameter using ParameterDict
sphere.nselect = 2

Set shape for type 'A' using TypeParameterDict
sphere.shape['A'] = {'diameter': 1.}

Set shape for types 'B', 'C', and 'D'
sphere.shapel[['B', 'C', 'D']] = {'diameter': 0.5}
The specification defined above sets defaults for

ignore_statistics and orientable (the purpose
of these is outside the scope of the paper), but requires the setting
of the diameter for each type.

To store lists of operations that must be attached to a simu-
lation, the analogous SyncedList class transparently handles
attaching of operations.

import hoomd

ops = hoomd.Operations ()

gsd = hoomd.output.GSD ('example.gsd")
Append to the SyncedList
ops.analyzers.append (gsd)

ops.analyzers

These classes also have the ancillary benefit of improving error
messaging and handling. An example error message for trying to
set sigma for A-A interactions in the Lennard-Jones pair potential
to a string (i.e. 1j.params[('A', 'A')] = {'sigma':
'foo', 'epsilon': 1.} would provide the error message,
TypeConversionError: For types [CA’, A’)], error
In key sigma: Value foo of type <class ’str’> cannot be
converted using OnlyType(float). Raised error: value foo
not convertible into type <class ’float’>.

Previously, the equivalent error would be "TypeError: must be
real number, not str", the error would not be raised until running
the simulation, and the line setting sigma would not be in the stack
trace given.

Logging and Accessing Data

Logging simulation data for analysis is a critical feature of molec-
ular simulation software packages. Up to now, HOOMD-blue
has supported logging through an analyzer interface that simply
accepted a list of quantities to log, where the set of valid quantities
was based on what objects had been created at any point and
stored to the global state. The creation of the base _Operation
class has allowed us to simultaneously simplify and increase the
flexibility of our logging infrastructure. The Loggable metaclass
of _Operation allows all subclasses to expose their loggable
quantities by marking Python properties or methods to query.

The actual task of logging data is accomplished by the
Logger class, which provides an interface for logging most
HOOMD-blue objects and custom user quantities. In the example
script from the General API Design section above, we show that
the Logger can add an operation’s loggable quantities using
the += operator. The utility of this class lies in its intermediate
representation of the data. Using the HOOMD-blue namespace as
the basis for distinguishing between quantities, the Logger maps
logged quantities into a nested dictionary. For example, logging
the Lennard-Jones pair potentials total energy would produce this
dictionary by a Logger object { 'md': {'pair': {'LJ':
{'energy': (-1.4, 'scalar')}}}} where 'scalar'
is a flag to make processing the logged output easier. In real
use cases, the dictionary would likely be filled with many other
quantities.

Version 3.0 of HOOMD-blue uses properties extensively to
expose object data such as the total potential energy of all pair

potentials, the trial move acceptance rate in MC integrators, and
thermodynamic variables like temperature or pressure, all of which
can be used directly or stored through the logging interface. To
support storing these properties, the logging is quite general and
supports scalars, strings, arrays, and even generic Python objects.
By separating the data collection from the writing to files, and by
providing such a flexible intermediate representation, HOOMD-
blue can now support a range of back ends for logging; moreover,
it offers users the flexibility to define their own. For instance,
while logging data to text files or standard out is supported out
of the box, other back ends like MongoDB, Pandas [McK], and
Python pickles can now be implemented on top of the existing
logging infrastructure. Consistent with the new approach to log-
ging, HOOMD-blue version 3.0 makes simulation output an opt-in
feature even for common outputs like performance and thermody-
namic quantities. In addition to this improved flexibility in storage
possibilities, for HOOMD-blue version 3.0 we have exposed more
of an object’s data than had previously been available through
adding new properties to objects. For example, pair potentials now
expose per-particle potential energies at any given time (this data
is used to color Figure (1)).

In conjunction with the deferred initialization model, the new
logging infrastructure also allows us to more easily export an
object’s state (not to be confused with the simulation state). Due to
the switch to deferred initialization, all operation state information
is now stored directly in Python, so we have made object state a
loggable quantity. All operations also provide a from_state
factory method that can reconstruct the object from the state,
dramatically increasing the restartability of simulations since the
state of each object can be saved at the end of a given run and read
at the start of the next.

from hoomd.hpmc.integrate import Sphere

sphere = Sphere.from_state('example.gsd', frame=-1)

This code block would create a Sphere object with the parame-
ters stored from the last frame of the gsd file example.gsd.

User Customization

A major improvement in HOOMD-blue version 3 is the ease with
which users can customize their simulations in previously impos-
sible ways. The changes that enable this improvement generally
come in two flavors, the generalization of existing concepts in
HOOMD-blue and the introduction of a completely new Action
class that enables the user to inject arbitrary actions into the
simulation loop. In this section, we first discuss how concepts like
periods and groups have been generalized from previous iterations
of HOOMD-blue and then show how users can inject completely
novel routines to actually modify the behavior of simulations.

Triggers

In HOOMD-blue version 2.x, everything that was not run on
every timestep had a period and phase associated with it. The
timesteps the operation was run on could then be determined by
the expression, timestep % period - phase == 0. In
our refactoring and development, we recognized that this concept
could be made much more general and consequently more flexible.
Objects do not have to be run on a periodic timescale; they just
need some indication of when to run. In other words, the opera-
tions needed to be triggered. The Trigger class encapsulates this

28

concept, providing a uniform way of specifying when an object
should run without limiting options. Trigger objects return a
Boolean value when called with a timestep (i.e. they are functors).
Each operation that requires triggering is now associated with a
corresponding Trigger instance which informs the simulation
when the operation should run. The previous behavior is now
available through the Periodic class in the hoomd.trigger
module. However, this approach enables much more sophisticated
logic through composition of multiple triggers such as Before
and After which return True before or after a given timestep
with the And, Or, and Not subclasses that function as logical
operators on the return value of the composed Triggers.

In addition to the flexibility the Trigger class provides by
abstracting out the concept of triggering an operation, we use
pybindl1 to easily allow subclasses of the Trigger class in
Python. This allows users to create their own triggers in pure
Python that will execute in HOOMD-blue’s C++ back end. An
example of such a subclass that reimplements the functionality of
HOOMD-blue version 2.x can be seen below.

from hoomd.trigger import Trigger

class CustomTrigger (Trigger) :
def __init__ (self, period, phase=0):
super () .__init__ ()
self.period = period
self.phase = phase

def call__ (self,

o

v = timestep %
return v

timestep) :
self.period - self.phase ==

User-defined subclasses of Trigger are not restricted to simple
algorithms or even stateless ones; they can implement arbitrarily
complex Python code as demonstrated in the Large Examples
section’s first code snippet.

Variants

Variant objects are used in HOOMD-blue to specify
quantities like temperature, pressure, and box size which
can vary over time. Similar to Trigger, we generalized
our ability to linearly interpolate values across timesteps
(hoomd.variant.linear_interp in HOOMD-blue ver-
sion 2.x) to a base class Variant which generalizes the concept
of functions in the semi-infinite domain of timesteps ¢ € Zg .
This allows sinusoidal cycling, non-uniform ramps, and other
behaviors. Like Trigger, Variant can be a direct subclass
of the C++ class. An example of a sinusoidal cycling variant is
shown below.

from math import sin
from hoomd.variant import Variant

class SinVariant (Variant) :
def _ init_ (self, frequency, amplitude,
phase=0, center=0):
super () .__init__ ()
self.frequency = frequency
self.amplitude = amplitude
self.phase = phase
self.center = center
def _ _call_(self, timestep):
tmp = self.frequency x timestep
tmp = sin(tmp + self.phase)
return self.amplitude * tmp + self.center

def _min(self):

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)
return self.center - self.amplitude

def _max(self):
return self.center + self.amplitude

ParticleFilters

Unlike Trigger orVariant,ParticleFilter isnotagen-
eralization of an existing concept but the splitting of one class into
two. However, this split is also targeted at increasing flexibility and
extensibility. In HOOMD-blue version 2.x, the Part icleGroup
class and subclasses served to provide a subset of particles within
a simulation for file output, application of thermodynamic integra-
tors, and other purposes. The class hosted both the logic for storing
the subset of particles and filtering them out from the system.
After the refactoring, ParticleGroup is only responsible for
the logic to store and perform some basic operations on a set
of particle tags (a means of identifying individual particles), while
the new class ParticleFilter implements the selection logic.
This choice makes ParticleFilter objects lightweight and
provides a means of implementing a State instance-specific
cache of ParticleGroup objects. The latter ensures that we
do not create multiples of the same ParticleGroup which can
occupy large amounts of memory. The caching also allows the
creation of many of the same ParticleFilter object without
needing to worry about memory constraints.

ParticleFilter can be subclassed (like Trigger and
Variant), but only through the CustomParticleFilter
class. This is necessary to prevent some internal details from
leaking to the user. An example of a CustomParticleFilter
that selects only particles with positive charge is given below.

from hoomd.filter import CustomParticleFilter

class PositiveCharge (CustomParticleFilter):
def _ init_ (self, state):
super () .__init__ (state)

def _ hash_ (self):

return hash(self. class .__name__)

def _ _eq_ (self, other):

return type(self) == type (other)

def find_tags(self, state):
with state.cpu_local_snapshot as data:
mask = data.particles.charge > 0
return data.particles.tag[mask]

Custom Actions

In HOOMD-blue, we distinguish between the objects that perform
an action on the simulation state (called Actions) and their con-
taining objects that deal with setting state and the user interface
(called Operations). Through composition, HOOMD-blue offers
the ability to create custom actions in Python and wrap them
in our _CustomOperation subclasses (divided on the type
of action performed) allowing the execution of the action in the
Simulation run loop. The feature makes user created actions
behave indistinguishably from native C++ actions. Through cus-
tom actions, users can modify state, tune hyperparameters for
performance, or observe parts of the simulation. In addition,
we are adding a signal for Actions to send that would stop a
Simulation.run call. This would allow actions to stop the
simulation when they complete, which could be useful for tasks
like tuning MC trial move sizes. With respect to performance,

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 29

with zero copy access to the data on the CPU or GPU, custom
actions can also achieve high performance using standard Python
libraries like NumPy, SciPy, Numba, CuPy and others. Below we
show an example of an Action that switches particles of type
initial_type to type final_type with a specified rate
each time it is run. This action could be refined to implement
a reactive MC move reminiscent of [GSJ] or to have a variable
switch rate. These exercises are left to the reader.

import hoomd

from hoomd.filter import (
Intersection, All, Type)

from hoomd.custom import Action

class SwapType (Action) :
def _ init__ (self, initial_type,
final_type, rate, filter=Al1l()):
self.final_type = final_type
self.rate = rate
self.filter = Intersection(
[Type (initial_type), filter])
def act (self, timestep):
state = self._state
final type_id = state.particle_types.index(
self.final_type)
tags = self.filter (state)
with state.cpu_local_snapshot as snap:
tags = np.intersectld(
tags, snap.particles.tag,
part = data.particles
filtered_index = part.rtags[tags]
N_swaps = int (len(tags) = self.rate)
mask = np.random.choice (filtered_index,
N_swaps,
replace=False)
final type_id

True)

part.typeid[mask] =

Conclusion

With modern simulation analysis packages such as freud [RDH "],
MDTraj [MBH "], and MDAnalysis [GLB "], [MDWB], initial-
ization tools such as mbuild and foyer, and visualization packages
like OVITO and plato [SD] using Python APIs, HOOMD-blue,
built from the ground up with Python in mind, fits in seamlessly.
Version 3.0 improves upon this and presents a Pythonic API that
encourages customization. Through enabling Python subclassing
of C++ classes, introducing custom actions, and exposing data in
zero-copy arrays/buffers, we allow HOOMD-blue users to utilize
the full potential of Python and the scientific Python community.

Acknowledgements

This research was supported by the National Science Founda-
tion, Division of Materials Research Award # DMR 1808342
(HOOMD-blue algorithm and performance development) and by
the National Science Foundation, Office of Advanced Cyberin-
frastructure Award # OAC 1835612 (Pythonic architecture for
MoSDeF). Hardware provided by NVIDIA Corp. is gratefully ac-
knowledged. This research was supported in part through compu-
tational resources and services supported by Advanced Research
Computing at the University of Michigan, Ann Arbor.

Appendix

In the appendix, we will provide more substantial applications of
features new to HOOMD-blue.

Trigger that detects nucleation

This example demonstrates a Trigger that returns true when
a threshold Q¢ Steinhardt order parameter [SNR] (as calculated
by freud) is reached. Such a Trigger could be used for BCC
nucleation detection which could trigger a decrease in cooling
rate, a more frequent output of simulation trajectories, or any other
desired action. Also, in this example we showcase the use of the
zero-copy rank-local data access. This example also requires the
use of ghost particles, which are a subset of particles bordering a
MPI rank’s local box. Ghost particles are known by a rank, but
the rank is not responsible for updating them. In this case, ghost
particles are required for computing the Qg value for particles near
the edges of the current rank’s local simulation box.

import numpy as np

import freud

from mpidpy import MPI

from hoomd.trigger import Trigger

class Q6Trigger (Trigger) :

def _ init_ (self, simulation, threshold,
mpi_comm=None) :
super () .__init__ ()
self.threshold = threshold

self.state = simulation.state
simulation.device.num_ranks
if nr > 1 and mpi_comm is None:
raise RuntimeError ()
elif nr > 1:
self.comm = mpi_comm
else:
self.comm = None
self.g6 = freud.order.Steinhardt (1=6)

nr =

def _ call_(self, timestep):
with self.state.cpu_local_snapshot as data:
part = data.particles
box = data.box
aabb_box = freud.locality.AABBQuery (
box, part.positions_with_ghosts)
nlist = aabb_box.query (
part.position,
{'num_neighbors': 12,
'exclude_1ii': True})
np.nanmean (self.g6.compute (
(box, part.positions_with_ghosts),
nlist) .particle_order)
if self.comm:
return self.comm.allreduce (
Q6 >= self.threshold,
op=MP1I.LOR)

06 =

else:

return Q6 >= self.threshold

Pandas Logger Back-end

Here we highlight the ability to use the Logger class to create a
Pandas back end for simulation data. It will store the scalar and
string quantities in a single pandas.DataFrame object while
each array-like object is stored in a separate DataFrame object.
All DataFrame objects are stored in a single dictionary.

import pandas as pd

from hoomd.custom import Action

from hoomd.util import (
dict_flatten, dict_filter, dict_map)

def is_flag(flags):
def func(v):

return v([1]

return func

in flags

30

def not_none(v):

return v[0]

is not None

def hnd_2D_arrays(v) :

if v[1] in ['scalar', 'string', 'state']:
return v
elif len(v[0].shape) == 2:
return
str(i): col
for i, col in enumerate(v[0].T)}

class DataFrameBackEnd (Action) :

def

def

__init__ (self,
self.logger =

logger) :
logger

act (self,
log_dict =
is_scalar =

timestep) :
self.logger.log()

is_flag(['scalar', 'string'])

sc = dict_flatten(dict_map(dict_filter(
log_dict,
lambda x: not_none(x) and is_scalar (x)),
lambda x: x[0]))

rem = dict_flatten(dict_map (dict_filter (
log_dict,
lambda x: not_none (x) \

and not is_scalar (x)),

hnd_2D_arrays))

if not hasattr(self,
self.data = {
'scalar': pd.DataFrame (
columns=[
'.'".join (k)
'array': {
'.'".join (k) : pd.DataFrame ()
for k in rem}}

'data') :

for k in sc]),

sdf = pd.DataFrame (
{".".join(k): v for k,
index=[timestep])
rdf = {'.'.join(k): pd.DataFrame (
v, columns=[timestep]).T
for k,v in rem.items () }
data = self.data
data['scalar'] =
datal['array'] = {
k: v.append (rdf[k])
for k, v in data['array'].items()}

v in sc.items() },

datal['scalar'].append (sdf)

REFERENCES

[AGG]

[ALT]

[AMST]

[AW]

[BCR']

Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer.
HOOMD-blue: A Python package for high-performance
molecular dynamics and hard particle Monte Carlo sim-
ulations. 173:109363. URL: http://www.sciencedirect.
com/science/article/pii/S0927025619306627, doi:10.1016/ 3.
commatsci.2019.109363.

Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General
purpose molecular dynamics simulations fully implemented on
graphics processing units. 227(10):5342-5359. URL: http://www.
sciencedirect.com/science/article/pii/S0021999108000818, doi:
10.1016/3.3cp.2008.01.047.

Mark James Abraham, Teemu Murtola, Roland Schulz,
Szilard Péll, Jeremy C. Smith, Berk Hess, and Erik Lin-
dahl. GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to su-
percomputers. 1-2:19-25. URL: http://www.sciencedirect.
com/science/article/pii/S2352711015000059, doi:10.1016/ 7.
softx.2015.06.001.

B.J. Alder and T. E. Wainwright. Studies in Molecular Dynamics.
I. General Method. 31(2):459-466. URL.: https://aip.scitation.org/
doi/abs/10.1063/1.1730376, doi:10.1063/1.1730376.
Surendra Byna, Jerry Chou, Oliver Rubel, Prabhat, Homa
Karimabadi, William S. Daughter, Vadim Roytershteyn, E. Wes
Bethel, Mark Howison, Ke-Jou Hsu, Kuan-Wu Lin, Arie Shoshani,

[BvdSvD]

[CCD™]

[CG]

[DEG]

[DZK "]

[EGK™]

[ESCT]

[FIE]

[GKNV]

[GLB™]

[GNAT]

[GSJ]

[GTK™]

[Hun]

[JRM]

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Andrew Uselton, and Kesheng Wu. Parallel I/O, analysis, and
visualization of a trillion particle simulation. In SC ’12: Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1-12. doi:
10.1109/8C.2012.92.

H. J. C. Berendsen, D. van der Spoel, and R. van Drunen.
GROMACS: A message-passing parallel molecular dynamics im-
plementation. 91(1):43-56. URL: http://www.sciencedirect.com/
science/article/pii/001046559500042E, doi:10.1016/0010-
4655 (95)00042-E.

David A. Case, Thomas E. Cheatham, Tom Darden, Holger
Gohlke, Ray Luo, Kenneth M. Merz, Alexey Onufriev, Car-
los Simmerling, Bing Wang, and Robert J. Woods. The
Amber biomolecular simulation programs. 26(16):1668—
1688. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
20290, doi:10.1002/3jcc.20290.

Peter T Cummings and Justin B Gilmer. Open-source molecular
modeling software in chemical engineering. 23:99-105. URL: http:
/Iwww.sciencedirect.com/science/article/pii/S2211339819300073,
doi:10.1016/3j.coche.2019.03.008.

Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer.
Predictive Self-Assembly of Polyhedra into Complex Struc-
tures. 337(6093):453-457. URL: https://science.sciencemag.org/
content/337/6093/453, arXiv:22837525, doi:10.1126/
science.12208609.

Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B.
Best, and Jeetain Mittal. Sequence determinants of protein phase
behavior from a coarse-grained model. 14(1):e1005941. URL:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.
pcbi. 1005941, doi:10.1371/journal.pcbi.1005941.
John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. Graphviz and dynagraph — static and
dynamic graph drawing tools. In Graph Drawing Software, pages
127-148. Springer-Verlag.

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGib-
bon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, An-
drew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P.
Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM 7:
Rapid development of high performance algorithms for molec-
ular dynamics. 13(7):e1005659. URL: https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi. 1005659, doi: 10.
1371/journal.pcbi.1005659.

Yue Fan, Takuya Iwashita, and Takeshi Egami. How ther-
mally activated deformation starts in metallic glass. 5(1):1-
7. URL: https://www.nature.com/articles/ncomms6083, doi : 10.
1038/ncomms6083.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-phong Vo. A Technique for Drawing Directed Graphs.
19(3):214-230.

Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E.
Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domanski, David L.
Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein.
MDAnalysis: A Python Package for the Rapid Analysis of Molecu-
lar Dynamics Simulations. pages 98—105. URL: https://conference.
scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.
25080/Majora-629e541a-00e

Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynam-
ics simulations on GPUs. 192:97-107. URL: http://www.
sciencedirect.com/science/article/pii/S0010465515000867, doi:
10.1016/5.cpc.2015.02.028.

Sharon C. Glotzer, Dietrich Stauffer, and Naeem Jan. Monte
Carlo simulations of phase separation in chemically reac-
tive binary mixtures. 72(26):4109-4112. URL: https://
link.aps.org/doi/10.1103/PhysRevLett.72.4109, doi:10.1103/
PhysRevLett.72.41009.

Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C.
Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt
Kremer, and Torsten Stuehn. ESPResSo++ 2.0: Advanced methods
for multiscale molecular simulation. 238:66—76. URL.: http://www.
sciencedirect.com/science/article/pii/S0010465518304399, doi:
10.1016/5.cpc.2018.12.017.

John D. Hunter. Matplotlib: A 2D Graphics Environment. 9(3):90—
95. doi:10.1109/MCSE.2007.55.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. Pybind11

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 31

[KSI*]

[KST*]

[LPS]

[Mar]

[MBH™]

[McK]

[MDWB]

[MRR™]

[NBB*]

[PGMT]

[Pli]

[PVG™]

— Seamless operability between C++11 and Python. URL: https:
//github.com/pybind/pybind11.

Christoph Klein, Janos Sallai, Trevor J. Jones, Christopher R.
Tacovella, Clare McCabe, and Peter T. Cummings. A Hierarchical,
Component Based Approach to Screening Properties of Soft Mat-
ter. In Randall Q Snurr, Claire S. Adjiman, and David A. Kofke,
editors, Foundations of Molecular Modeling and Simulation: Select
Papers from FOMMS 2015, Molecular Modeling and Simulation,
pages 79-92. Springer. URL: https://doi.org/10.1007/978-981-10-
1128-3_5,d01:10.1007/978-981-10-1128-3_5.
Christoph Klein, Andrew Z. Summers, Matthew W. Thompson,
Justin B. Gilmer, Clare McCabe, Peter T. Cummings, Janos
Sallai, and Christopher R. Iacovella. Formalizing atom-typing
and the dissemination of force fields with foyer. 167:215-
227. URL: http://www.sciencedirect.com/science/article/pii/
S0927025619303040, doi:10.1016/j.commatsci.2019.
05.026.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A LLVM-based Python JIT compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM °’15, pages 1-6. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/2833157.2833162, doi:10.
1145/2833157.2833162.

Marcus G. Martin. MCCCS Towhee: A tool for Monte
Carlo molecular simulation. 39(14-15):1212-1222. URL:
https://doi.org/10.1080/08927022.2013.828208, doi:10.1080/
08927022.2013.828208.

Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harri-
gan, Christoph Klein, Jason M. Swails, Carlos X. Hernindez,
Christian R. Schwantes, Lee-Ping Wang, Thomas J. Lane, and
Vijay S. Pande. MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories. 109(8):1528-
1532. URL: http://www.sciencedirect.com/science/article/pii/
S0006349515008267, doi:10.1016/7.bpj.2015.08.015.
Wes McKinney. Data Structures for Statistical
Computing in Python. pages 56-61. URL: https:
/Iconference.scipy.org/proceedings/scipy2010/mckinney.html,
doi:10.25080/Majora-92bf1922-00a.

Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B.
Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for
the analysis of molecular dynamics simulations. 32(10):2319-
2327. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
21787, doi:10.1002/3cc.21787.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. —Equation of
State Calculations by Fast Computing Machines. 21(6):1087—
1092. URL: https://aip.scitation.org/doi/abs/10.1063/1.1699114,
doi:10.1063/1.1699114.

Christoph Niethammer, Stefan Becker, Martin Bernreuther, Mar-
tin Buchholz, Wolfgang Eckhardt, Alexander Heinecke, Stephan
Werth, Hans-Joachim Bungartz, Colin W. Glass, Hans Hasse, Jad-
ran Vrabec, and Martin Horsch. Ls1 mardyn: The Massively Par-
allel Molecular Dynamics Code for Large Systems. 10(10):4455—
4464. URL: https://doi.org/10.1021/ct500169q, doi:10.1021/
ct500169q.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\ textquotesingle Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8026-8037. Curran Asso-
ciates, Inc. URL: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style- high-performance-deep-learning-library.pdf.

S. Plimpton. Fast parallel algorithms for short-range molecular
dynamics. URL: https://www.osti.gov/biblio/10176421, doi : 10.
2172/10176421.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Pe-
ter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu
Perrot, and Edouard Duchesnay. Scikit-learn: Machine Learning
in Python. 12(85):2825-2830. URL: http://jmlr.org/papers/v12/
pedregosal la.html.

[RDH']

[SCW]

[SD]

[SDS*]

[SMAG]

[SMM]

[SNR]

[Sto]

[Stu]

[TGM™]

[vdWCV]

[VGO1]

[WWSH]

[zot]

Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P.
Spellings, Joshua A. Anderson, and Sharon C. Glotzer. Freud:
A software suite for high throughput analysis of particle sim-
ulation data. page 107275. URL: http://www.sciencedirect.
com/science/article/pii/S0010465520300916, doi1:10.1016/ 7.
cpc.2020.107275.

Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker.
An overview of the Amber biomolecular simulation package.
3(2):198-210. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/wems. 1121, doi:10.1002/wems . 1121.
Matthew Spellings and Bradley D. Dice. Plato.
github.com/glotzerlab/plato.

David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman,
Kenneth M. Mackenzie, Joseph A. Bank, Cliff Young, Martin M.
Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow,
Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jef-
frey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul
Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and
Brian Towles. Millisecond-scale molecular dynamics simulations
on Anton. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC 09, pages 1-11.
Association for Computing Machinery. URL: https://doi.org/10.
1145/1654059.1654126, doi:10.1145/1654059.1654126.

Matthew Spellings, Ryan L. Marson, Joshua A. Anderson, and
Sharon C. Glotzer. GPU accelerated Discrete Element Method
(DEM) molecular dynamics for conservative, faceted particle
simulations. 334:460-467. URL: http://www.sciencedirect.
com/science/article/pii/S0021999117300244, do1:10.1016/7.
jcp.2017.01.014.

Jindal K. Shah, Eliseo Marin-Rimoldi, Ryan Gotchy Mullen,
Brian P. Keene, Sandip Khan, Andrew S. Paluch, Neeraj
Rai, Lucienne L. Romanielo, Thomas W. Rosch, Brian
Yoo, and Edward J. Maginn. Cassandra: An open source
Monte Carlo package for molecular simulation. 38(19):1727-
1739. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
24807, doi:10.1002/3cc.24807.

Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti.
Bond-orientational order in liquids and glasses. 28(2):784—
805. URL: https://link.aps.org/doi/10.1103/PhysRevB.28.784,
doi:10.1103/PhysRevB.28.784.

John Edward Stone. An effiicient library for parallel ray trac-
ing and animation. URL: http://jedi.ks.uiuc.edu/~johns/tachyon/
papers/thesis.pdf.

Alexander Stukowski. Visualization and analysis of atom-
istic simulation data with OVITO-the Open Visualization Tool.
18(1):015012. URL: https://doi.org/10.1088%2F0965-0393%
2F18%2F1%2F015012, doi:10.1088/0965-0393/18/1/
015012.

Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto,
Co D. Quach, Parashara Shamaprasad, Alexander H. Yang,
Christopher R. Tacovella, Clare McCabe, and Peter T. Cummings.
Towards molecular simulations that are transparent, reproducible,
usable by others, and extensible (TRUE). 118(9-10):e1742938.
URL: https://doi.org/10.1080/00268976.2020.1742938, doi:10.
1080/00268976.2020.1742938.

Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
13(2):22-30. doi:10.1109/MCSE.2011.37.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C. J. Carey, lhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antonio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt.
SciPy 1.0: Fundamental algorithms for scientific computing in
Python. 17(3):261-272. URL.: https://www.nature.com/articles/
$41592-019-0686-2, doi:10.1038/s41592-019-0686-2.

Florian Weik, Rudolf Weeber, Kai Szuttor, Konrad Breitsprecher,
Joost de Graaf, Michael Kuron, Jonas Landsgesell, Henri Menke,
David Sean, and Christian Holm. ESPResSo 4.0 — an ex-
tensible software package for simulating soft matter systems.
227(14):1789-1816. URL: https://doi.org/10.1140/epjst/e2019-
800186-9, doi:10.1140/epjst/e2019-800186-9.

CuPy. URL.: https://cupy.chainer.org/.

URL: https://

32

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Compyle: a Python package for parallel computing

Aditya Bhosale*$, Prabhu Ramachandran®3*

Abstract—Compyle allows users to execute a restricted subset of Python on a
variety of HPC platforms. It is an embedded domain-specific language (eDSL)
for parallel computing. It currently supports multi-core execution using Cython,
and OpenCL and CUDA for GPU devices. Users write code in a restricted
subset of Python that is automatically transpiled to high-performance Cython
or C. Compyle also provides a few very general purpose and useful parallel
algorithms that allow users to write code once and have them run on a variety
of HPC platforms.

In this article, we show how to implement a simple two-dimensional molec-
ular dynamics (MD) simulation package in pure Python using Compyle. The
result is a fully parallel program that is relatively easy to implement and solves
a non-trivial problem. The code transparently executes on multi-core CPUs
and GPGPUs allowing simulations with millions of particles. A 3D MD code is
also provided and compares very favorably with a well known, open source,
molecular dynamics package.

Index Terms—High-performance computing, multi-core CPUs, GPGPU accel-
erators, parallel algorithms, transpilation

Motivation and background

In this brief article we provide an overview of Compyle (https:
/lcompyle.rtfd.io). Compyle is a BSD licensed, Python package
that allows users to write code once in pure Python and have it
execute transparently on both multi-core CPUs or GPGPUs via
CUDA or OpenCL. Compyle is available on PyPI and hosted on
github at https://github.com/pypr/compyle

Users often write their code in one language (sometimes a
high-performance language), only to find out later that the same
performance is not possible on newer hardware without making
significant changes. For example, many scientists do not make
use of GPGPU hardware despite their excellent performance and
availability. One of the problems is that it is often hard to reuse
code developed in one language and expect it to work on all of the
platforms. Moreover, GPUs are parallel machines and extracting
performance from them requires the use of parallel algorithms.
Unless the initial development is done with this in mind, one
cannot easily convert a serial code into a parallel one.

There are many powerful tools available in the Python ecosys-
tem today that facilitate high-performance computing. PyPy is a
Python implementation in Python that features a JIT that allows
one to execute pure Python code at close to C-speeds. Numba uses
the LLVM compiler infrastructure to generate machine code that

Department of Aerospace Engineering
§ IIT Bombay, Mumbai, India
= Corresponding author: prabhu@aero.iitb.ac.in

Copyright © 2020 Aditya Bhosale et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

can rival native C code. Numba also supports execution on GPUs.
There are also compilers like Pythran that transpile a subset of
Python to C++ and support multi-core execution using OpenMP.
Cython is a much used and mature compiler that makes it possible
to write code in a mixture of Python and C. Cython also provides
loop parallelism using OpenMP. Packages like cppimport and
pybind11 make it a breeze to integrate Python with C++ code.
In addition, there are powerful interfaces to GPUs via packages
like PyOpenCL or PyCUDA. Furthermore, packages like Reikna
provide an abstraction and higher level API using PyOpenCL and
PyCUDA. Of these, Numba has matured a great deal and is both
easy to use and versatile.

Given this context, one may wonder why Compyle exists at
all. While Compyle grew out of a project that pre-dates Numba,
the real reason that Compyle exists is that solves a different
problem from most of the existing tools. Understanding this
requires a bit of a context. As a prototypical example, we look at a
simple molecular dynamics simulation where N particles interact
with each other via a Lennard-Jones potential. This problem is
discussed at length in [Sch15].

In order to implement this, the typical workflow for a Python
programmer would be to prototype the molecular dynamics sim-
ulation code in pure Python and obtain a proof of concept. One
would then optimize this code so as to run larger problems in
a smaller amount of time. Very often this would mean changing
some data structures, writing vectorized code using NumPy arrays,
and then resorting to tools like Numba to extract even more per-
formance (sometimes this requires that the code be devectorized
to make the looping explicit). Numba is an impressive tool and
one could say almost works magically well. In fact, for some
problems it will even do a good job of parallelizing the code to
run on multiple cores. However, one cannot execute this same
code on a GPU without making significant modifications, to the
point of practically rewriting it. While Numba offers some help
here with the CUDA and ROCm support, one would still have to
change quite a lot of code to have it work on these architectures.
As such, the issue is that it is difficult to have the same Python
code execute well on CPUs and GPUs.

The reason for this difficulty is that GPUs are inherently
parallel with many thousands of cores. Writing code to effectively
use such hardware requires a significant re-think of the algorithms
used. In particular the algorithm has to be fully parallelized. While
this is easy to do for simple problems, most useful computational
codes involve non-trivial algorithms, which are not always easy to
parallelize.

What Compyle attempts to do is to allow one to write code
once in a highly restrictive subset of pure Python and have this
run in parallel on both CPUs and GPUs. This is a significant

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING

difference from all the tools that we have mentioned above.

The difficulty in doing this is that it does require a change in
approach and also a loss of the typical conveniences with high-
level Python. While Compyle does not allow arbitrary Python
code, since the code is still written in Python and not another
language, it makes it much easier for users to write and manage
the code.

Compyle provides important parallel programming algorithms
that one typically requires when writing parallel programs. These
are the element-wise operations (or maps), reductions, and parallel
prefix scans. These primitives are written such that the same
program can be executed on both multi-core CPUs and GPUs
with minimal or no changes to the code.

This is currently not possible with any of the other tools. In
addition, Compyle has the following features:

o Generates either Cython or ANSI C code depending on
the backend and this code is quite readable (to a user
familiar with Cython or C). This makes it much easier
to understand and debug.

« Designed to be relatively easy to use as a code generator.

« Support for templated code generation to minimize repeti-
tive code.

« Highly restrictive language that facilitates cross-platform
execution.

Compyle is in principle very similar to the copperhead pack-
age described in [CGKI11]. The design of copperhead is very
elegant. However, it appears that copperhead is no longer under
development, the package has no commits after 2013 and is not
available on PyPI (another unrelated package with the same name
is available). While it does support execution via C++ and CUDA,
it does not support OpenCL. We were not aware of copperhead
until very recently and are likely to try and incorporate ideas from
it into Compyle.

Compyle is actively used by a non-trivial, open source, SPH
framework called PySPH and discussed in some detail in [RP " 19]
and [Ram16]. Compyle makes it possible for users to write their
SPH codes in high-level Python and have it executed on multi-
core and GPU accelerators with negligible changes to their code.
Unfortunately, Compyle is not used much outside of this context,
so while it does solve many problems, it is still under heavy
development.

In this paper we write a simple two-dimensional molecular
dynamics system that is described and discussed in the article by
[Sch15]. Our goal is to implement this system in pure Python
using Compyle. Through this we demonstrate the ease of use and
power of Compyle. We write programs that execute efficiently in
parallel on CPUs and GPUs without any modifications. We use
this as a way to illustrate the three important parallel algorithms
and show how they allow us to solve non-trivial problems. A
three-dimensional version is also implemented and compared with
HooMD. The results show that our code can be almost two-
times faster for the problem considered. A Google Colaboratory
notebook is provided to make it easy to explore Compyle and these
examples.

High-level overview

We now provide a high-level overview of Compyle and its basic
approach. This is helpful when using Compyle.

It is important to keep in mind that Compyle does not
provide a greater abstraction of the hardware but allows a user

33

to write code in pure Python and have that same code execute
on multiple different platforms. We currently support multi-core
execution using OpenMP and Cython, and also transparently
support OpenCL and CUDA so the same could could potentially
be reused on a GPGPU. Compyle makes this possible by providing
three important parallel algorithms, an elementwise operation (a
parallel map), a parallel scan (also known as a prefix sum), and a
parallel reduction. The Cython backend provides a native imple-
mentation whereas the OpenCL and CUDA backend simply wrap
up the implementation provided by PyOpenCL and PyCUDA.
These three algorithms make it possible to write a variety of
non-trivial parallel algorithms for high performance computing.
Compyle also provides the ability to write custom kernels with
support for local/shared memory specifically for OpenCL and
CUDA backends. Compyle provides simple facilities to annotate
arguments and types and can optionally make use of Python
3’s type annotation feature as well. Compyle also features JIT
compilation and automatic type inference.

Compyle does not provide support for any high level Python
and only works with a highly restricted Python syntax. While this
is not very user-friendly, we find that in practice this is vitally
important as it ensures that the code users write will run efficiently
and seamlessly execute on both a CPU and a GPU with minimum
or ideally no modifications. In addition, Compyle allows users
to generate code using mako templates in order to maximize
code reuse. Since Compyle performs source transpilation, it is
also possible to use Compyle as a code-generation engine and
put together code from pure Python to build fairly sophisticated
computational engines.

The functionality that Compyle provides falls broadly in two
categories,

e Common parallel algorithms that will work across back-
ends. This includes, elementwise operations, reductions,
and prefix-sums/scans.

e Specific support to run code on a particular backend.
This is for code that will only work on one backend by
definition. This is necessary in order to best use different
hardware and also use differences in the particular back-
end implementations. For example, the notion of local
(or shared) memory only has meaning on a GPGPU. In
this category we provide support to compile and execute
Cython code, and also create and execute a GPU kernel.
These features are not discussed in this article.

In general the subset of Python that Compyle supports are:

« Functions with a C-syntax, this means no default or key-
word arguments.

« Function arguments may be declared using either type
annotation or using a decorator or with default arguments
(which are only used to suggest the type).

o No Python data structures, i.e. no lists, tuples, sets, or
dictionaries.

« Contiguous Numpy arrays are supported but must be one
dimensional and must be a numerical data type.

« No memory allocation is allowed inside these functions.

¢ On OpenCL no recursion is supported but this will work
with Cython or CUDA.

o Currently, all function calls must not use dotted names,
i.e. don’t use math.sin, instead just use sin. This is
because we do not perform any kind of name mangling of
the generated code to make it easier to read.

34

e Compyle does support JIT compilation. If the type anno-
tation is not explicitly supplied, the types can be automat-
ically inferred when the functions are called.

e« No support for classes and structs although this may
change in a future release.

In what follows we provide a high-level introduction to the
basic parallel algorithms in the context of the prototypical molec-
ular dynamics problem. By the end of the article we show how
easy it is to write the code with Compyle and have it execute on
multi-core CPUs and GPGPUs. The programs we document here
are also available as part of the Compyle examples. We provide
a convenient Google Colaboratory notebook where users can run
the simple examples on a GPU as well.

Installation

Installation of Compyle is by itself straightforward and this can be
done with pip using:

pip install compyle

For execution on a CPU, Compyle depends on Cython and a
C++ compiler on the local machine. Multi-core execution requires
OpenMP to be available. Detailed instructions for installation are
available at the compyle installation documentation. For execution
on a GPU Compyle requires that either PyOpenCL or PyCUDA be
installed. It is possible to install the required dependencies using
the extras argument as follows:

pip install compyle[opencl]

Compyle is still under heavy development and one can install the
package using a git checkout from the repository on github at
https://github.com/pypr/compyle

Parallel algorithms

We will work through a molecular dynamics simulation of N
particles using the Lennard-Jones potential energy for interaction.
Each particle interacts with every other particle and together the
system of particles evolves in time. The Lennard-Jones potential
energy is given by,

ar=e((2)"-(2))

Each particle introduces an energy potential and if another particle
is at a distance of r from it, then the potential experienced by
the particle is given by the above equation. The gradient of
this potential energy function produces the force on the particle.
Therefore if we are given two particles at positions, 7; and 7;
respectively then the force on the particle j is dependent on the
value of |7; — 7| and the gradient is:

- 24¢ o\ o\ .
Fij= 2 2 - “\ Tij
ij ij ij

Where r;; = |Fij| and 7;; = 7; —¥;. The left hand side is the force
on particle i due to particle at j. Here, we use 6 =€ =m =1 for
our implementation. We use the velocity Verlet algorithm in order
to integrate the system in time. We use a timestep of Af and as
outlined in [Sch15], the position and velocity of the particles are
updated in the following sequence:

1) Positions of all particles are updated using the current
velocities as x; = x; + v;At + %aiAtz. The velocities are
then updated by half a step as v; = v; + %aiAt.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

2) The new acceleration of all particles are calculated using
the updated positions.
3) The velocities are then updated by another half a step.

In the simplest implementation of this, all particles influence
all other particles. This can be implemented very easily in Python
and Compyle. Our implementation will be parallel from the get-go
and will work on both CPUs and GPUs.

Once we complete the simple implementation we consider a
very important performance improvement where particles that are
beyond 3 natural units, i.e. r;; > 3 do not influence each other
(beyond this distance the force is negligible). This can be used
to reduce the complexity of the computation of the mutual forces
from an O(N?) to an O(N) computation. However, implementing
this easily in parallel is not so straightforward.

Due to the simplicity of the initial implementation, all of these
steps can be implemented using what are called "elementwise" op-
erations. This is the simplest building block for parallel computing
and is also known as the "parallel map" operation.

Elementwise

An elementwise operation can be thought of as a parallel for
loop. It can be used to map every element of an input array to
a corresponding output. Here is a simple elementwise function
implemented using Compyle to execute step 1 of the above
algorithm.

@annotate (float='m, dt',
gfloatp="x, vy, vx, vy, fx, fy'")
def integrate_stepl(i, m, dt, x, vy, vx, vy, fx, fy):
axi, ayi = declare('float', 2)
axi = fx[i] / m
ayi = fy[i] / m
x[1] += vx[i] * dt + 0.5 » axi » dt dt
y[i] += vy[i] = dt + 0.5 * ayi » dt » dt
vx[i] += 0.5 » axi = dt
vy[i] += 0.5 * ayi * dt

The annotate decorator is used to specify types of arguments
and the declare function is used to specify types of variables
declared in the function. In this case, gf loatp indicates a global
double pointer data type. Compyle also supports Python3 style
type annotations using the types defined in compyle.types.

Specifying types can be avoided by using the JIT compilation
feature which infers the types of arguments and variables based
on the types of arguments passed to the function at runtime.
Following is the implementation of steps 2 and 3 without the type
declarations.

@annotate
def calculate_force(i, x, vy, fx, fy,
num_particles) :
force_cutoff = 3.
force_cutoff2 = force_cutoff * force_cutoff
for j in range (num_particles):
if i == j:
continue
xij = x[1] - x[3J]
vij = ylil - yI3]
rij2 = xij » xij + yij » yij
if rij2 > force_cutoff2:
continue
irij2 = 1.0 / rij2
irij6 = irij2 » irij2 + irij2
irijl2 = irij6 = irijé6
peli]l += (2 % (irijl2 - irije6))
f_base = 24 % irij2 x (2 « irijl2 - irijeé)

pel

fx[i] += f_base x xij

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING

fy[i] += f_base * yij

@annotate

def integrate_step2(i, m,
vx[i] += 0.5 x fx[1]
vyl[i] += 0.5 » fyl[i]

dt, x, y, vx,
+ dt / m

x* dt / m

vy, fx, fy):

Finally, these components can be brought together to write the
step functions for our simulation,

@annotate
def step_methodl (i, x, vy, vx, vy, fx,
xmax, ymin, ymax, m,

num_particles):
integrate_stepl (i, m, dt, x, vy,

fy, xmin,

de,

pe,

vx, vy, fx, fy)

@annotate
def step_method2 (i, x, y, vx, vy, fx,
xmax, ymin, ymax, m,
num_particles):
calculate_force(i, x, vy, fx, fy,
num_particles)
integrate_step2 (i, m, dt, x, vy,

fy, xmin,

dt,

pe,

pe,

vx, vy, fx, fy)
These can then be wrapped using the Elementwise class and
called as normal python functions.

stepl = Elementwise (step_methodl,

backend=self.backend)
step2 = Elementwise (step_method2,
backend=self.backend)

One can also use the @elementwise decorator on the step
functions and those can then be directly called without having
to wrap them using Elementwise.

Note that in the above, step_methodl, step_method2
are the ones that are wrapped into an elementwise operation. The
integrate_step methods are merely called by these. For an
elementwise kernel, the first argument is always the index of the
particular element being processed, in this case i. One can think
of the function as the block of code being executed by a for loop.
The number of elements iterated over is always implicitly based
on the first array argument passed to the function, in this case, x.

The simulation can then be executed simply as follows,

ialize x, y
ialize vx, vy, fx,

num_steps = int(t // dt)
for i in range (num_steps):
stepl(x, vy, vx, vy, fx,
ymin, ymax, m, dt,
step2(x, y, vx, vy, fx,
ymin, ymax, m, dt,

fy, pe, xmin, xmax,
self.num_particles)
fy, pe, xmin, xmax,
self.num_particles)

We have used a fixed wall non-periodic boundary condition for
our implementation. The details on the implementation of the
boundary condition can be found in the example section of
Compyle’s github repository here.

The backend used can be changed using the following code:

from compyle.api import
On OpenMP

get_config

get_config() .use_openmp = True
Run with OpenCL
get_config() .use_opencl = True

No other code changes are needed.

35

50

40 1

30 A

20 A

101

0 10 20 30 40 50

Fig. 1: Snapshot of simulation with 500 particles.

Reduction

To check the accuracy of the simulation, the total energy of the
system can be monitored. The total energy for each particle can
be calculated as the sum of its potential and kinetic energy. The
total energy of the system can then be calculated by summing the
total energy over all particles.

The reduction operator reduces an array to a single value.
Given an input array (ag,a1,ds,--,a,—1) and an associative
binary operator @, the reduction operation returns the value
apg®a;---Day—1.

Compyle also allows users to give a map expression to map the
input before applying the reduction operator. The total energy of
our system can thus be found as follows using reduction operator
in Compyle.

@annotate

def calculate_energy (i, vx, vy, pe, num_particles):
ke = 0.5 » (vx[i] » vx[i] + wvy[i] * vyl[i])
return pe[i] + ke

energy_calc = Reduction('a+b',

map_func=calculate_energy,
backend=backend)

total_energy = energy_calc(vx, vy, pe, num_particles)

Here, in the expression 'a+b' a represents ¢; and b represents
the reduction result till i — 1, i.e. Z{;lak. For the maximum for
example one would write 'max (a, b)'. Common reductions
like sum, max and min are also available but we show the general
form above where we can also map the values using the function

given before the reduction is applied.

Initial Results

Figure 1 shows a snapshot of simulation using 500 particles and
bounding box size 50 with a non-periodic boundary condition.
For evaluating our performance, we ran our implementation
on a 2.9 Ghz quad-core Intel Core i7 processor and an NVIDIA
Tesla P100 GPU. We used dt = 0.02 and ran the simulation for 25
timesteps. Figures 2 and 3 show the speedup achieved over serial
execution using Cython by using OpenMP, OpenCL and CUDA.
As you can see on the CPUs we get more than a 5x speedup (de-
spite having only 4 cores). However, on the GPU we get around a
200x speedup. This is compared to very fast execution on a single

36

331 —%— OpenMP

2.01

103 104
Number of particles

Fig. 2: Speed up over serial Cython using OpenMP.

200 A

—— OpenCL
175 4 CUDA
150
125 /
/
s V4
2 100 7
] /
Q.
(2]
75 A
50 A
04—
103 10*

Number of particles

Fig. 3: Speed up over serial Cython using CUDA and OpenCL.

Intel Xeon 2.3GHz CPU. The fact that we can use both OpenCL
and CUDA is also very important as on some operating systems,
there is no CUDA support even though OpenCL is supported
(like the GPUs on MacOS). Note that by default Compyle uses
floating point precision on the GPUs as most GPUs perform much
better with floating point precision. We can use double precision
on the GPU using get_config() .use_double = True if
we require it. Again, we do not need to change the solver to do
this. Our implementation is about 2x slower when using double
precision on an NVIDIA Tesla P100 GPU which is typically
expected.

This is in itself remarkable given that all we do to run on the
GPU or CPU is to simply set the appropriate backend. In most
of the Compyle examples, we use a command line argument to
switch the backend. So with exactly the same code we are able to
immediately run our program fully in parallel and have it run on
both multi-core CPUs as well as GPUs.

Many problems can be solved using the map-reduce approach
above. However, almost all non-trivial applications require a bit
more than that and this is where the parallel scan becomes very
important.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Scans

Up to now we have found the influence of all particles on each
other. Since the force on two particles is negligible when they
are more than 3 units apart, we do not have to loop over all the
particles, we can therefore reduce the computation to an O(N)
computation and increase performance significantly. One way of
doing this is to bin the particles into small boxes and given
a particle in a box, only interact with the box and its nearest
neighbor boxes.

Implementing this in serial is fairly easy, but if we want this
to work fast and scale on a GPU we must implement a parallel
algorithm. This is where the parallel scan comes in and why
this parallel algorithm is so important. The parallel prefix scan
is described in detail in the excellent article by Blelloch [B1e90].
Compyle provides an implementation of the scan algorithm on the
CPU and the GPU.

Since the scan algorithm is a bit more complex and most
folks are unfamiliar with it, we first provide a simpler example
application that we solve and then move back to our molecular
dynamics application.

Scans are generalizations of prefix sums / cumulative sums
and can be used as building blocks to construct a number of
parallel algorithms. These include but not are limited to sorting,
polynomial evaluation, and tree operations.

Given an input array a = (ag,a1,a2, - ,dp—1) and an asso-
ciative binary operator @, a prefix sum operation returns the
following array

y:(aOa(ao@al)a'“7(a0@a1@""@an—]))

The scan semantics in Compyle are similar to those of the
GenericScanKernel in PyOpenCL. This allows us to con-
struct generic scans by having an input expression, an output
expression and a scan operator. The input function takes the input
array and the array index as arguments and can be used to map
the input array before running the scan. The output expression can
then be used to map and write the scan result as required. The
output function also operates on the input array and an index but
also has the scan result, the previous item and the last item in the
scan result available as arguments.

Below is an example of implementing a parallel "where". This
returns elements of an array where a given condition is satisfied.
The following example returns elements of the array that are
smaller than 50.

@annotate
def input_expr (i, ary):

return 1 if ary[i] < 50 else 0

@annotate
def output_expr (i, prev_item, item, N, ary, result,
result_count) :
if item != prev_item:
result[item - 1] = aryl[i]
if i == N - 1:
result_count[0] = item
ary = np.random.randint (0, 100, 1000, dtype=np.int32)
res = np.zeros(len(ary.data), dtype=np.int32)
count = np.zeros(l, dtype=np.int32)
res, count, ary = wrap(res, count, ary, backend=backend)
scan = Scan (input_expr, output_expr, 'atb',

dtype=np.int32, backend=backend)
scan (ary=ary, result=res, result_count=count)
res.pull ()

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING

count.pull ()
count = count.datal[0]
res = res.datal[:count]

The argument i, similar to that seen in elementwise kernels is
the current index, the argument item is the result of the scan
including the input at index i. The prev_item is the result
of the array at index i—-1. item and prev_item are reserved
variables and users should not use them when writing the input
and output functions.

In the above example, the input expression returns 1 only when
the value at index 1 is less than 50. So as long as the array elements
are greater than 50, the value of item will remain the same and
will only increase when an element less than 50 is found at the
index. Thus, the condition item != prev_item will only be
satisifed for indices at which the value of ary [1] is less than 50.

The input_expr could also be used as the map function for
reduction and the required size of result could be found before
running the scan and the result array can be allocated accordingly.

Back to the MD problem

To reduce the complexity of the problem from O(N?) to O(N),
we use a binning strategy as mentioned in the previous section.
We partition our domain into square bins of size 3 units. Then
for each particle, all the particles within a radius of 3 units from it
will lie inside of the 9 neighboring bins. For a bin with coordinates
¢ = (m,n), these 9 bins will be,

N(c)={c+d|de{-1,0,1} x{-1,0,1}}

The idea is that for each particle we will iterate over all particles
in these 9 bins and check if the distance between the particle and
the query particle is less than 3. The inter-particle force will be
computed only then between the two particles. This algorithm is
often called a nearest-neighbor particle search (NNPS) algorithm.
To implement this, we first find the bin to which each particle
belongs. This is done as follows,

=[5 13)

where x and y are the coordinates of the particle and 4 is the
required radius which in our case is 3. Note that our problem is
setup such that the left bottom corner is at the origin. We then
flatten these bin coordinates to map each bin to a unique integer
we call the "key’. We sort these keys and an array of indices of the
particles such that the sorted indices have all particles in the same
cell as contiguous elements. Compyle provides a sort function
which uses the PyOpenCL radix sort for OpenCL backend, thrust
sort for the CUDA backend and simple numpy sort for the cython
backend.

To find the particles belonging to the 9 neighboring bins, we
now need to find the index in the sorted indices array at which each
key starts. This can be found in parallel using a scan as follows,

@annotate
def input_scan_keys (i,
return 1 if i ==
else O

keys) :

0 or keys[i] != keys[i - 1] \

@annotate
def output_scan_keys (i, item, prev_item,
start_indices) :

keys,

key = keys[i]
if item != prev_item:
start_indices[key] = 1

37

Once we have the start indices array, we can also find the number
of particles in each bin using a simple elementwise operation as
follows,

@annotate
def fill_bin_counts (i, keys, start_indices,
bin_counts, num_particles):
if i == num_particles - 1:
last_key = keys[num_particles - 1]
bin_counts[last_key] = num_particles - \
start_indices[last_key]
if 1 == 0 or keys[i] == keys[i - 1]:
return
key = keys[i]
prev_key = keys[i - 1]
bin_counts[prev_key] = start_indiceslkey]l - \
start_indices[prev_key]

Now we can iterate over all neighboring 9 bins, find the key
corresponding to each of them, then lookup the start index for that
key in the start_indices array and the number of particles in
the cell by looking up in the bin_counts array. Then lookup the
sorted indices array to find the indices of the particles belonging
to these bins and find the particles within a distance of 3 units.

However, note that we still have a challenge in storing these
neighboring particles as we do not know the number of neigh-
boring particles beforehand and so cannot allocate an array of
that size. Moreover, since each particle can have different number
of neighbors, it is also not straightforward to know where in
the neighbors array we need to look to find the neighbors of a
particular particle.

We use a two pass approach to solve this problem. In the first
pass we find the number of neighbors for each particle. We then
run a scan over this array to find the start indices for neighbors of
each particle in the neighbors array as follows,

@annotate
def input_start_indices (i, counts):
return 0 if i == 0 else counts[i - 1]
@annotate
def output_start_indices (i, item, indices):

indices[i] = item

We then allocate the neighbors array of size equal to sum of all
neighbor lengths. The second pass is then another elementwise
operation where each particle writes its neighbors starting from
the start index calculated from the scan.

More details on this implementation can be found in the exam-
ples section of our repository here. We have also implemented a
more efficient version of the nearest neighbor searching algorithm
using a counting sort instead of the radix sort which is 30% faster
that can be found here.

Performance comparison

Figure 4 shows the speedup achieved by the OpenCL and CUDA
backends running on a GPU relative to serial code running using
Cython (on a single CPU core) for the linear version of the
algorithm. Figure 5 shows the time taken for these simulations. It
can be seen that the algorithm is linear for large values of number
of particles. We again get more than a 100x speedup using the
GPU over a single CPU core. Note that on the NVIDIA P100 GPU
we are able to run a simulation with 25 timesteps for 5 million
particles in less than a second, showing the excellent performance
attained.

38
100 1"« oOpencCL —_
CUDA /

80 1 / :
o 60 /
=)
°
[
[
Q.
2]

40

20 1

01 T T T
10% 10° 10°

Number of particles

Fig. 4: Speed up over serial cython using CUDA and OpenCL using
the NNPS.

—— OpenCL
CUDA
—»— Cython

101 4

—

o
=3
L

Time (secs)

\ //f' -

M‘A

104 10° 106
Number of particles

10*1 4

Fig. 5: Time taken for simulation using serial cython, CUDA and
OpenCL.

—— Linear
Simple
101 4
B
3 100 4
()
£
=
10t
e
1072 4
103 104

Number of particles

Fig. 6: Time taken for simulation using O(N) (Linear) and O(N?)
(Simple) approach.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

100

10° 104
Number of particles

Fig. 7: Speed up using O(N) over O(N?) approach.

— CUDA
HooMD

100 4

Time (secs)

T T
10° 104 10° 10°
Number of particles

Fig. 8: Time taken for HooMD and our implementation using CUDA
backend.

Figure 6 shows the time taken for simulation using O(N) and
O(N?) approach. Figure 7 shows the speed up acheived by using
the O(N) algorithm as compared to the O(N?) algorithm using the
serial cython backend. We have about a 100 fold speed up with
the improved algorithm for only 32,000 particles.

The performance of the algorithm can be further improved
by aligning the x and y coordinate arrays according to the sorted
indices. This will improve the global memory access pattern on
the GPU giving a better performance. This can be done easily in
Compyle using compyle.array.align which uses a single
elementwise operation to align multiple arrays in a given order.
We have not explored this in this paper.

We have also implemented a 3D version of the simulation with
both periodic and non-periodic boundary conditions. We compared
our implementation with HooMD for a 3D periodic simulation on
an NVIDIA Tesla P100 GPU. Figure 8 shows the results of this
comparison. We found our implementation to be about 2x faster
than HooMD. To check the correctness of our implementation,
we have also provided a script to generate plots of potential and
kinetic energy of the system at every 100 timesteps using HooMD
and our implementation.

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING

All of the code discussed above is available in the examples
directory of the Compyle repository here. All of the code, with
two different NNPS implementations, and featuring a command
line interface, comes to around 500 lines of code. This is quite
exciting as this code can be executed on either a multi-core CPU
or a GPU with no code changes.

Limitations

While Compyle is really powerful and convenient, it does use a
rather verbose and low-level syntax. In practice we have found
that this is not a major problem. The more serious issue is the fact
that we cannot directly use external libraries in a platform neutral
way. For example, there are ways to use an external OpenCL or
CUDA library but this will not be usable on a CPU. Obviously
one cannot use normal Python code and use basic Python data
structures. This is because the Python data structures would need
to be implemented in the target language. Furthermore, one cannot
use well established libraries like scipy from within the parallel
constructs. The reason for this is that scipy and other libraries are
not necessarily available for use on a GPU or even on multi-core
CPUs. These are limitations that are beyond the scope of Compyle
at this point.

The low-level API that Compyle provides turns out to be quite
an advantage as Compyle code is usually very fast the first time it
runs. This is because it will refuse to run any code that uses Python
objects. By forcing the user to write the algorithms conforming to
the constraints makes the code efficient. It also forces the user
to think along the lines of parallel algorithms. This is a major
factor. We have used Compyle in the context of a larger scientific
computing project and have found that while the limitations are
annoying, the benefits are generally worth it.

Compyle has also only been used in the context of the PySPH
project and as such has not seen a lot of community adoption.
This has meant that there are many rough edges. We are hoping
to improve the package and are also hopeful for community
contributions eventually.

Future work
There are several improvements that are planned for Compyle.

« Some internal cleanup is necessary. This is especially true
of the Cython backend which has grown organically and
requires a reimplementation.

e« Many of the CPU related algorithms, like sorting, and
many of the reductions are still serial. These are relatively
easy to fix.

o The Cython backend may be eventually replaced using
pybind11 if possible.

o The API requires some cleanup in many places. We also
hope to look at the copperhead package to improve our
APL

e While Compyle does support simple structs, this API is
still not clean enough to be used in general.

« We also hope to add support for simple "objects" that
would allow users to compose their libraries in a more
object oriented manner. This would open up the possibility
of implementing more high-level data structures in an easy
way.

There are many other improvements, and features we are
considering and hope to implement as time permits. Despite its
many warts, we already find Compyle to be remarkably useful.

39

Conclusions

In this article we have shown how one can implement a two-
dimensional molecular dynamics solver using Compyle. The code
is parallel from the beginning and runs effortlessly on multi-core
CPUs and GPUs without any changes. We have used the example
to illustrate the main parallel algorithms that Compyle provides,
i.e. elementwise, reduction, and scans. We show how a non-trivial
optimization of the example problem is possible using a scan.
The results clearly show that we are able to write the code once
and have it run on massively parallel architectures. This is very
convenient and this is possible because of our approach to the
problem which puts parallel algorithms first and forces the user to
write code with a hard set of restrictions.

We believe that Compyle allows computational scientists to
quickly develop new methods that could benefit from effective
parallelization. For molecular dynamics there are many challenges
[LGM™15] where this could be useful. While the article used an
MD example, and we have ourselves used it in the context of the
SPH method [RP"19], Compyle is potentially useful in a variety
of other areas. We hope that others are able to use and benefit from
using Compyle.

Acknowledgments

We gratefully acknowledge the many open source packages with-
out which this work would never be possible. In particular we
thank Andreas Klockner for many of the parallel algorithms
implemented as part of PyOpenCL and PyCUDA that are an
inspiration for Compyle. Our thanks to the reviewers for their
feedback that has significantly improved the manuscript.

REFERENCES

[Bl1e90] Guy E. Blelloch. Prefix sums and their applications. Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, November 1990.

Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Cop-
perhead: compiling an embedded data parallel language. ACM
SIGPLAN Notices, 46(8):47-56, February 2011. URL: https:/
doi.org/10.1145/2038037.1941562, doi1:10.1145/2038037.
1941562.

[LGM*15] Andrea J. Liu, Gary S. Grest, M. Cristina Marchetti, Gre-
gory M. Grason, Mark O. Robbins, Glenn H. Fredrickson,
Michael Rubinstein, and Monica Olvera de la Cruz. Op-
portunities in theoretical and computational polymeric ma-
terials and soft matter. Soft Matter, 11(12):2326-2332,
March 2015. Publisher: The Royal Society of Chem-
istry. URL: https://pubs.rsc.org/en/content/articlelanding/2015/
sm/c4sm02344g, doi:10.1039/C4SM02344G.

Prabhu Ramachandran. PySPH: a reproducible and high-
performance framework for smoothed particle hydrodynamics.
In Sebastian Benthall and Scott Rostrup, editors, Proceedings of
the 15th Python in Science Conference, pages 127 — 135, 2016.
doi:10.25080/Majora-629e541a-011.

Prabhu Ramachandran, , Kunal Puri, Aditya Bhosale, Dinesh
Adepu, Abhinav Muta, Pawan Negi, Rahul Govind, Suraj Sanka,
Pankaj Pandey, Chandrashekhar Kaushik, Anshuman Kumar,
Ananyo Sen, Rohan Kaushik, Mrinalgouda Patil, Deep Tavker,
Dileep Menon, Vikas Kurapati, Amal S Sebastian, Arkopal
Dutt, and Arpit Agarwal. PySPH: a Python-based frame-
work for smoothed particle hydrodynamics. arXiv preprint
arXiv:1909.04504, 2019. URL.: https://arxiv.org/abs/1909.04504.
Daniel V. Schroeder. Interactive molecular dynamics. American
Journal of Physics, 83(3):210-218, February 2015. Publisher:
American Association of Physics Teachers. doi:10.1119/1.
4901185.

[CGK11]

[Ram16]

[RPT19]

[Sch15]

40

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Netlist Analysis and Transformations Using SpyDrNet

Dallin Skouson®3*, Andrew Keller*S, Michael Wirthlin*$

Abstract—Digital hardware circuits (i.e., for application specific integrated cir-
cuits or field programmable gate array circuits) can contain a large number of
discrete components and connections. These connections are defined by a data
structure called a "netlist". Important information can be gained by analyzing
the structure of the circuit netlist and relationships between components. Many
specific circuit manipulations require component reorganization in hierarchy and
various circuit transformations. SpyDrNet is an open-source netlist analysis and
transformation tool written in Python that performs many of these functions.
SpyDrNet provides a framework for netlist representation, querying, and modifi-
cation that is netlist format independent and generalized for use in a wide variety
of applications. This tool is actively used to enhance circuit reliability and error
detection for circuits operating in harsh radiation environments.

Index Terms—Hardware Design, Netlists, EDA, CAD

Introduction

Digital hardware circuits can contain a large number of discrete
components and connections. These components work together
through their connections to implement a digital hardware design.
Digital hardware circuits are commonly implemented on applica-
tion specific integrated circuits (ASICs) or on field programmable
gate arrays (FPGAs). Discrete components and connections in
a digital hardware circuit can be associated with a number of
specific attributes. All of this information can be stored inside
a graph-like data structure called a "netlist" which details each
component and connection along with their respective attributes.
Netlists come in many different formats and organizational
structures, but common constructs abound (within EDIF, structural
Verliog, and structural VHDL, etc.) [LS89], [JB94]. Most netlist
formats have a notion of primitive or basic circuit components that
form a basis from which any design can be created. If the contents
of a circuit component is unknown, it is treated as a blackbox.
Primitive or basic components and blackboxes are viewed as
leaf cells. Cells are also referred to as modules, or definitions.
Leaf definitions can then be instanced individually inside a larger
non-leaf definitions. Definitions and instances contain connection
points called pins, which are sometimes grouped together into
ports. Nets connect pins together. Nets are also referred to as wires
and can be grouped into a collection of nets called a bus or cable.

= Corresponding author: dallinskouson @byu.edu

NSF Center for Space, High-Performance, and Resilient Computing
(SHREC)

§ Department of Electrical and Computer Engineering, Brigham Young Uni-
versity

Copyright © 2020 Dallin Skouson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

SpyDrNet provides a common framework for representing,
querying, and modifying netlists from which application specific
analysis and transformation functions can be built. The data
structure used to represent netlists is designed to provide quick
pointer access to neighboring elements and it is designed to be
extensible so that format specific constructs can be stored along
with the netlist for preservation when the netlist is exported. This
ability supports the representation of a wide variety of netlist
formats.

SpyDrNet is currently implemented in Python and provides a
Python interface so that it can easily integrate with other Python
packages such as NetworkX [HSS08] and PyEDA [CD15]. These
library packages have been used in tandem with SpyDrNet to
rapidly develop new analysis techniques for better understanding
the connectivity and relationships between circuit components as
part of reliability research. The Python platform also makes this
tool readily available to anyone interested in the community and
easily extensible.

This paper presents the SpyDrNet framework, a few use cases,
and highlights its use in the development of advanced reliability
enhancement techniques. This tool originates from a long line
of reliability research focused on improving the reliability of
computer circuits implemented on static random access memory
based (SRAM-based) FPGAs [JHW*08], [PCCT08], [JW10].

Related Work

The predecessor to SpyDrNet, BYU EDIF Tools [Bri20]. The
BYU EDIF tools provide two benefits. First, it provides an API
for working with electronic design interchange format (EDIF)
netlists. Second, the BYU EDIF Tools includes the Brigham
Young University and Los Alamos National Laboratory Triple
Modular Redundancy (BL-TMR) Tool. The BL-TMR tool pro-
vides a rich set of features for the automated insertion of circuit
redundancy for the application of fault-tolerance techniques on
digital hardware circuits. These tools have been used extensively
in FPGA reliability research [JHW " 08], [PCC08], [JW10].

The BYU EDIF Tools have limitations that motivate the
development of SpyDrNet. First, the framework of the BYU EDIF
Tools is closely tied to the EDIF netlist format, which makes it
challenging to use with alternate netlist formats. Second, the BYU
EDIF Tools are primarily intended for use with netlists targeting
specific FPGAs. Finally, though not a limitation per se, the BYU
EDIF Tools are written in Java and migrating to Python is a
motivating factor.

SpyDrNet aims to provide a framework that is netlist for-
mat independent and generalized for use in a wide variety of
applications. Tools with functionality similar to SpyDrNet exist,

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET

41

HDL Synthesis Netlist

Generate Hardware

Transformed Netlist Files

SpyDrNet

Fig. 1: The path of a design using SpyDrNet.

but they tend to be tied to a specific device, architecture, netlist
format, or vendor. Some tools with similar functionality such
as Vivado [Xil20] or Verific [Ver20] are proprietary. Other tools
such as RapidWright [LK18] and Tincr [WN14] are intended for
customizing the low-level physical implementation of a netlist on
a vendor specific hardware platform. LiveHD [liv] is open-source
tool that provides rapid synthesis and simulation updates to small
changes in hardware description languages (HDLs). Its framework
and language support focuses on the whole design cycle (from
logic synthesis, to simulation, to place and route, and tapeout)
whereas SpyDrNet focuses specifically on working with structural
netlists (i.e., netlists that do not change based on netlist inputs).

SpyDrNet Tool Flow

Electronic designs may flow through a number of steps before they
are built, packaged, or programmed into their target device. For
example, these designs may be created in a hardware description
language, synthesized into a netlist, then placed, routed, and
packaged into a target file which will be used to fabricate the
device. A CAD tool can modify the functionality of the final
design at any of these stages. The earlier stages in the design
flow are slightly less static. Constructs may be optimized out of
the design, and the actual hardware implementation of a construct
may be unknown. Later in the design process constructs are more
stable, but the design is also generally harder to work with (binary
files, complex device specific information, etc). By working at the
netlist level, SpyDrNet is able to avoid many of the pitfalls of both
aspects of the design process.

Figure 1 represents how a design can be prepared and pro-
cessed prior to and after using SpyDrNet. Many designs start
as a hand written hardware description language and are then
converted into a netlist using a synthesizer. Netlists are then passed
through additional tools to create a design file to be physically
implemented.

SpyDrNet currently includes a parser and composer that
imports and exports netlists written in EDIF. Figure 2 shows
how the SpyDrNet framework can be used to parse, analyze,
transform, and compose netlists in many different formats. Parsers
populate an intermediate representation of the netlist in memory
using information provided by the input file. With the netlist in
intermediate representation, analysis and transformation of the
netlist can take place. Once the design is in a state where the user
is satisfied, a composer exports the netlist into a desired format.
Using the SpyDrNet framework, additional parsers and composers
can be written for additional netlist formats.

The Intermediate Representation

The intermediate representation is a generic structural netlist
representation employed by SpyDrNet. Structural netlists refer
to a class of netlists that represent the interconnection of prima-
tive circuit components. These netlists are useful because when
modifying netlists for reliability we are less concerned with the

Transformation
« Triple Modular Redundancy
* Duplication With Compare
« Utilization, etc. Partial variants, etc.

o s’ =

N =

Original
Netlist

Analysis
* Connectivity
* Clock Domains
—

Intermediate

Representation Netlist

Fig. 2: Processing a netlist in SpyDrNet. Note that Verilog and VHDL
refer to the structural subset of these languages.

general purpose of the circuit and more concerned with how that
circuit is implemented. Users can manipulate the structure while in
memory and write out a supported format using one of the export
modules or composers that is included with SpyDrNet. Built into
the intermediate representation is an API for manipulating the
datastructure.

The data structure was built with a focus on simplifying access
to adjacent points in the netlist. In some cases where simple
accessors could be added at additional memory cost, the accessors
were added. One example of this is the bidirectional references
implemented throughout the netlist. This ideology resulted in a
slightly longer running time in some cases (and shorter in others),
but speed was taken into account as these decisions were made.
If a feature significantly increased the run time of the tests, it was
examined and optimized.

Primary Data Structures

A short description of some of the data structure components is
provided. The constructs behind a structural Netlist are Libraries,
Definitions, Instances, Ports, and Cables. Figure 3 shows the
connectivity between these components.

—

Port €——> InnerPin

Netlist €—> Library €—> Definition €<—> Cable ¢———> Wire
T ¢

|
: Instance €—> OuterPin
|

o j L

Fig. 3: Highlights the connectivity between components in the inter-
mediate representation.

Element: This is the base class for all components of
a netlist. Some components are further classified as first class
elements. First class elements have a name field as well as a
properties field.

Definition: These first class elements are sometimes called
cells or modules in other representations. They hold all of the
information about what their instances contain.

42

Instance: This first class element is a place holder to be
replaced with the sub-elements of the corresponding definition
upon build. It is contained in a different definition to its own. In
the case of the top level instance it is the place holder that will be
replaced by the entire netlist when it is implemented

Port: The Port element can be thought of as containing
the information on how a Definition connects the outside world to
the elements (instances and cables) it contains.

Cable: Cables are bundles of wires that connect compo-
nents within a definition. They connect ports to their destination
pins.

Pin: These objects represent points of connection between
instances or ports and wires. Pins can be divided into inner and
outer pin categories. The need for these distinctions lies in the
fact that definitions may have more than one instance of itself.
Thus components connected on the inside of a definition need to
connect to pins related to the definition will connect to inner pins
on the definition. Each of these inner pins will correspond to one
or more outer pins on instances of the corresponding definition. In
this way instances can be connected togehter while still allowing
components within a definition to connect to the ports of that
definition.

Wire: Wires are grouped inside cables and are elements
that help hold connection information between single pins on
instances within a definition and within it’s ports.

Netlist
Library Work
Definition Definition
AND?2 OR2
A— A
1 o
Definition
Widget \yire (inside Cable)
A—Instance| # l(
=
B—AND2 —LInstance_O
*0OR2
C—Instance] [©
D—{*AND?2
X Pin (inside Port)
Top Instance Instance
*Widget

Fig. 4: Structure of the Intermediate Representation. An asterisk
references a definition.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Support for Multiple Netlist Formats

In addition to holding a generic netlist data structure, the universal
netlist representation can hold information specific to individual
formats. This is done through the inclusion of metadata dictionar-
ies in many of the SpyDrNet objects.

Parsers can take advantage of the flexibility of the metadata
dictionary to carry extra information that source formats present
through the tool. This includes information such as comments,
parameters, and properties.

In addition, the metadata dictionary can be used to contain any
desired user data. Because SpyDrNet is implemented in Python,
any data type can be used for the key value in these dictionaries.

Callback Framework

A callback framework was implemented in SpyDrNet to support
real time analysis of netlist modifications. Callbacks can assist
with applications that make incremental changes to the netlist
followed with an analysis of the netlist to determine what more
needs to changed. Alternatively users may wish to be warned
of violations of design rules such as maintaining unique names.
Without callbacks these checks could be performed over the whole
netlist data structure on user demand which would add complexity
for the end user.

SpyDrNet’s callbacks allow users to create plugins that can
keep track of the current state of the netlist as changes are made.
Currently, a namespace manager is included with SpyDrNet.
The callback framework is able to watch changes to the netlist,
including addition and removal of elements, as well as changes in
naming and structure of the netlist.

Listeners may register to hear these changes as they happen.
Each listener is called in the order in which it was registered
and may update itself as it sees the netlist change. Plugins
that implement listeners can be created and added through the
API defined register functions. In general listener functions are
expected to receive the same parameters as the function on which
they listen.

Modularity Within SpyDrNet

In order to support expansion to a wide variety of netlists, our
intermediate representation was designed to reflect a generic
netlist data structure. Care was taken to ensure that additional user
defined constructs could be easily included in the netlist.

Because of the generic nature of the netlist representation,
additional netlist parsers and composers can be built separately
and still take full advantage of the existing modification passes
available in SpyDrNet. To build a parser or composer requires no
more advanced knowledge than an end user may have from using
the API to design a custom analysis or modification pass on the
netlist.

Other functionality has been added on top of the core of
SpyDrNet, including plugin support and the ability to modifiy
the netlist at a higher level. These utility functions are used by
applications. This layered approach aims to aid in code reusability
and reliability allowing lower level functionality to be tested
before the higher level functionality is added on.

Analysis and Transformation

SpyDrNet provides a framework for the analysis and transfor-
mation of structural netlists. Structural netlists (i.e., a list of
circuit components and their connects) capture a hardware design

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET

that is ready for physical implementation where hardware files
can be generated (see Figure 1). Information such as component
importance or influence can be understood by examining structural
relationships between components. Modifications made to the
structural netlist are reflected in the hardware implementation.

The analysis and transformation capabilities presented in sec-
tion form a basis from which custom analysis and transformation
functions can be built for specific applications. One current appli-
cation that benefits from these capabilities is the implementation of
duplication with compare (DWC) and triple modular redundancy
(TMR) to circuit designs, which is discussed later on. Using Spy-
DrNet’s analysis and transformations allows end-users to rapidly
develop custom functions for specific needs.

Utility Functions

SpyDrNet has several high level features currently included. All
of these features have an impact on the overall netlist structure but
several are most useful when included in other applications. This
section will highlight some of the simpler high level features that
are currently implemented in SpyDrNet.

Basic Functionality

Functionality is provided through the API to allow for creation and
modification of elements in the netlist data structures. Sufficient
functionality is provided to create a netlist from the ground
up, and read all available information from a created netlist.
Netlist objects are completely mutable and allow for on demand
modification. This provides a flexible framework upon which users
can build and edit netlists data structures. The basic functionality
includes functionality to create new children elements, modify
the properties of elements, delete elements, and change the re-
lationships of elements. All references bidirectional and otherwise
are maintained behind the scenes to ensure the user can easily
complete modification passes on the netlist while maintaining a
valid representation.

The mutability of the objects in SpyDrNet is of special
mention. Many frameworks require that the object’s name be set
on creation, and disallow any changes to that name. SpyDrNet, on
the other hand, allows name changes as well as any other changes
to the connections, and properties of the objects. The callback
framework, as discussed in another section, provides hooks that
allow checks for violations of user defined rules if desired.

Examples of some of the basic functionality are highlighted in
the following code segment. Relationships, such as the reference
member of the instances and the children of these references are
members of the SpyDrNet objects. Additional key data can be
accessed as members of the classes. Other format specific data
can be accessed through dictionary lookups. Since the name is
also key data but, is not required it can be looked up through
either access method as noted in one of the single line comment.

import spydrnet as sdn

netlist = sdn.load_example_netlist_by_ name (
'fourBitCounter"')

top_instance = netlist.top_instance
def recurse (instance,

o :
print

depth) :

something like this:

Q.
=
Q
5
=
—
Q

43

child2.child''’

s = depth * "\t"
#instance.name could also be instance["NAME"]
print (

s, instance.name,

"(", instance.reference.name, ")")
for ¢ in instance.reference.children:

recurse (c, depth + 1)

recurse (top_instance, 0)

Hierarchy

Netlists can be hierarchical or they can be flat (see Figure 5).
Hierarchical netlists contain non-leaf instances, which instance a
definition that contains additional instances. Flat netlists contain
only leaf instances, which instance a definition that is void of
additional instances. SpyDrNet supports hierarchy and perform-
ing analysis and transformations across hierarchical boundaries.
SpyDrNet focuses on structural netlists that are static (i.e., netlists
that do not change based on inputs to the netlist).

Top_Inst (Top_Def) Top_Inst (Top_Def)

Mid_Inst_A (Mid_Def) Mid_Inst_A/Leaf_Inst_A (Leaf_Def)
I Leaf_Inst_A (Leaf_Def) Mid_Inst_A/Leaf_Inst_B (Leaf_Def)
t Leaf_Inst_B (Leaf_Def) Mid_Inst_A/Leaf_Inst_C (Leaf_Def)
L Leaf_Inst_C (Leaf_Def) Mid_Inst_B/Leaf_Inst_A (Leaf_Def)

Mid_Inst_B (Mid_Def) Mid_Inst_B/Leaf_Inst_B (Leaf_Def)
t Leaf_Inst_A (Leaf_Def) Mid_Inst_B/Leaf_Inst_C (Leaf_Def)
t Leaf_Inst_B (Leaf_Def) Mid_Inst_C/Leaf_Inst_A (Leaf_Def)
L Leaf_Inst_C (Leaf_Def) Mid_Inst_C/Leaf_Inst_B (Leaf_Def)

Mid_Inst_C (Mid_Def) Mid_Inst_C/Leaf_Inst_C (Leaf_Def)
I Leaf_Inst_A (Leaf_Def)
t Leaf_Inst_B (Leaf_Def)
L Leaf_Inst_C (Leaf_Def)

Fig. 5: A hierarchical netlist (left) versus a flat netlist (right).

Hierarchy is by default a component of many netlist formats.
One of the main advantages to including hierarchy in a design
is the ability to abstract away some of the finer details on a
level based system, while still including all of the information
needed to build the design. The design’s hierarchical information
is maintained in SpyDrNet by having definitions instanced within
other definitions.

SpyDrNet allows the user to work with the structure of a
netlist directly, having only one of each instance per hierarchical
level, but it also allows the user view the netlist instances in a
hierarchical context through the use of hierarchical references as
outlined below. Some other tools only provide the hierarchical
representation of the design.

There are drawbacks and advantages to each view on the
netlist, but the inclusion of a hierarchical view helps allow users
to make the fewest possible unneeded changes to the design.
Additionally there are several advantages to maintaining hierarchy,
smaller file sizes are possible in some cases, as sub components
do not need to be replicated. Simulators may have an easier time
predicting how the design will act once implemented [DIR " 04].
Further research could be done to analyze the impact of hierarchy
on later compilation steps.

Flattening

SpyDrNet has the ability to flatten hierarchical designs. One
method to remove hierarchy from a design is to move all of the sub
components to the top level of the netlist repeatedly until each sub
component at the top level is a terminal instance, where no more
structural information is included below that instance’s level.

44

Flattening was added to SpyDrNet because there are some
algorithms which can be applied more simply on a flat design.
Algorithms in which a flat design may be simpler to work with
are graph analysis, and other algorithms where the connections
between low level components are of interest.

Included is an example of how one might flatten a netlist in
SpyDrNet.

import spydrnet as sdn
from sdn.flatten import flatten

netlist = sdn.load_example_netlist_by_name (
'fourBitCounter")

L £7 - ns 1in net 11g
#flattens 1in place. netlist

flatten(netlist)

Uniquify

Uniquify ensures that each non-terminal instance is unique, mean-
ing that it and it’s definition have a one to one relationship. Non-
unique definitions and instances may exist in most netlist formats.
One such example could be a four bit adder that is composed
of four single bit adders. Assuming that each single bit adder is
composed of more than just a single component on the target
device, and that the single bit adders are all identical, the design
may just define a single single bit adder which it uses in four
places. To uniquify this design, new matching definitions for single
bit adders would be created for each of the instances of the original
single bit adder and the instances that correspond would be pointed
to the new copied definitions. Thus each of the definitions would
be left with a single instance.

The uniquify algorithm is very useful when modifications are
desired on a specific part of the netlist but not to all instances
of the particular component. For example in the four bit adder,
highlighted in the previous paragraph of this section, if we assume
that the highest bit does not need a carry out, the single bit adder
there could be simplified. However, if we make modifications to
the single bit adder before uniquifying the modifications will apply
to all four adders. If we instead uniquify first then we can easily
modify only the adder of interest.

Currently Uniqui fy is implemented to ensure that the entire
netlist contains only unique definitions. This is one approach to
uniquify, however an interesting area for future exploration is that
of uniquify on demand. Or some other approach to only ensure
and correct uniquification of modified components only. This is
left for future work.

The following code example shows uniquify being used in
SpyDrNet.

import spydrnet as sdn
from sdn.uniquify import uniquify

netlist = sdn.load_example_netlist_by_name (
'fourBitCounter"')

uniquify (netlist)

Clone

Cloning is another useful algorithm currently implemented in
SpyDrNet. Currently all of the components in a netlist can be
cloned from pins and wires to whole netlist objects. Upon initial
inspection clone seems simple. However, there is some complexity
when it comes to the connections between individual components.
Some explanation is provided here.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Clone could be implemented a number of ways. We attempted
to find the logical method for our clone algorithm at each level
of the data structure. Our overall guiding principles were that at
each level, lower level objects should maintain their connections,
the cloned object should not belong to any other object, and
the cloned object should not maintain its horizontal connections.
There are of course some exceptions to these rules which seemed
judicious. One such example is that when cloning an instance,
That instance will maintain its original corresponding definition,
unless the corresponding definition is also being cloned as in the
case of cloning a whole library or netlist (in which case the new
cloned definition will be used).

Additionally connection modification was done at a level
lower than the API in order to maintain consistency as different
components were cloned. This promoted code reuse in the clone
implementation and helped minimize the number of dictionaries
used.

The clone algorithm is very useful while implementing some
of the higher level algorithms such as TMR and DWC with
compare that we use for reliability research. In these algorithms
cloning is essential, and having it built into the tool helps simplify
their implementation.

The example code included in this section will clone an
element and then add that element back into the netlist which
it originally belonged to. Comments are included for most lines in
this example to illuminate why each step must be taken.

import spydrnet as sdn

netlist = sdn.load_example_netlist_by_name (
'hierarchical_luts')

#index found by print
sub = netlist.top_instance.reference.children(2]
sub_clone =

sub.clone ()

ing children's names

#renamed needed to be added back into the netlist
sub_clone.name = "sub_clone"
#this line adds the cloned instance into the netlist

netlist.top_instance.reference.add_child(sub_clone)

Hierarchical References

SpyDrNet includes the ability to create a hierarchical reference
graph of all of the instances, ports, cables, and other objects which
may be instantiated. The goal behind hierarchical references is to
create a graph on which other tools, such as NetworkX can more
easily build a graph. each hierarchical reference will be unique,
even if the underlying component is not unique. These components
are also very light weight to minimize memory impact since there
can be many of these in flight at one time.

The code below shows how one can get and print hierarchical
references. The hierarchical references can represent any spydrnet
object that may be instantiated in a hierarchical manner.

top = netlist.top_instance
child_instances = top.reference.children

for h in sdn.get_hinstances(child_instances):
print (h, type(h.item)._ name_)

Getter Functions

SpyDrNet includes getter functions which are helpful in the anal-
ysis and transformation of netlists. These functions were created

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET

to help a user more quickly traverse the netlist. These functions
provide the user with quick access to adjacent components. A
call to a getter function can get any other related elements from
the existing element that the user has a handle to (see Figure
6). Similar to clone there are multiple methods which could be
used to implement a correct getter function. We again strove to
apply the most logical and consistent rules for the getter functions.
There are some places in which the object returned may not be
the only possible object to be returned. In these cases generators
are returned. In cases in which there are two possible classes of
relationships upon which to return objects, the user may specify
whether they would like to get the more inward related or outward
related objects. For example, a port may have outer pins on
instances or inner pins within the port in the definition. Both of
these pins can be obtained separately by passing a flag.

Netlist Netlist
Library Library
Definition Definition
Port Port
InnerPin InnerPin
o) 3 ‘ : R
Cable 2% A ;“-’v Cable
RN ISR
‘Cr L AZPEXR L «“

Wire Wire
777 200NN
247 KO 1ok
Instance Zilhl ' Vs VaQ V. \\\n\ Instance
OuterPin OuterPin
HRef HRef

Fig. 6: Getter functions are able to get sets of any element related to
any other element.

In the example only a few of the possible getter functions are
shown. The same pattern can be used to get any type of object
from another however. Each call to a getter function returns a
generator.

Example Applications

SpyDrNet may be used for a wide variety of applications. SpyDr-
Net grew out of a lab that is focused primarily on improving circuit
reliability and security. An application that has had strong influ-
ence over its development is that of enhancing circuit reliability
in harsh radiation environments through partial circuit replication
[PCCT08]. When a particle of ionizing radiation passes through
an integrated circuit, it can deposit enough energy to invert values
stored in memory cells [JED06]. An FPGA is a computer chip that
can be used to implement custom circuits. SRAM-based FPGA
stores a circuits configuration in a large array of memory. When

45

radiation corrupts an FPGA configuration memory, it can corrupt
the underlying circuit and cause failure.

One of our areas of research involves finding ways to design
more reliable circuits to be programmed onto existing, non spe-
cialized, FPGAs. These modifications are useful for designers that
deploy many FPGAs as well as designers that plan on deploying
circuits in high radiation environments where single event upsets
can disrupt the normal operation of devices. These reliability
focused modifications require some analysis of netlist structure
as well as modifications in the netlist.

SpyDrNet was created to help automate this process and
allow our researchers to spend more time studying the resulting
improved circuitry and less time modifying the circuit itself.
It is important to note that some care needs to be taken to
ensure that redundancy modifications are not removed by down
stream optimizations in implementation. Reliability modifications
to netlists are often optimized away. One common adjustment
to a netlist for reliability purposes, is a replication of various
components. Often when tools see the same functionality with
a theoretical identical result they will attempt to remove the
duplicated portion and provide two outputs on a single instance.
This defeats the purpose of the reliability modifications. Using
and modifying netlists allows us to bypass those optimizations
and gives more control over how our design is built. Below are
some details on using SpyDrNet for higher level transformation
and analysis techniques applicable to reliability applications.

Triple Modular Redundancy

TMR is one method by which circuits can be made more reliable.
TMR triplicates portions of the circuit to allow the circuit to
continue to provide the correct result even under some cases of
error. Voters are inserted between triplicated circuit components
to pass the most common result on to the next stage of the circuit
[PCC*08]. Figure 7 shows two typical layouts for TMR. The top
half of the image shows a triplicated circuit with a single voter that
feeds into the next stage of the circuit. The bottom of the figure
shows a triplicated voter layout such that even a single voter failure
may be tolerated.

=t Circuit Circuit =
=t Circuit Circuit f=
-1 Circuit Circuit =
=i Circuit Circuit
=l Circuit Circuit
- Circuit Circuit

Fig. 7: Triple modular redundancy with a single voter and triplicated
voters. [tmr]

46

TMR has been applied using SpyDrNet. The current imple-
mentation selects subsets of the circuit to replicate. Then a voter
insertion algorithm creates and inserts the voter logic between
triplicated layers. Later, reduction voting is added to the output,
connecting the triplicated logic in place of the original implemen-
tation. The ability of SpyDrNet to carry hierarchy through the
tool was taken advantage of by the TMR implementation. This
allows the triplicated design to take advantage of the benefits of
hierarchy including, improved place and route steps on the target
FPGA. Previous work with the BYU EDIF Tools [Bri20] required
a flattened design to accomplish TMR on a netlist. The triplicated
design was programmed to an FPGA after being processed using
SpyDrNet.

Duplication With Compare

Circuit Compare

Circuit Compare

Fig. 8: Duplication with compare showing the duplicated circuitry
and duplicated violation flags.

DWOC is a reliability algorithm in which the user will duplicate
components of the design and include comparators on the output
to try present a flag that will be raised when one of the circuits
goes down [JHW08]. Like TMR’s voters, the comparators can
be duplicated as well to ensure that if a comparator goes down at
least one of the comparators will flag an issue.

DWC was again implemented on SpyDrNet. Once again this
was able to take advantage of SpyDrNet’s hierarchy and maintain
that through the build. Comparators were created and inserted and
the selected portion of the design was duplicated. The resulting
circuits were programmed to an FPGA after being read into
SpyDrNet, modified and written back out. As with TMR the
existing implementation on the BYU EDIF Tools [Bri20] required
that the design be flattened before being processed.

Clock Domain Analysis

In hardware various clocks are often used in different portions
of the circuit. Sometimes inputs and outputs will come in on a
different clock before they reach the main pipeline of the circuit.
At the junctions between clock domains circutry should not be
triplicated in TMR. If it is triplicated it may result in steady state
error on the output because the signals from the three inputs may
reach the crossing at different times and be registered improperly
[LNW10]. This can make the overall reliability of the system
lower than it otherwise would be.

In order to find these locations. Clock domains have been
examined using SpyDrNet. The basic methodology for doing this
was to find the clock ports on the various components in the design
which have them and trace those clocks through the netlist. The
resulting connected components form a clock domain. When a
triplication pass encountered the boundry between domains the
triplicated circuit could be reduced to a single signal to cross the
boundry.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Graph Analysis and Feedback

While triplictaing a design users must determine the best location
to insert voters in the design. Voters could be inserted liberally
at the cost of the timing of the critical path. Alternatively sparse
voter insertion can yield a lower reliability. One consideration to
take into account is that voters inserted on feedback loops in the
directional graph represented by the netlist can help correct the
circuit’s state more readily. One study concluded that inserting
voters after high fanout flip flops in a design yielded good
results. [JW10] This voter insertion algorithm was implemented
on SpyDrNet after doing analysis using NetworkX [HSS08] to
find the feedback loops.

Future Direction

As SpyDrNet matures, several new features are planned to benefit
SpyDrNet’s users. Several of the upcoming features are discussed
here but a more complete roadmap is maintained with the project’s
repository.

Additional netlist format parsers and composers are planned.
Supplying additional parser and composers will open the door
for users to more easily use SpyDrNet with a wider variety
of technologies and device vendor tools. This work will enable
conversion between formats as well, which will provide greater
flexibility for end users. Some vendor tools only accept specific
netlist formats. Converting netlist formats would provide further
possibilities.

Plans to integrate more closely with other open source tools
in analysis and hardware design have been made. These plans
include further work to ensure NetworkX and other SciPy utilities
can be easily leveraged by SpyDrNet. Integrating with additional
open source electionic design tools is also of interest, which could
help make SpyDrNet a useful part of an open source design flow.

SpyDrNet was designed to be generic and modular to allow
for support of a wide variety of netlist formats. Device specific
information is not included in SpyDrNet. Future work may include
providing a framwork to maintain and make use of device specific
data. Such a framework could simplify a number of different
applications that require device specific information. Device data
of interest may include device resource constraints, clock prop-
agation behavior, and limitations on how components can be
implemented on a specific technology. Providing users a simpler
way of maintaining and utilizing this data will help improve the
flexibility of the tool.

Several portions of SpyDrNet could be sped up by accelerating
them in C/C++. Parseing netlists can take several minutes for very
large designs using the current implementation. An accelerated
verion of the current parser would be of use in the future as
more users with increasingly complex designs become interested
in SpyDrNet.

Conclusion

SpyDrNet is a framework created to be as flexible as possible
while still meeting the needs of reliability related research. We
have worked to ensure that this tool is capable of a wide variety
of netlist modifications.

Although this tool is new, a few reliability applications have
been built on SpyDrNet. Because of these applications we feel
confident that this tool can be helpful to others. SpyDrNet is
released on github under an open source licence. New users are
welcome to use and contribute to the SpyDrNet tools.

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET

Acknowledgment

This work was supported by the Utah NASA Space Grant Con-
sortium and by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

REFERENCES

[Bri20]

[CD15]

[DIR*04]

[HSSO08]

[JB94]

[JEDO6]

[JHWT08]

[JW10]

[liv]

[LK18]

[LNW10]

[LS89]

[PCC*08]

[tmr]

[Ver20]

[WN14]

[Xil20]

Brigham Young University. BYU EDIF Tools [online]. 2020.
URL: https://sourceforge.net/projects/byuediftools/.

Chris Drake. PyEDA: Data Structures and Algorithms for Elec-
tronic Design Automation. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Conference,
pages 25 — 30, 2015. doi:10.25080/Majora-"7b98e3ed~
004.

P. Daglio, D. Iezzi, D. Rimondi, C. Roma, and S. Santapa.
Building the hierarchy from a flat netlist for a fast and accurate
post-layout simulation with parasitic components. In Proceed-
ings Design, Automation and Test in Europe Conference and
Exhibition, volume 3, pages 336-337 Vol.3, Feb 2004. doi:
10.1109/DATE.2004.1269268.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In
Gaél Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11
— 15, Pasadena, CA USA, 2008.

Jen-Jen Lung and J. Bhasker. Verilog netlist as an exchange
language. In International Verilog HDL Conference, pages 10—
14, March 1994. doi1:10.1109/IVC.1994.323754.
Measurement and reporting of alpha particle and terrestrial cosmic
ray-induced soft errors in semiconductor devices, 2006. URL:
https://www.jedec.org/sites/default/files/docs/TESD89IA..pdf.

J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan. Using duplication with compare
for on-line error detection in fpga-based designs. In 2008
IEEE Aerospace Conference, pages 1-11, March 2008. doi:
10.1109/AERO.2008.4526470.

Jonathan M Johnson and Michael Wirthlin. Voter Insertion
Algorithms for {FPGA} Designs Using Triple Modular Re-
dundancy. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
FPGA 10, pages 249-258, New York, NY, USA, 2010. ACM.
doi:10.1145/1723112.1723154.

LiveHD: Live hardware development. https://github.com/masc-
ucsc/livehd.

C. Lavin and A. Kaviani. Rapidwright: Enabling custom crafted
implementations for fpgas. In 20/8 IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 133-140, April 2018. doi:10.1109/
FCCM.2018.00030.

Y. Li, B. Nelson, and M. Wirthlin. Synchronization techniques for
crossing multiple clock domains in fpga-based tmr circuits. /EEE
Transactions on Nuclear Science, 57(6):3506-3514, Dec 2010.
doi:10.1109/TNS.2010.2086075.

W. Li and H. Switzer. A unified data exchnage environment
based on edif. In Proceedings of the 26th ACM/IEEE Design
Automation Conference, DAC ’89, page 803-806, New York,
NY, USA, 1989. Association for Computing Machinery. doi:
10.1145/74382.74534.

Brian Pratt, Michael Caffrey, James F Carroll, Paul Graham,
Keith Morgan, and Michael Wirthlin. Fine-grain SEU mitigation
for FPGAs using partial TMR. [EEE Transactions on Nuclear
Science, 55(4):2274-2280, aug 2008. doi:10.1109/TNS.
2008.2000852.

Graphical Representation of TMR. Mewtow / CC BY-
SA (https://creativecommons.org/licenses/by-sa/4.0). URL:
https://commons.wikimedia.org/wiki/File:Triple_Modular_
Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png.
Verific Design Automation, Inc. Verific Design Automation
[online]. 2020. URL: https://www.verific.com/.

B. White and B. Nelson. Tincr — a custom cad tool framework
for vivado. In 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFigl4), pages 1-6, Dec 2014.
doi:10.1109/ReConFig.2014.7032560.

Xilinx, Inc. Vivado Design Suite [online]. 2020. URL: https:
/Iwww.xilinx.com/products/design-tools/vivado.html.

47

48

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Introduction to Geometric Learning in Python with
Geomstats

Nina Miolane**, Nicolas Guigui§, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant,
Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, Thomas
Gerald, Paul Chauchat, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec

https://youtu.be/Ju-Wsd84uG0

Abstract—There is a growing interest in leveraging differential geometry in the
machine learning community. Yet, the adoption of the associated geometric
computations has been inhibited by the lack of a reference implementation.
Such an implementation should typically allow its users: (i) to get intuition on
concepts from differential geometry through a hands-on approach, often not
provided by traditional textbooks; and (ii) to run geometric machine learning
algorithms seamlessly, without delving into the mathematical details. To address
this gap, we present the open-source Python package geomstats and intro-
duce hands-on tutorials for differential geometry and geometric machine learn-
ing algorithms - Geometric Learning - that rely on it. Code and documentation:
github.com/geomstats/geomstats and geomstats.ai.

Index Terms—differential geometry, statistics, manifold, machine learning

Introduction

Data on manifolds arise naturally in different fields. Hyperspheres
model directional data in molecular and protein biology [KHO5]
and some aspects of 3D shapes [JDM12], [HVS™ 16]. Density esti-
mation on hyperbolic spaces arises to model electrical impedances
[HKKM10], networks [AS14], or reflection coefficients extracted
from a radar signal [CBA15]. Symmetric Positive Definite (SPD)
matrices are used to characterize data from Diffusion Tensor
Imaging (DTI) [PFAO06], [YZLMI12] and functional Magnetic
Resonance Imaging (fMRI) [STKO05]. These manifolds are curved,
differentiable generalizations of vector spaces. Learning from data
on manifolds thus requires techniques from the mathematical
discipline of differential geometry. As a result, there is a growing
interest in leveraging differential geometry in the machine learning
community, supported by the fields of Geometric Learning and
Geometric Deep Learning [BBL " 17].

Despite this need, the adoption of differential geometric
computations has been inhibited by the lack of a reference
implementation. Projects implementing code for geometric tools
are often custom-built for specific problems and are not easily
reused. Some Python packages do exist, but they mainly focus
on optimization (Pymanopt [TKW16], Geoopt [BG18], [Koc19],

= Corresponding author: nmiolane @ stanford.edu
Stanford University
§ Université Cote d’Azur, Inria

Copyright © 2020 Nina Miolane et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

McTorch [MJK™18]), are dedicated to a single manifold (PyRie-
mann [Barl5], PyQuaternion [Wynl4], PyGeometry [Cenl2]),
or lack unit-tests and continuous integration (TheanoGeometry
[KS17]). An open-source, low-level implementation of differential
geometry and associated learning algorithms for manifold-valued
data is thus thoroughly welcome.

Geomstats is an open-source Python package built for
machine learning with data on non-linear manifolds [MGLB"]:
a field called Geometric Learning. The library provides object-
oriented and extensively unit-tested implementations of essential
manifolds, operations, and learning methods with support for
different execution backends - namely NumPy, PyTorch, and
TensorFlow. This paper illustrates the use of geomstat s through
hands-on introductory tutorials of Geometric Learning. These tu-
torials enable users: (i) to build intuition for differential geometry
through a hands-on approach, often not provided by traditional
textbooks; and (ii) to run geometric machine learning algorithms
seamlessly without delving into the lower-level computational
or mathematical details. We emphasize that the tutorials are not
meant to replace theoretical expositions of differential geometry
and geometric learning [PosO1], [PSF19]. Rather, they will com-
plement them with an intuitive, didactic, and engineering-oriented
approach.

Presentation of Geomstats

The package geomstats is organized into two main modules:
geometry and learning. The module geomet ry implements low-
level differential geometry with an object-oriented paradigm and
two main parent classes: Manifold and RiemannianMetric.
Standard manifolds like the Hypersphere or the Hyperbolic
space are classes that inherit from Manifold. At the time of
writing, there are over 15 manifolds implemented in geomstats.
The class RiemannianMetric provides computations related
to Riemannian geometry on such manifolds such as the inner
product of two tangent vectors at a base point, the geodesic
distance between two points, the Exponential and Logarithm maps
at a base point, and many others.

The module learning implements statistics and machine
learning algorithms for data on manifolds. The code is object-
oriented and classes inherit from scikit-learn base classes
and mixins such as BaseEstimator, ClassifierMixin,
or RegressorMixin. This module provides implementations

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS

of Fréchet mean estimators, K-means, and principal component
analysis (PCA) designed for manifold data. The algorithms can be
applied seamlessly to the different manifolds implemented in the
library.

The code follows international standards for readability and
ease of collaboration, is vectorized for batch computations, un-
dergoes unit-testing with continuous integration, and incorporates
both TensorFlow and PyTorch backends to allow for GPU ac-
celeration. The package comes with a visualization module that
enables users to visualize and further develop an intuition for
differential geometry. In addition, the datasets module provides
instructive toy datasets on manifolds. The repositories examples
and notebooks provide convenient starting points to get familiar
with geomstats.

First Steps

To begin, we need to install geomstats. We follow the in-
stallation procedure described in the first steps of the online
documentation. Next, in the command line, we choose the backend
of interest: NumPy, PyTorch or TensorFlow. Then, we open
the iPython notebook and import the backend together with the
visualization module. In the command line:

export GEOMSTATS_BACKEND=numpy
then, in the notebook:

import geomstats.backend as gs
import geomstats.visualization as visualization

visualization.tutorial matplotlib ()

INFO: Using numpy backend

Modules related to matplotlib and logging should be im-
ported during setup too. More details on setup can be found on the
documentation website: geomstats.ai. All standard NumPy
functions should be called using the gs. prefix - e.g. gs.exp,
gs.log - in order to automatically use the backend of interest.

Tutorial: Statistics and Geometric Statistics

This tutorial illustrates how Geometric Statistics and Learning dif-
fer from traditional Statistics. Statistical theory is usually defined
for data belonging to vector spaces, which are linear spaces. For
example, we know how to compute the mean of a set of numbers
or of multidimensional arrays.

Now consider a non-linear space: a manifold. A manifold M of
dimension m is a space that is possibly curved but that looks like
an m-dimensional vector space in a small neighborhood of every
point. A sphere, like the earth, is a good example of a manifold.
What happens when we apply statistical theory defined for linear
vector spaces to data that does not naturally belong to a linear
space? For example, what happens if we want to perform statistics
on the coordinates of world cities lying on the earth’s surface: a
sphere? Let us compute the mean of two data points on the sphere
using the traditional definition of the mean.

from geomstats.geometry.hypersphere import \
Hypersphere

n_samples = 2

sphere = Hypersphere (dim=2)

points_in_manifold = sphere.random_uniform(
n_samples=n_samples)

49

e Points
Fréchet mean

e Points
Linear mean

Fig. 1: Left: Linear mean of two points on the sphere. Right: Fréchet
mean of two points on the sphere. The linear mean does not belong to
the sphere, while the Fréchet mean does. This illustrates how linear
statistics can be generalized to data on manifolds, such as points on
the sphere.

linear_mean = gs.sum(

points_in_manifold, axis=0) / n_samples

The result is shown in Figure 1 (left). What happened? The mean
of two points on a manifold (the sphere) is not on the manifold.
In our example, the mean of these cities is not on the earth’s
surface. This leads to errors in statistical computations. The line
sphere.belongs (linear_mean) returns False. For this
reason, researchers aim to build a theory of statistics that is - by
construction - compatible with any structure with which we equip
the manifold. This theory is called Geometric Statistics, and the
associated learning algorithms: Geometric Learning.

In this specific example of mean computation, Geometric
Statistics provides a generalization of the definition of “mean”
to manifolds: the Fréchet mean.

from geomstats.learning.frechet_mean import \
FrechetMean

estimator = FrechetMean (metric=sphere.metric)
estimator.fit (points_in_manifold)
frechet_mean = estimator.estimate_

Notice in this code snippet that geomstats provides classes
and methods whose API will be instantly familiar to users of the
widely-adopted scikit-1learn. We plot the result in Figure 1
(right). Observe that the Fréchet mean now belongs to the surface
of the sphere!

Beyond the computation of the mean, geomstats provides
statistics and learning algorithms on manifolds that leverage their
specific geometric structure. Such algorithms rely on elementary
operations that are introduced in the next tutorial.

Tutorial: Elementary Operations for Data on Manifolds

The previous tutorial showed why we need to generalize tradi-
tional statistics for data on manifolds. This tutorial shows how
to perform the elementary operations that allow us to “translate”
learning algorithms from linear spaces to manifolds.

We import data that lie on a manifold: the world cities dataset,
that contains coordinates of cities on the earth’s surface. We
visualize it in Figure 2.
import geomstats.datasets.utils as data utils
data,

names = data_utils.load_cities()

50

JParis ~
\ » Moscow
©Istanbul

Beijing

o Manilla

Fig. 2: Subset of the world cities dataset, available in
geomstats with the function load_cities from the module
datasets.utils. Cities’ coordinates are data on the sphere,
which is an example of a manifold.

How can we compute with data that lie on such a manifold?
The elementary operations on a vector space are addition and
subtraction. In a vector space (in fact seen as an affine space),
we can add a vector to a point and subtract two points to get a
vector. Can we generalize these operations in order to compute on
manifolds?

For points on a manifold, such as the sphere, the same
operations are not permitted. Indeed, adding a vector to a point
will not give a point that belongs to the manifold: in Figure 3,
adding the black tangent vector to the blue point gives a point that
is outside the surface of the sphere. So, we need to generalize to
manifolds the operations of addition and subtraction.

On manifolds, the exponential map is the operation that
generalizes the addition of a vector to a point. The exponential
map takes the following inputs: a point and a tangent vector to the
manifold at that point. These are shown in Figure 3 using the blue
point and its tangent vector, respectively. The exponential map re-
turns the point on the manifold that is reached by “shooting” with
the tangent vector from the point. “Shooting” means following a
“geodesic” on the manifold, which is the dotted path in Figure 3.
A geodesic, roughly, is the analog of a straight line for general
manifolds - the path whose, length, or energy, is minimal between
two points, where the notions of length and energy are defined by
the Riemannian metric. This code snippet shows how to compute
the exponential map and the geodesic with geomstats.

from geomstats.geometry.hypersphere import \
Hypersphere

sphere = Hypersphere (dim=2)

initial_point = paris = datal[l9]

vector = gs.array([1l, 0, 0.8]

tangent_vector = sphere.to_tangent (
vector, base_point=initial_point)

end_point = sphere.metric.exp (
tangent_vector, base_point=initial_point)

geodesic = sphere.metric.geodesic(
initial point=initial_point,
initial_tangent_vec=tangent_vector)

Similarly, on manifolds, the logarithm map is the operation that
generalizes the subtraction of two points on vector spaces. The
logarithm map takes two points on the manifold as inputs and
returns the tangent vector required to “shoot” from one point to

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

® Initial point
End point
¢ Geodesic

Fig. 3: Elementary operations on manifolds illustrated on the sphere.
The exponential map at the initial point (blue point) shoots the black
tangent vector along the geodesic, and gives the end point (orange
point). Conversely, the logarithm map at the initial point (blue point)
takes the end point (orange point) as input, and outputs the black
tangent vector. The geodesic between the blue point and the orange
point represents the path of shortest length between the two points.

the other. At any point, it is the inverse of the exponential map.
In Figure 3, the logarithm of the orange point at the blue point
returns the tangent vector in black. This code snippet shows how
to compute the logarithm map with geomstats.

log = sphere.metric.log(
point=end_point, base_point=initial_point)

We emphasize that the exponential and logarithm maps depend
on the “Riemannian metric” chosen for a given manifold: observe
in the code snippets that they are not methods of the sphere
object, but rather of its met ric attribute. The Riemannian metric
defines the notion of exponential, logarithm, geodesic and distance
between points on the manifold. We could have chosen a different
metric on the sphere that would have changed the distance between
the points: with a different metric, the “sphere” could, for example,
look like an ellipsoid.

Using the exponential and logarithm maps instead of linear
addition and subtraction, many learning algorithms can be gen-
eralized to manifolds. We illustrated the use of the exponential
and logarithm maps on the sphere only; yet, geomstats pro-
vides their implementation for over 15 different manifolds in its
geometry module with support for a variety of Riemannian
metrics. Consequently, geomstats also implements learning
algorithms on manifolds, taking into account their specific geo-
metric structure by relying on the operations we just introduced.
The next tutorials show more involved examples of such geometric
learning algorithms.

Tutorial: Classification of SPD Matrices
Tutorial context and description

We demonstrate that any standard machine learning algorithm can
be applied to data on manifolds while respecting their geometry. In
the previous tutorials, we saw that linear operations (mean, linear
weighting, addition and subtraction) are not defined on manifolds.
However, each point on a manifold has an associated tangent
space which is a vector space. As such, in the tangent space, these
operations are well defined! Therefore, we can use the logarithm
map (see Figure 3 from the previous tutorial) to go from points on

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS

manifolds to vectors in the tangent space at a reference point. This
first strategy enables the use of traditional learning algorithms on
manifolds.

A second strategy can be designed for learning algorithms,
such as K-Nearest Neighbors classification, that rely only on
distances or dissimilarity metrics. In this case, we can compute
the pairwise distances between the data points on the manifold,
using the method metric.dist, and feed them to the chosen
algorithm.

Both strategies can be applied to any manifold-valued data. In
this tutorial, we consider symmetric positive definite (SPD) matri-
ces from brain connectomics data and perform logistic regression
and K-Nearest Neighbors classification.

SPD matrices in the literature

Before diving into the tutorial, let us recall a few applications of
SPD matrices in the machine learning literature. SPD matrices are
ubiquitous across many fields [CS16], either as input of or output
to a given problem. In DTI for instance, voxels are represented
by "diffusion tensors" which are 3x3 SPD matrices representing
ellipsoids in their structure. These ellipsoids spatially characterize
the diffusion of water molecules in various tissues. Each DTI thus
consists of a field of SPD matrices, where each point in space
corresponds to an SPD matrix. These matrices then serve as inputs
to regression models. In [YZLM12] for example, the authors use
an intrinsic local polynomial regression to compare fiber tracts
between HIV subjects and a control group. Similarly, in fMRI, it is
possible to extract connectivity graphs from time series of patients’
resting-state images [WZD ™ 13]. The regularized graph Laplacians
of these graphs form a dataset of SPD matrices. This provides a
compact summary of brain connectivity patterns which is useful
for assessing neurological responses to a variety of stimuli, such
as drugs or patient’s activities.

More generally speaking, covariance matrices are also SPD
matrices which appear in many settings. Covariance clustering
can be used for various applications such as sound compression in
acoustic models of automatic speech recognition (ASR) systems
[SMA10] or for material classification [FHP15], among others.
Covariance descriptors are also popular image or video descriptors
[HHLS16].

Lastly, SPD matrices have found applications in deep learning.
The authors of [GWB™19] show that an aggregation of learned
deep convolutional features into an SPD matrix creates a robust
representation of images which outperforms state-of-the-art meth-
ods for visual classification.

Manifold of SPD matrices

Let us recall the mathematical definition of the manifold of
SPD matrices. The manifold of SPD matrices in n dimensions
is embedded in the General Linear group of invertible matrices
and defined as:

SPD = {S € Ry : 8" =S, Vz€R",2#0,2' 52> 0}.

The class SPDMatricesSpace inherits from the class
EmbeddedManifold and has an embedding_manifold
attribute which stores an object of the class GeneralLinear.
SPD matrices in 2 dimensions can be visualized as ellipses
with principal axes given by the eigenvectors of the SPD ma-
trix, and the length of each axis proportional to the square-
root of the corresponding eigenvalue. This is implemented in the

51

\ e Class 1
@ Class?2
® (Class3

Fig. 4: Simulated dataset of SPD matrices in 2 dimensions. We
observe 3 classes of SPD matrices, illustrated with the colors red,
green, and blue. The centroid of each class is represented by an ellipse
of larger width.

visualization module of geomstats. We generate a toy
data-set and plot it in Figure 4 with the following code snippet.

import geomstats.datasets.sample_sdp 2d as sampler
n_samples = 100
dataset_generator = sampler.DatasetSPD2D (

n_samples, n_features=2, n_classes=3)

ellipsis = visualization.Ellipsis2D ()
for i,x in enumerate (data) :

y = sampler.get_label_at_index (i, labels)
ellipsis.draw (
x, color=ellipsis.colors[y], alpha=.1)

Figure 4 shows a dataset of SPD matrices in 2 dimensions
organized into 3 classes. This visualization helps in developing an
intuition on the connectomes dataset that is used in the upcoming
tutorial, where we will classify SPD matrices in 28 dimensions
into 2 classes.

Classifying brain connectomes in Geomstats

We now delve into the tutorial in order to illustrate the use of
traditional learning algorithms on the tangent spaces of manifolds
implemented in geomstats. We use brain connectome data from
the MSLP 2014 Schizophrenia Challenge. The connectomes are
correlation matrices extracted from the time-series of resting-state
fMRIs of 86 patients at 28 brain regions of interest: they are
points on the manifold of SPD matrices in n = 28 dimensions.
Our goal is to use the connectomes to classify patients into two
classes: schizophrenic and control. First we load the connectomes
and display two of them as heatmaps in Figure 5.

import geomstats.datasets.utils as data utils

data, patient_ids, labels = \
data_utils.load_connectomes ()

Multiple metrics can be used to compute on the manifold of SPD
matrices [DKZ09]. As mentionned in the previous tutorial, differ-
ent metrics define different geodesics, exponential and logarithm
maps and therefore different algorithms on a given manifold. Here,
we import two of the most commonly used metrics on the SPD
matrices, the log-Euclidean metric and the affine-invariant metric
[PFA06], but we highlight that geomstat s contains many more.
We also check that our connectome data indeed belongs to the
manifold of SPD matrices:

52

Schizophrenic Healthy

Correlations
—_—

-0.5 1.

Fig. 5: Subset of the connectomes dataset, available in
geomstats with the function 1oad_connectomes from the mod-
ule datasets.utils. Connectomes are correlation matrices of
28 time-series extracted from fMRI data: they are elements of the
manifold of SPD matrices in 28 dimensions. Left: connectome of a
schizophrenic subject. Right: connectome of a healthy control.

import geomstats.geometry.spd matrices as spd

manifold = spd.SPDMatrices (n=28)

le_metric = spd.SPDMetricLogEuclidean (n=28)
ai_metric = spd.SPDMetricAffine (n=28)
logging.info(gs.all (manifold.belongs (data)))

INFO: True

Great! Now, although the sum of two SPD matrices is an SPD
matrix, their difference or their linear combination with non-
positive weights are not necessarily. Therefore we need to work in
a tangent space of the SPD manifold to perform simple machine
learning that relies on linear operations. The preprocessing
module with its ToTangentSpace class allows to do exactly
this.

from geomstats.learning.preprocessing import \
ToTangentSpace

ToTangentSpace has a simple purpose: it computes the
Fréchet Mean of the data set, and takes the logarithm map of
each data point from the mean. This results in a data set of
tangent vectors at the mean. In the case of the SPD mani-
fold, these are simply symmetric matrices. ToTangentSpace
then squeezes each symmetric matrix into a ld-vector of size
dim = 28 = (28 + 1) / 2, and outputs an array of shape
[n_connectomes, dim], which can be fed to your favorite
scikit-learn algorithm.

We emphasize that ToTangentSpace computes the mean
of the input data, and thus should be used in a pipeline (as
e.g. scikit-learn’s StandardScaler) to avoid leaking
information from the test set at train time.

from sklearn.pipeline import make_pipeline
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import cross_validate

pipeline = make_pipeline (
ToTangentSpace (le_metric),

We use a logistic regression on the tangent space at the Fréchet
mean to classify connectomes, and evaluate the model with cross-
validation. With the log-Euclidean metric we obtain:

result = cross_validate (pipeline, data, labels)
logging.info(result['test_score'].mean())

INFO: 0.67

LogisticRegression (C=2))

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

And with the affine-invariant metric, replacing le_metric by
ai_metric in the above snippet:

INFO: 0.71

We observe that the result depends on the metric. The Riemannian
metric indeed defines the notion of the logarithm map, which
is used to compute the Fréchet Mean and the tangent vectors
corresponding to the input data points. Thus, changing the metric
changes the result. Furthermore, some metrics may be more
suitable than others for different applications. Indeed, we find
published results that show how useful geometry can be with data
on the SPD manifold (e.g [WAZF18], [NDV " 14]).

We saw how to use the representation of points on the manifold
as tangent vectors at a reference point to fit any machine learning
algorithm, and we compared the effect of different metrics on the
manifold of SPD matrices. Another class of machine learning al-
gorithms can be used very easily on manifolds with geomstats:
those relying on dissimilarity matrices. We can compute the
matrix of pairwise Riemannian distances, using the dist method
of the Riemannian metric object. In the following code-snippet,
we use ai_metric.dist and pass the corresponding matrix
pairwise_dist of pairwise distances to scikit-learn’s
K-Nearest-Neighbors (KNN) classification algorithm:

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(
metric="'precomputed')

result = cross_validate(
classifier, pairwise_dist, labels)
logging.info(result['test_score'] .mean())

INFO: 0.72

This tutorial showed how to leverage geomstats to use standard
learning algorithms for data on a manifold. In the next tutorial, we
see a more complicated situation: the data points are not provided
by default as elements of a manifold. We will need to use the low-
level geomstats operations to design a method that embeds
the dataset in the manifold of interest. Only then, we can use a
learning algorithm.

Tutorial: Learning Graph Representations with Hyperbolic
Spaces

Tutorial context and description

This tutorial demonstrates how to make use of the low-level
geometric operations in geomstats to implement a method that
embeds graph data into the hyperbolic space. Thanks to the dis-
covery of hyperbolic embeddings, learning on Graph-Structured
Data (GSD) has seen major achievements in recent years. It had
been speculated for years that hyperbolic spaces may better rep-
resent GSD than Euclidean spaces [Gro87] [KPK ™ 10] [BPK10]
[ASM13]. These speculations have recently been shown effec-
tive through concrete studies and applications [NK17] [CCD17]
[SDSGR18] [GZH " 19]. As outlined by [NK17], Euclidean em-
beddings require large dimensions to capture certain complex
relations such as the Wordnet noun hierarchy. On the other
hand, this complexity can be captured by a lower-dimensional
model of hyperbolic geometry such as the hyperbolic space of
two dimensions [SDSGR18], also called the hyperbolic plane.
Additionally, hyperbolic embeddings provide better visualizations
of clusters on graphs than their Euclidean counterparts [CCD17].

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS

This tutorial illustrates how to learn hyperbolic embeddings
in geomstats. Specifically, we will embed the Karate Club
graph dataset, representing the social interactions of the members
of a university Karate club, into the Poincaré ball. Note that we
will omit implementation details but an unabridged example and
detailed notebook can be found on GitHub in the examples and
notebooks directories of geomstats.

Hyperbolic spaces and machine learning applications

Before going into this tutorial, we review a few applications of
hyperbolic spaces in the machine learning literature. First, Hy-
perbolic spaces arise in information and learning theory. Indeed,
the space of univariate Gaussians endowed with the Fisher metric
densities is a hyperbolic space [CSS05]. This characterization is
used in various fields, for example in image processing, where
each image pixel can be represented by a Gaussian distribution
[AVF14], or in radar signal processing where the corresponding
echo is represented by a stationary Gaussian process [ABY13].
Hyperbolic spaces can also be seen as continuous versions of
trees and are therefore interesting when learning representations
of hierarchical data [NK17]. Hyperbolic Geometric Graphs (HGG)
have also been suggested as a promising model for social networks
- where the hyperbolicity appears through a competition between
similarity and popularity of an individual [PKS™12] and in learn-
ing communities on large graphs [GZH " 19].

Hyperbolic space

Let us recall the mathematical definition of the hyperbolic space.
The n-dimensional hyperbolic space H, is defined by its embed-
ding in the (n+ 1)-dimensional Minkowski space as:

ey

In geomstats, the hyperbolic space is implemented in the
class Hyperboloid and PoincareBall, which use dif-
ferent coordinate systems to represent points. These classes
inherit from the class EmbeddedManifold and have an
embedding_manifold attribute which stores an object of the
class Minkowski. The 2-dimensional hyperbolic space is called
the hyperbolic plane or Poincaré disk.

Hy={xeR"™: —xj+. . +xi, =-1}.

Learning graph representations with hyperbolic spaces in
geomstats

Parameters and Initialization: We now proceed with the
tutorial embedding the Karate club graph in a hyperbolic space.
In the Karate club graph, each node represents a member of the
club, and each edge represents an undirected relation between two
members. We first load the Karate club dataset, display it in Figure
6 and print information regarding its nodes and vertices to provide
insights into the graph’s complexity.

karate_graph = data_utils.load_karate_graph()
nb_vertices_by_edges = (

[len(e_2) for _, e_2 in
karate_graph.edges.items ()])
logging.info(

'Number of
logging.info(
'Mean edge-vertex ratio: ',
(sum (nb_vertices_by_edges, 0) /
len (karate_graph.edges)))

vertices: ', len(karate_graph.edges))

INFO: Number of vertices: 34

INFO: Mean edge-vertex ratio: 4.588235294117647

53

Fig. 6: Karate club dataset, available in geomstat s with the func-
tion load_karate_graph from the module datasets.utils.
This dataset is a graph, where each node represents a member of the
club and each edge represents a tie between two members of the club.

Parameter Description Value
dim Dimension of the hyperbolic space 2
max_epochs Number of embedding iterations 15

Ir Learning rate 0.05
n_negative Number of negative samples 2
context_size Size of the context for each node 1

karate_graph Instance of the Graph class returned by the function

load_karate_graphindatasets.utils

TABLE 1: Hyperparameters used to embed the Karate Club Graph
into a hyperbolic space.

Table 1 defines the parameters needed to embed this graph into
a hyperbolic space. The number of hyperbolic dimensions should
be high (n > 10) only for graph datasets with a large number
of nodes and edges. In this tutorial we consider a dataset with
only 34 nodes, which are the 34 members of the Karate club. The
Poincaré ball of two dimensions is therefore sufficient to capture
the complexity of the graph. We instantiate an object of the class
PoincareBall in geomstats.

from geomstats.geometry.poincare_ball
import PoincareBall

hyperbolic_manifold = PoincareBall (dim=2)

Other parameters such as max_epochs and 1r will be tuned
specifically for each dataset, either manually leveraging visu-
alization functions or through a grid/random search that looks
for parameter values maximizing some performance function (a
measure for cluster separability, normalized mutual information
(NMI), or others). Similarly, the number of negative samples and
context size are hyperparameters and will be further discussed
below.

Learning the embedding by optimizing a loss function:
Denote V as the set of nodes and E C V x V the set of edges of the
graph. The goal of hyperbolic embedding is to provide a faithful
and exploitable representation of the graph. This goal is mainly
achieved by preserving first-order proximity that encourages nodes
sharing edges to be close to each other. We can additionally pre-

54

— Gradient direction for context samples
— Gradient direction for negative samples

Fig. 7: Embedding of the graph’s nodes {v;}; as points {¢;}; of the
hyperbolic plane H,, also called the Poincaré ball of 2 dimensions.
The blue and red arrows represent the direction of the gradient of the
loss function £ from Equation 2. This brings context samples closer
and separates negative samples.

serve second-order proximity by encouraging two nodes sharing
the “same context”, i.e. not necessarily directly connected but
sharing a neighbor, to be close. We define a context size (here
equal to 1) and call two nodes “context samples” if they share a
neighbor, and “negative samples” otherwise. To preserve first and
second-order proximities, we adopt the following loss function
similar to [NK17] and consider the “negative sampling” approach
from [MSC"13]:

Z=-Y Y |og(o(-d*(¢9})+ Y log(c(d?(9:,9})))

vi€Vv;eC;
(2)

where 6(x) = (1+e~*)~! is the sigmoid function and ¢; € H; is
the embedding of the i-th node of V, C; the nodes in the context
of the i-th node, (])J’ € H the embedding of v; € C;. Negatively
sampled nodes vy are chosen according to the distribution &,
such that &2,(v) = (deg(v)3/4).():viev deg(v;)3/*)~1.

Intuitively one can see in Figure 7 that minimizing . makes
the distance between ¢; and ¢; smaller, and the distance between
¢; and ¢y larger. Therefore by minimizing ., one obtains repre-
sentative embeddings.

Riemannian optimization: Following the literature on op-
timization on manifolds [GBH18], we use the following gradient

updates to optimize .Z":
l ra%-g
¢

where ¢ is a parameter of £, t € {1,2,---} is the iteration
number, and [r is the learning rate. The formula consists of
first computing the usual gradient of the loss function for the
direction in which the parameter should move. The Riemannian
exponential map Exp is the operation introduced in the second
tutorial: it takes a base point ¢’ and a tangent vector T and returns
the point ¢'*!. The Riemannian exponential map is a method of
the PoincareBallMetric class in the geometry module
of geomstats. It allows us to implement a straightforward
generalization of standard gradient update in the Euclidean case.
To compute the gradient of ., we need to compute the gradients
of: (i) the squared distance d>(x,y) on the hyperbolic space, (ii)

Vi~ Pn

¢t+1 _ Equ)’ (,

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

the log sigmoid log(o(x)), and (iii) the composition of (i) with
(ii).

For (i), we use the formula proposed by [ABY13] which
uses the Riemannian logarithmic map. Like the exponen-
tial Exp, the logarithmic map is implemented under the
PoincareBallMetric.

def grad_squared_distance (point_a, point_lb, manifold):
log manifold.metric.log(point_b, point_a)
return -2 *» log

For (ii), we compute the well-known gradient of the logarithm of
the sigmoid function as: (logo)’(x) = (1 +exp(x))~!. For (iii),
we apply the composition rule to obtain the gradient of .. The
following function computes .’ and its gradient on the context
samples, while ignoring the part dealing with the negative samples
for simplicity of exposition. The code implementing the whole
loss function is available on GitHub.

def loss (example, context_embedding, manifold) :

context_distance = manifold.metric.squared_dist (
example, context_embedding)

context_loss = log_sigmoid(-context_distance)

context_log_sigmoid_grad = —grad_log_sigmoid(
—context_distance)

context_distance_grad = grad_squared_distance (
example, context_embedding, manifold)

context_grad = (context_log_sigmoid_grad
« context_distance_grad)

return context_loss, -context_grad

Capturing the graph structure: We perform initialization
computations that capture the graph structure. We compute ran-
dom walks initialized from each v; up to some length (five by
default). The context nodes v; will be later picked from the random
walk of v;.

random_walks = karate_graph.random_walk ()

Negatively sampled nodes v, are chosen according to the pre-
viously defined probability distribution function Z2,(v;) imple-
mented as

negative_table_parameter = 5
negative_sampling_table = []

for i, nb_v in enumerate (nb_vertices_by_edges):
negative_sampling_table += (
[1] % int ((nb_v** (3. / 4.)))
+ negative_table_parameter)

Numerically optimizing the loss function: We can now em-
bed the Karate club graph into the Poincaré disk. The details of the
initialization are provided on GitHub. The array embeddings
contains the embeddings ¢;’s of the nodes v_1i’s of the current
iteration. At each iteration, we compute the gradient of .#. The
graph nodes are then moved in the direction pointed by the
gradient. The movement of the nodes is performed by following
geodesics in the Poincaré disk in the gradient direction. In practice,
the key to obtaining a representative embedding is to carefully tune
the learning rate so that all of the nodes make small movements at
each iteration.

A first level loop iterates over the epochs while the table
total_loss records the value of .Z at each iteration. A second

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS

level nested loop iterates over each path in the previously com-
puted random walks. Observing these walks, note that nodes hav-
ing many edges appear more often. Such nodes can be considered
as important crossroads and will therefore be subject to a greater
number of embedding updates. This is one of the main reasons
why random walks have proven to be effective in capturing the
structure of graphs. The context of each v; will be the set of nodes
v; belonging to the random walk from v;. The context_size
specified earlier will limit the length of the walk to be considered.
Similarly, we use the same context_size to limit the number
of negative samples. We find ¢; from the embeddings array.

A third and fourth level nested loops will iterate on each v;
and vi. From within, we find ¢; and ¢/ and call the 1osss function
to compute the gradient. Then the Riemannian exponential map is
applied to find the new value of ¢; as we mentioned before.

for epoch in range (max_epochs) :
total_loss = []
for path in random_walks:
for example_index,
one_path in enumerate (path) :

context_index = path[max (
0, example_index - context_size):
min (example_index + context_size,
len (path))]

negative_index = gs.random.randint (

negative_sampling_table.shape[0],
size=(len (context_index), n_negative))
negative_index = (

55

Iteration 8

Iteration 0

L

8 s
mmm [abel |

Iteration 15 mmm [Label 2

Iteration 99

Fig. 8: Embedding of the Karate club graph into the hyperbolic plane
at different iterations. The colors represent the true label of each node.

negative_sampling_table[negative_index])

example_embedding =
for one_context_i, one_negative_i in \
zip (context_index, negative_index) :
context_embedding = (
embeddings[one_context_i])
negative_embedding = (
embeddings[one_negative_i])
g_ex = loss(
example_embedding,
context_embedding,
negative_embedding,
hyperbolic_manifold)
total_loss.append (1)

embeddings [one_path]

ll

example_to_update = (
embeddings [one_path])
embeddings [one_path] = (
hyperbolic_metric.exp (
-1lr % g_ex, example_to_update))
logging.info(
'iteration
epoch,

loss_value ',

sum(total_loss, 0) / len(total_loss))

INFO:
INFO:

iteration 0 loss_value 1.819844
iteration 14 loss_value 1.363593

Figure 8 shows the graph embedding at different iterations with
the true labels of each node represented with color. Notice how the
embedding at convergence separates well the two clusters. Thus,
it seems that we have found a useful representation of the graph.

To demonstrate the usefulness of the embedding learned, we
show how to apply a K-means algorithm in the hyperbolic plane
to predict the label of each node in an unsupervised approach.
We use the learning module of geomstats and instantiate
an object of the class RiemannianKMeans. Observe again how
geomstats classes follow scikit—-learn’s APL. We set the
number of clusters and plot the results.

from geomstats.learning.kmeans import RiemannianKMeans

kmeans = RiemannianKMeans (

True labels Predicted labels
mm Label 1 mm [abel 1
mm [abel 2 = Label 2

m Centroids

Fig. 9: Results of the Riemannian K-means algorithm on the Karate
graph dataset embedded in the hyperbolic plane. Left: True labels as-
sociated to the club members. Right: Predicted labels via Riemannian
K-means on the hyperbolic plane. The centroids of the clusters are
shown with a star marker.

hyperbolic_manifold.metric, n_clusters=2,
mean_method='frechet-poincare-ball')
centroids = kmeans.fit (X=embeddings, max_iter=100)
labels = kmeans.predict (X=embeddings)

Figure 9 shows the true labels versus the predicted ones: the two
groups of the karate club members have been well separated!

Conclusion

This paper demonstrates the use of geomstats in performing
geometric learning on data belonging to manifolds. These tu-
torials, as well as many other learning examples on a variety
of manifolds, can be found at geomstats.ai. We hope that
this hands-on presentation of Geometric Learning will help to
further democratize the use of differential geometry in the machine
learning community.

Acknowledgements

This work is partially supported by the National Science Founda-
tion, grant NSF DMS RTG 1501767, the Inria-Stanford associated
team GeomStats, and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
program (grant agreement G-Statistics No. 786854).

56

REFERENCES

[ABY13]

[AS14]

[ASM13]

[AVF14]

[Barl5]

[BBL*17]

[BG18]

[BPK10]

[CBA15]

[CCD17]

[Cenl2]

[CS16]

[CSS05]

[DKZ09]

[FHP15]

Marc Arnaudon, Frédéric Barbaresco, and Le Yang. Riemannian
medians and means with applications to radar signal processing.
1EEE Journal of Selected Topics in Signal Processing, 7(4):595—
604, 2013. URL: https://ieeexplore.ieee.org/document/6514112,
doi:10.1109/JSTSP.2013.2261798.

Dena Asta and Cosma Rohilla Shalizi. Geometric Net-
work Comparison. Journal of Machine Learning Research,
2014. URL: http://arxiv.org/abs/1411.1350, doi:10.1109/
PES.2006.1709566.

Aaron B Adcock, Blair D Sullivan, and Michael W Mahoney.
Tree-like structure in large social and information networks. In
2013 IEEE 13th International Conference on Data Mining, pages
1-10. IEEE, 2013. URL: https://ieeexplore.ieee.org/document/
6729484, do1:10.1109/ICDM.2013.77.

Jesus Angulo and Santiago Velasco-Forero. Morphological pro-
cessing of univariate Gaussian distribution-valued images based
on Poincaré upper-half plane representation. In Frank Nielsen,
editor, Geometric Theory of Information, Signals and Com-
munication Technology, pages 331-366. Springer International
Publishing, 5 2014. URL: https://hal.archives-ouvertes.fr/hal-
00795012, doi:10.1007/978-3-319-05317-2_12.
Alexandre Barachant. PyRiemann: Python package for covari-
ance matrices manipulation and Biosignal classification with
application in Brain Computer interface, 2015. URL: https:
//github.com/alexandrebarachant/pyRiemann, doi:10.5281/
zenodo.3715511.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,
and Pierre Vandergheynst. Geometric deep learning: Going
beyond euclidean data. [EEE Signal Processing Magazine,
34(4):18-42, 2017. URL: https://ieeexplore.ieee.org/document/
7974879, do1:10.1109/MSP.2017.2693418.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian Adap-
tive Optimization Methods. In Proc. of ICLR 2019, pages 1-16,
2018. URL: http://arxiv.org/abs/1810.00760.

Marian Bogund, Fragkiskos Papadopoulos, and Dmitri Krioukov.
Sustaining the internet with hyperbolic mapping. Nature com-
munications, 1(1):1-8, Oct 2010. URL: https://www.nature.com/
articles/ncomms 1063, doi:10.1038/ncomms1063.
Emmanuel Chevallier, Frédéric Barbaresco, and Jesus Angulo.
Probability density estimation on the hyperbolic space ap-
plied to radar processing. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 9389:753-761,
2015. URL: https://link.springer.com/chapter/10.1007/978-3-
319-25040-3_80, doi:10.1007/978-3-319-25040-3_
80.

Benjamin Paul Chamberlain, James Clough, and Marc Peter
Deisenroth. Neural embeddings of graphs in hyperbolic space.
13th International Workshop on Mining and Learning with
Graphs, 2017. URL: https://arxiv.org/abs/1705.10359.

Andrea Censi. PyGeometry: Library for handling vari-
ous differentiable manifolds., 2012. URL: https://github.com/

AndreaCensi/geometry.
Anoop Cherian and Suvrit Sra. Positive Definite
Matrices: Data Representation and Applications to

Computer Vision. In Algorithmic Advances in Riemannian
Geometry and Applications. Springer, 2016. URL:
https://www.springerprofessional.de/en/positive-definite-
matrices-symmetric-positive-definite-spd-matri/10816206,
doi:10.1007/978-3-319-45026-1.

Sueli IR Costa, Sandra A Santos, and Jodo E Strapasson. Fisher
information matrix and hyperbolic geometry. In IEEE Infor-
mation Theory Workshop, 2005., pages 3—pp. IEEE, 2005. URL:
https://ieeexplore.ieee.org/document/1531851, doi:10.1109/
ITW.2005.1531851.

Tan L. Dryden, Alexey Koloydenko, and Diwei Zhou. Non-
Euclidean statistics for covariance matrices, with applications
to diffusion tensor imaging. Annals of Applied Statistics,
3(3):1102-1123, September 2009. Publisher: Institute of Math-
ematical Statistics. URL: https://projecteuclid.org/euclid.aoas/
1254773280, doi:10.1214/09-A0AS2409.

Masoud Faraki, Mehrtash T Harandi, and Fatih Porikli. Material
Classification on Symmetric Positive Definite Manifolds. In
2015 IEEE Winter Conference on Applications of Computer
Vision, pages 749-756, 1 2015. URL: https://ieeexplore.ieee.
org/document/7045959, doi:10.1109/WACV.2015.105.

[GBH18]

[Gro87]

[GWBT19]

[GZHT19]

[HHLS16]

[HKKM10]

[HVST16]

[JDM12]

[KHO5]

[Koc19]

[KPK*10]

[KS17]

[MGLB™"]

[MJIK™18]

[MSC™*13]

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyper-
bolic neural networks. In Advances in Neural Information Pro-
cessing Systems 31 (NIPS), pages 5345-5355. Curran Associates,
Inc., 2018. URL: http://papers.nips.cc/paper/7780-hyperbolic-
neural-networks.pdf.

Mikhail Gromov. Hyperbolic Groups, pages 75-263. Springer
New York, New York, NY, 1987. URL: https://link.springer.com/
chapter/10.1007/978-1-4613-9586-7_3, do1:10.1007/978~-
1-4613-9586-7_3.

Zhi Gao, Yuwei Wu, Xingyuan Bu, Tan Yu, Junsong Yuan,
and Yunde Jia. Learning a robust representation via a
deep network on symmetric positive definite manifolds. Paz-
tern Recognition, 92:1-12, August 2019. URL: https:/
linkinghub.elsevier.com/retrieve/pii/S0031320319301062, doi :
10.1016/j.patcog.2019.03.007.

Thomas Gerald, Hadi Zaatiti, Hatem Hajri, Nicolas Baskiotis,
and Olivier Schwander. From node embedding to community
embedding : A hyperbolic approach, 2019. URL: https://arxiv.
org/abs/1907.01662, arXiv:1907.01662.

M. T. Harandi, R. Hartley, B. Lovell, and C. Sanderson. Sparse
coding on symmetric positive definite manifolds using bregman
divergences. IEEE Transactions on Neural Networks and Learn-
ing Systems, 27(6):1294-1306, 2016. doi:10.1109/TNNLS.
2014.2387383.

Stephan Huckemann, Peter Kim, Ja Yong Koo, and Axel Munk.
Mobius deconvolution on the hyperbolic plane with applica-
tion to impedance density estimation. Annals of Statistics,
38(4):2465-2498, 2010. URL: https://projecteuclid.org/euclid.
20s/1278861254, doi:10.1214/09-A0S783.

Junpyo Hong, Jared Vicory, Jorn Schulz, Martin Styner, J S Mar-
ron, and StephenM Pizer. Non-Euclidean Classification of Med-
ically Imaged Objects via s-reps. Med Image Anal, 31:37-45,
2016. URL: https://www.sciencedirect.com/science/article/abs/
pii/S1361841516000141, doi:10.1016/7j.media.2016.
01.007.

Sungkyu Jung, Ian L. Dryden, and J. S. Marron. Analysis
of principal nested spheres. Biometrika, 99(3):551-568, 2012.
URL: http://www.statistics.pitt.edu/sungkyu/papers/Biometrika-
2012-Jung-551-68.pdf, doi:10.1093/biomet/ass022.
John T Kent and Thomas Hamelryck. Using the Fisher-Bingham
distribution in stochastic models for protein structure. Quan-
titative Biology, Shape Analysis, and Wavelets, 24(1):57-60,
2005. URL: http://www.amsta.leeds.ac.uk/statistics/workshop/
lasr2005/Proceedings/kent.pdf.

Maxim Kochurov. Geoopt: Riemannian Adaptive Optimization
Methods with pytorch optim, 2019. URL: https://arxiv.org/abs/
2005.02819.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak,
Amin Vahdat, and Maridn Bogufid. = Hyperbolic geome-
try of complex networks. Physical Review E, 82:036106,
Sep 2010. URL: https://journals.aps.org/pre/abstract/10.
1103/PhysRevE.82.036106, doi:10.1103/PhysRevE.82.
036106.

Line Kiihnel and Stefan Sommer. Computational Anatomy in
Theano. CoRR, 2017. URL: https://link.springer.com/chapter/10.
1007/978-3-319-67675-3_15, doi:10.1007/978-3-319~
67675-3_15.

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe,
Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre,
Nicolas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas
Gerald, Paul Chauchat, Daniel Brooks, Christian Shewmake,
Bernhard Kainz, Claire Donnat, Susan Holmes, and Xavier
Pennec. Geomstats : a Python Package for Riemannian Geometry
in Machine Learning. URL: https://arxiv.org/abs/2004.04667.
Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan,
Hiroyuki Kasai, and Bamdev Mishra. McTorch, a manifold
optimization library for deep learning, 2018. URL: http://arxiv.
org/abs/1810.01811.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In Advances
in Neural Information Processing Systems 26 (NIPS),
pages 3111-3119. Curran Associates, Inc., 2013. URL:
https://papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality, doi:https:
//dl.acm.org/doi/10.5555/2999792.2999959.

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS

[NDV™*14]

[NK17]

[PFA06]

[PKS*12]

[PosO1]

[PSF19]

[SDSGR18]

[SMA10]

[STKO5]

[TKW16]

[WAZF18]

[Wyn14]

[WZD13]

Bernard Ng, Martin Dressler, Gaél Varoquaux, Jean Baptiste
Poline, Michael Greicius, and Bertrand Thirion. Transport on
Riemannian manifold for functional connectivity-based classi-
fication. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 8674 LNCS, pages 405412,
Cham, 2014. Springer International Publishing. URL: http://
link.springer.com/10.1007/978-3-319-10470-6{_}51, doi:10.
1007/978-3-319-10470-6_51.

Maximillian Nickel and Douwe Kiela. Poincaré Embeddings
for Learning Hierarchical Representations. In I Guyon, U V
Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan,
and R Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6338-6347. Curran Associates,
Inc., 2017. URL: http://papers.nips.cc/paper/7213-poincare-
embeddings-for-learning-hierarchical-representations.pdf.
Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A
Riemannian Framework for Tensor Computing. In-
ternational Journal of Computer Vision, 66(1):41-66, 1
2006. URL: https:/link.springer.com/article/10.1007/s11263-
005-3222-7, do1:10.1007/s11263-005-3222~z.
Fragkiskos Papadopoulos, Maksim Kitsak, M Angeles Ser-
rano, Maridn Bogund, and Dmitri Krioukov. Popularity ver-
sus similarity in growing networks. Nature, 489(7417):537—
540, 2012. URL: https://www.nature.com/articles/nature11459,
doi:10.1038/naturell459.

Mikhail Postnikov. Riemannian Geometry. Encyclopae-
dia of Mathem. Sciences. Springer, 2001. URL: https://
encyclopediaofmath.org/wiki/Riemannian_geometry, doi:10.
1007/978-3-662-04433-9.

Xavier Pennec, Stefan Sommer, and Tom Fletcher.
Riemannian Geometric Statistics in Medical Image Analysis.
Elsevier Ltd, first edit edition, 2019. URL: https:
/Iwww.elsevier.com/books/riemannian- geometric-statistics-
in-medical-image-analysis/pennec/978-0-12-814725-2,
doi:10.1016/C2017-0-01561-6.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re.
Representation tradeoffs for hyperbolic embeddings. In Jen-
nifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 4460—4469,
Stockholmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR.
URL: http://proceedings.mlr.press/v80/salal8a.html.

Yusuke Shinohara, Takashi Masuko, and Masami Akamine.
Covariance clustering on Riemannian manifolds for acoustic
model compression. In 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 43264329,
3 2010. URL: https://ieeexplore.ieee.org/document/5495661,
doi:10.1109/ICASSP.2010.5495661.

Olaf Sporns, Giulio Tononi, and Rolf Kotter. The human
connectome: A structural description of the human brain. PLOS
Computational Biology, 1(4):0245-0251, 09 2005. URL: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1239902/, doi:10.
1371/journal.pcbi.0010042.

James Townsend, Niklas Koep, and Sebastian Weichwald.
Pymanopt: A python toolbox for optimization on mani-
folds using automatic differentiation. Journal of Machine
Learning Research, 17(137):1-5, 2016. URL: http://jmlr.
org/papers/v17/16-177.html, doi:https://dl.acm.org/
doi/10.5555/2946645.3007090.

Eleanor Wong, Jeffrey S. Anderson, Brandon A. Zielinski, and
P. Thomas Fletcher. Riemannian Regression and Classification
Models of Brain Networks Applied to Autism. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), volume
11083 LNCS of Lecture Notes in Computer Science, pages
78-87. Springer International Publishing, 2018. URL: https://
link.springer.com/chapter/10.1007/978-3-030-00755-3_9, doi :
10.1007/978-3-030-00755-3_09.

Kieran Wynn. PyQuaternions: A fully featured, pythonic li-
brary for representing and using quaternions, 2014. URL:
https://github.com/KieranWynn/pyquaternion.

Jinhui Wang, Xinian Zuo, Zhengjia Dai, Mingrui Xia, Zhilian
Zhao, Xiaoling Zhao, Jianping Jia, Ying Han, and Yong He.
Disrupted functional brain connectome in individuals at risk
for Alzheimer’s disease. Biological Psychiatry, 73(5):472-481,

[YZLM12]

57

2013. URL: http://dx.doi.org/10.1016/j.biopsych.2012.03.026,
doi:10.1016/j.biopsych.2012.03.026.

Ying Yuan, Hongtu Zhu, Weili Lin, and J S Marron. Local
polynomial regression for symmetric positive definite matrices.
Journal of the Royal Statistical Society Series B, T74(4):697—
719, 2012. URL: https://econpapers.repec.org/RePEc:bla:jorssb:
v:74:y:2012:1:4:p:697-719, doi:10.1111/73.1467-9868.
2011.01022.x.

58

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Network visualizations with Pyvis and VisdS

Giancarlo Perrone**, Jose Unpingco*, Haw-minn Lu*

Abstract—Pyvis is a Python module that enables visualizing and interactively
manipulating network graphs in the Jupyter notebook, or as a standalone web
application. Pyvis is built on top of the powerful and mature VisJS JavaScript
library, which allows for fast and responsive interactions while also abstracting
away the low-level JavaScript and HTML. This means that elements of the ren-
dered graph visualization, such as node/edge attributes can be specified within
Python and shipped to the JavaScript layer for VisdS to render. This declarative
approach makes it easy to quickly explore graph visualizations and investigate
data relationships. In addition, Pyvis is highly customizable so that colors, sizes,
and hover tooltips can be assigned to the rendered graph. The network graph
layout is controlled by a front-end physics engine that is configurable from a
Python interface, allowing for the detailed placement of the graph elements. In
this paper, we outline use cases for Pyvis with specific examples to highlight key
features for any analysis workflow. A brief overview of Pyvis’ implementation
describes how the Python front-end binding uses simple Pyvis calls.

Index Terms—networks, graphs, relationship

Introduction

Successful Data Science is about discovering meaningful rela-
tionships in data. Visually representing these relationships using
a network graph helps to accelerate understanding and make
data driven decisions. Many research areas take advantage of
the insight that network analysis techniques can offer. Fields
in social networking, cognitive studies, telecommunications, and
biological systems all leverage the applications of network the-
ory and computation. Representing these relationships using a
network graph is fundamental to all approaches, but generating
an interactive and fluid graph visualization can be challenging,
especially for large datasets. We introduce Pyvis, based upon the
mature VisJS [vis20b] JavaScript library which enables fluid and
interactive visualizations of complex network graphs. Pyvis seeks
to simplify the interactive process by implementing an existing
JavaScript graphics library to abstract away the low-level front
end components, leaving the construction of these network data
structures to Python.

The Pyvis network data structure matches the JavaScript
VisJS object. This makes it easy to interpret and implement the
underlying data structures from the Python layer, since the actual
front end component is generated by the JavaScript library. A
resulting static HTML document shows the network graph, with
interactions such as dragging, zooming, hovering, and clicking.

« Corresponding author: gperrone @westhealth.org
Gary and Mary West Health Institute

Copyright © 2020 Giancarlo Perrone et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

These interactions help visualize dense complex networks that are
hard to explore using static graphics.

Before open-sourcing Pyvis, we used it successfully to un-
derstand relationships among hundreds of variables in a complex
survey. Although we maintained an efficient data structure to
represent the trends in the survey responses, we still needed a way
to visualize and interact with additional metadata. Pyvis made it
easy to abstract our existing data structure into nodes and edges
with our desired metadata and then render the visualization with
Vis]S to easily identify the interrelationships. In this paper, we
describe the design of Pyvis with examples showing the data
structures which are rendered by VisJS.

In the following section, we demonstrate how to get up and
running with Pyvis in a smaller scope by showing off the common
methods of creating a network. This will also include some
exposure to the customizability options that makes Pyvis so useful.

In the Layout section, we will see exactly how nodes and
edges can be spatially specified by interacting with various physics
parameters interpreted by the front end engine.

Integrations with Jupyter and NetworkX will be presented to
establish Pyvis compatibility with popular data science workflows.

Finally, a thought out example will include the interpretation
of a practical Game of Thrones relationship dataset to demonstrate
a Pyvis use case from the ground up. This minimal example will
be a base case for the features that Pyvis supports.

Pyvis Usage

Installing Pyvis is straight-forward with details at the project
documentation website [Gial8]. All of the following examples
will utilize familiar Python data structures with some connections
to the popular and powerful NetworkX package [HSSO08]. The
basic Network class is the container for graph and front end
properties. All networks must be instantiated as a Network class
instance:

from pyvis.network import Network
g = Network ()

Nodes can be added by providing an integer or string 1d and an
optional label.

g.add_node (1)
g.add_node (2)
print (g)

{
"Nodes": [
1’
2
] 14
"Edges": [],
"Height": "500px",

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS

NODE 2
NODE 3

@

NODE 1

Fig. 1: Multiple nodes and attributes added at once

1 2
Fig. 2: Edges with a custom weight

"Width":
}

"500px"

The add_nodes method consumes a list of nodes (Fig 1):

nodes = [Ha!!, ||b||’ "C",
g.add_nodes (nodes)
g.add_nodes ("hello™)

"qr

Keyword arguments can be used to add properties to the nodes in
Network:

g = Network ()
g.add_nodes (

[1,2,31,

value=[10, 100, 4001, # values adjust node size
x=[21.4, 154.2, 11.2],

y=[100.2, 23.54, 32.1],

label=["NODE 1", "NODE 2", "NODE 3"],
color=["#00ffle", "#162347", "#dd4b39"]

)
g.show ("example.html")

The following node properties influence the resulting
visualization:

o size - The raw circumference of a single node

« value - Circumference of node but scaled according to all
values

« title - The title displays over each node while mousing over
1t

e X - X coordinate of node for custom layouts

e Y- Y coordinate of node for custom layouts

¢ label - A label appearing under each node

¢ color - The color of the node

Nodes must exist in the network instance in order to add edges

g.add_edge (1, 2)
will adjust edge thickness
g.add_edge (2, 3, weight=5)

Edges can be added all at once by supplying a list of tuples to a
call to add_edges(). The following is an equivalent result (Fig 2):

g.add_edges ([(1, 2), (2, 3, 5)1)

g.show ("example.html")

59

Notice how an optional element is included in the 3-tuple above
(2, 3, 5) representing the weight of the edge. This additional edge
data allows for expressing weighted networks and is clearly
noticeable in the visualization.

Layout

In situations where your network involves complex connections,
Pyvis allows you to manually explore these relationships with
intuitive mouse interactions. Nodes can be dragged into more
visible positions if the view is obstructed.

All of this is made possible by the front end engine provided by
VisJS. Their extensive documentation defines several options for
supplying layout and physics configurations to instances of a
network. These physics options are fundamental to VisJS, so
tweaking the physics of the rendered simulation is as simple as
providing the parameters to the specific solver.

The physics options dictates how a user can interact with the
objects in the graph. The intent of the physic options is to
make manipulating graph objects feel more intuitive when moving
nodes around. As an example, the user can manipulate a portion
of a graph that is densely populated to view a graph segment
of the interest more clearly. VisJS implements several physical
simulations such as Barnes Hut [BH86]. Others are mentioned in
the VisJS documentation [vis20a].
We can configure the physics engine from within Pyvis:

g = Network ()

physics solvers supported:

barnesHut, forceAtlasZBased, repulsion,

hierarchicalRepulsion

g.barnes_hut (

gravity=-80000,

central_gravity=0.3,

spring_length=250,

spring_strength=0.001,

damping=0.09,

overlap=0,

)
print (g.options.physics)

{'enabled': True,

'stabilization':
<pyvis.physics.Physics.Stabilization

object at 0x7£99e6a03£90>,

'barnesHut': <pyvis.physics.Physics.barnesHut
object at 0x7£99e6de3710>}

In order to avoid the scenario of "guessing" parameter values for
an optimal network physics configuration, VisJS offers a useful
interaction for experimenting with theses values.

These interactions are enabled via Pyvis (Fig 3):

choose to only show the physics options
g.show_buttons (filter_=["physics"])

Here, we choose to display the options for the physics component
of the network. Omitting a filter in the call will display the
configuration of the entire network including nodes, edges,
layout, and interaction. The JSON options displayed in the
visualization represent the current configuration depending on the
displayed sliders. You can copy/paste those options to supply
your network with custom settings:

60

nooes @

NODE 1

NODE 2

repulsion

.19,
“solver": “repulsion”,
“timestep”: 0.34

}

generate options

Fig. 3: Live layout GUI with physics filter

g.set_options(
wwn
var options = {
"ohysics": {
"repulsion": {
"centralGravity": 1.3,

"springConstant": 0.08,
"nodeDistance": 90,
"damping": 0.19

by

"maxVelocity": 45,

"minVelocity": 0.19,
"solver": "repulsion",
"timestep": 0.34

}
)
print (g.options)

{'physics': {'repulsion':
'springConstant': 0.08,
'nodeDistance': 90,
'damping': 0.19},
'maxVelocity': 45,
'minVelocity': 0.19,
'solver': 'repulsion',
'timestep': 0.34}}

{'centralGravity': 1.3,

The methods of a Network instance construct an internal
structure compatible with VisJS, demonstrated by the consistent
pattern of JSON outputs seen above.

NetworkX Support

Although Pyvis supports its own methods for constructing a
network data structure, you might feel more comfortable using the
more established and dedicated NetworkX package. Pyvis allows
you to define a NetworkX graph instance to then supply it to Pyvis
(Fig 4).

import networkx as nx
from pyvis.network import Network

nxg = nx.random_tree (20)
g=Network (directed=True)
g.from_nx (nxg)

g.show ("networkx.html")

Pyvis current behavior recognizes the basic topology of a
NetworkX graph, not accounting for any custom attributes

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 4: NetworkX graph rendered with Pyvis

I [12

° pe °

° ° Nora Fayette| o
—

Fig. 5: Network rendered in Jupyter Notebook cell

provided. Any other attributes like node color, size, and layout
would need to be manually added to the resulting Pyvis graph.

Future plans are to fully integrate NetworkX graphs to fully
interpret them, preserving attributes in the resulting Pyvis
visualizations.

Jupyter Support

For efficient prototyping of visualized graphs, Pyvis aims to
utilize Jupyter’s front-end IFrame features to embed the graph
in a notebook output cell. With that in mind, embedding a Pyvis
visualization into a Jupyter notebook is essentially the same as
described above. The only difference is that one should pass
in a notebook argument during instantiation. The result of the
visualization is shown in the output cell below the show ()
invocation. Pyvis upon the call to show () writes the HTML that
serves an IFrame, which displays the result in the output cell (Fig
5).

One thing to keep in mind is that an HTML file is always
generated due to the dependence on the VisJS JavaScript
bindings.

Example

To get a better understanding of the flow of a typical Pyvis
network visualization, we can take a look at the following code
snippet to show off a typical application of the features. I have
taken a Game of Thrones dataset ([Bev] Storm of Swords
Dataset) defining the relationships between characters and the
frequencies between them to create a network to naturally

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS

Fig. 6: Game of Thrones network dictates relationships between
characters

express this. Specifically, it is a csv file containing pairs of
characters and a weight between them. The final visualization
contains 107 nodes. (Fig 6)

from pyvis.network import Network
import pandas as pd

got_net = Network (
height="750px",
width="100%",
bgcolor="#222222",
font_color="white"

)

set the physics layout of the network
got_net .barnes_hut ()
got_data = pd.read_csv("stormofswords.csv")

sources = got_datal['Source']
targets = got_datal['Target']
weights = got_datal['Weight']

edge_data = zip(sources, targets, weights)
for e in edge_data:

src = e[0]

dst = e[1]

w = e[2]

title=src)
title=dst)
value=w)

got_net.add_node (src,
got_net.add_node (dst,
got_net.add_edge (src,

src,
dst,
dst,

neighbor_map = got_net.get_adj_list ()

add neighbor data to node hover data
for node in got_net.nodes:
node["title"] += " Neighbors:
" + \
"
".join (neighbor_map[node["id"]])
node["value"] = len(neighbor_map[node["id"]])

got_net.show ("gameofthrones.html")

In the network, the size of a node correlates to the number of
relationships it contains. This calculation benefits from the use of
an adjacency list to easily record the information pertaining to
each node’s neighbors. To see this, the character "Tyrion"

61

Tywin Neighbors:
Stannis

Fig. 7: Zooming into Game of Thrones network offers concise view

contains many connections, resulting in a larger node.
Furthermore, Tyrion’s strongest connections are easily noticed by
the thick edges, and it is easy to see that Tyrion and Sansa are a
strong relationship in the network.

At a glance, the resulting relationship network looks too
intertwined to make any practical conclusions. However, the
beauty of Pyvis is that each and every component of the network
can be focused. For example, zooming in to a dense portion of
the network, we can hover over a particular node to get a glimpse
of the scenario. (Fig 7)

This hover tooltip offers the context behind a particular node. We
can see the immediate neighbors for each and every node since
we provided a title attribute during the network construction.
This simple example can be expanded upon to create more
custom interactions tailored to specific needs of a dataset.

The network also uses weights. By providing a value attribute to
each node we can see these values being represented by a node’s
size. In the code I used the amount of neighbors to dictate the
node weight. This is a strong visual cue which makes it easy to
see which nodes have the most connections.

The edge weights are assigned in a similar manner, although the
dataset already provided the connection strength between nodes.
These edge weights are distinguishable in the final visualization,
once again proving the usefulness of Pyvis’ front-end features.

Under the Hood

VisJS reduces the definition of a network to a declarative set of
objects. Nodes, Edges, and an Options JSON object are given to
the VisJS Network constructor. The following basic example from
their documentation proves this:

+

// create an array with nodes
var nodes = new vis.DataSet ([
{id: 1, label: 'Node 1'},

{id: 2, label: 'Node 2'},
1)

// create an array with edges

var edges = new vis.DataSet ([
{from: 1, to: 2},

1)

62

// create a network
var container = document.getElementById('mynetwork'");

// provide the data in the vis format
var data {

nodes: nodes,

edges: edges

I o

bi
var options = {};

// initialize your network!

var network = new vis.Network (container, data, options);

This pattern makes Jinja [Pro] templating an obvious candidate
for generalizing a set of JavaScript declarations. VisJS
documentation provides a complete set of supported attributes for
each data structure, so incorporating them into the Python layer
involves representing each object as Python objects which are
then serialized and sent to Jinja to handle the templating.

A simple example of this process in action is outlined below:

self.html = template.render (nodes=nodes, edges=edges)

In this case, a template HTML file is rendered with node and
edge data matching a format compatible with a VisJS Network
instance.

Conclusion

Pyvis is a powerful python module for visualizing and interac-
tively manipulating network graphs in a standalone web applica-
tion or a Jupyter notebook. Pyvis brings the power of VisJS to
Python, thus enabling data scientists who use Jupyter to interac-
tively visualize network graphs with all the fluid interactions of
a pure-JavaScript application. Future directions for Pyvis include
supporting the front end interactivity with more JavaScript enabled
features, and optimization/caching of node positions for larger
networks. Those with JavaScript and VisJS knowledge would be
able to provide insight towards prospective front end features,
since these will leverage actual VisJS references. As Pyvis use
case grows in scope, additional features and suggestions will be
requested, paving the path for a robust version of Pyvis meeting
user experience expectations.

Code samples presented here, and with the correspond-
ing poster presentation, as well as other supplemental ma-
terial are available at West Health’s github repository at
https://github.com/WestHealth/scipy2020/tree/master/pyvis.

REFERENCES

[Bev] Andrew Beveridge. Network of thrones. URL: https://www.
macalester.edu/~abeverid/thrones.html.

[BH86] J K Barnes and Piet Hut. A hierarchical o(n log n) force-
calculation algorithm. Nature, 324:446-449, 1986. doi:10.
1038/324446a0.

[Gial8] Giancarlo Perrone. Pyvis interactive network visualizations, 2018.
URL: https://pyvis.readthedocs.io/en/latest/.

[HSSO08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Gagl
Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 — 15, Pasadena,
CA USA, 2008. doi:10.25080/1ssn.2575-9752.

[Pro] The Pallets Projects. jinja. URL: https://jinja.palletsprojects.com/.

[vis20a] vis.js community. Network - physics, 2020. URL: https://visjs.
github.io/vis-network/docs/network/physics.html.

[vis20b] vis.js community. vis.js, 2020. URL: https://visjs.org.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

63

Boost-histogram: High-Performance Histograms as
Objects

Henry Schreiner™, Hans Dembinski®, Shuo Liul, Jim Pivarski*

https://youtu.be/ERraTfHkPdO

Abstract—Unlike arrays and tables, histograms in Python have usually been
denied their own object, and have been represented as a single operation
producing several arrays. Boost-histogram is a new Python library that provides
histograms that can be filled, manipulated, sliced, and projected as objects.
Building on top of the Boost libraries’ Histogram in C++14 provided interesting
distribution and design challenges with useful solutions. This is meant to be
a foundation that others can build on; in the Scikit-HEP project’, a physicist
friendly front-end "Hist" and a conversion package "Aghast" are already being
designed around boost-histogram.

Index Terms—Histogram, Analysis, Data processing, Data reduction, NumPy,
Aggregation

Motivation

As an example of a problem that becomes much easier with
histograms as objects, let’s look at the Python 3 adoption of several
libraries using PyPI download statistics. There are three columns
of interest: The package name, the date of the download, and
the Python version used when downloading the package. In order
to look at trends, you will want to answer questions about the
download behavior over time ranges, such as what is the fraction
of Python 2 downloads out of all downloads for each month.
Let’s look at what a solution to this would entail using traditional
histogramming methods [NumPy]:

Date: You could make a histogram over datetime ob-
jects, but then you will be responsible for finding the
bin range (dates are just large numbers), probably using
np.searchsorted on the edges array, and then making
slices in the binned array yourself.

Python version: You would have to force some sort of
artificial binning scheme, such as one with edges [2,
3.0, 3.59, 3.69, 3.79, 4], in order to collect
information for each Python version of interest. You would
have to use a 2D array, and keep the selections/edges
straight yourself; in practice, you would probably just

= Corresponding author: henryfs@princeton.edu
Princeton University

§ TU Dortmund

q Sun Yat-sen University

Copyright © 2020 Henry Schreiner et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. https://scikit-hep.org

+

create a Python dict of 1D histograms for each major
version.

Package names: This would require making a dict and
storing each 2D (or set of 1D) histograms manually.
NumPy does not support category axes or strings.

If your data doesn’t fit into memory, you will have to build in
the batching and combining yourself. For each piece.

Now look at this with an object-based Histogram library, such
as boost-histogram:

Package names: This can be string categories.

Python version: You could simply multiply by 10 and
make these int categories, or just use string categories.
Date: Use a regular spaced binning from start to stop in
the resolution you are interested, such as months. Use the
loc indexer to convert when slicing. No manual tracking
or searching. Use rebinning to convert months into years
in one step.

In the object-based version, you fill once. If your data doesn’t
fit into memory, just fill in batches. The API for ND histograms
is identical to 1D histograms, so you don’t have to use different
functions or change significant portions of code even if you add a
new axes later.

Now let’s look at using the object to make a series of plots,
with one shown in Figure 12. The code required to make the plot
is shown below, with minor formatting details removed.

for name in hist.axes[0]:

fig, ax plt.subplots ()

ax.set_title (name)

for vers in hist.axes[1]:
dhist hist[bh.loc (name),
(dt,) d.axes.centers
xs = mpl.dates.date2num(pd.to_datetime (dt))
ax.plot_date(xs, dhist, label=f"{vers/10}")

bh.loc(vers), :]

Note how all the computation, and the version information is
stored in a single histogram object. The datetime centers are
accessible after the package and version number are selected.
Looping over the categories is trivial. Since the histogram is
already filled, there are no other loops over the data to slow down
manipulation. We could rebin or set limints or sum over axes
cleanly as well.

2. Code available at https://github.com/scikit-hep/scikit-hep-orgstats

64

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

iminuit

e 27
5000 - s
- 356
- 37
30004 ~®— 38

4000 -

2000 A

1000 A

201‘8-01 201;3-04 201‘8-07 201;3-10 201;)»01

201§»04 201‘9-07 201"3-10 2026-01 202‘0-04

Fig. 1: A downloads vs. time histogram plot for iMinuit [iMinuit] by Python version, made with Matplotlib [Matplotlib].

Introduction

In the High Energy Physics (HEP) community, histogramming is
vital to most of our analysis. As part of building tools in Python
to provide a friendly and powerful alternative to the ROOT C++
analysis stack [ROOTT], histogramming was targeted as an area in
the Python ecosystem that needed significant improvement. The
"histograms are objects" mindset is a general, powerful way of
interacting with histograms that can be utilized across disciplines.
We have built boost-histogram in cooperation with the Boost C++
community [Boost] for general use, and also have separate more
specialized tools built on top of boost-histogram that customize it
for HEP analysis (which will be discussed briefly at the end of this
paper).

At the start of the project, there were many existing histogram
libraries for Python (at least 24 were identified by the authors),
but none of them fulfilled the requirements and expectations of
users coming from custom C++ analysis tools. Four key areas
were identified as key to a good library for creating histograms:
Design, Flexibility, Performance, and Distribution.

Before we continue, a brief description of a histogram should
suffice to set the stage until we describe boost-histogram’s ap-
proach in more detail. A histogram reduces an arbitrarily large
dataset into a finite set of bins. A histogram consists of one or more
axes (sometimes called "binnings") that describe a conversion
from data coordinates to bin coordinates. The data coordinates
may be continuous or discrete (often called categories); the bin
coordinates are always discrete. In NumPy [NumPy], this con-
version is internally derived from a combination of the bin and
range arguments. Each bin in the histogram stores some sort of
aggregate information for each value that falls into it via the axes
conversion. This is a simple sum in NumPy. When something
besides a sum is used, this is a "generalized histogram", which is
called a binned_statistic in scipy.stats [SciPy]; for
our purposes, we will avoid this distinction for the sake of brevity,
but our histogram definition does include generalized histograms.
Histograms often have an extra "weight" value that is available to
this aggregate (a weighted sum in NumPy).

Almost as important as defining what a histogram is limiting
what a histogram is not. Notice the missing item above: a his-
togram, in this definition, is not a plot or a visual aid. It is not
a plot any more than a NumPy array is a plot. You can plot a
Histogram, certainly, and customisations for plotting are useful
(much as Pandas has custom plotting for Series [Pandas]), but that
should not part of a core histogram library, and is not part of
boost-histogram (though most tutorials include how to plot using
Matplotlib [Matplotlib]).

The first area identified was Design; here many popular li-
braries fell short. Histograms need to be represented as an object,

rather than a collection of NumPy arrays, in order to naturally
manipulate histograms after filling. You should be able to continue
to fill a histogram after creating it as well; filling in one pass
is not always possible due to memory limits or live data taking
conditions. Once a histogram is filled, it should be possible to
perform common operations on it, such as rebinning to a courser
binning scheme, projecting on a subset of axes, selecting a subset
of bins then working with or summing over just that piece, and
more. You should be able easily sum histograms, such as from
different threads. You also should be able to easily access the
transform between data coordinates and bin coordinates for each
axes. Axis should be able to store extra information, such as a title
or label of some sort, to assist the user and external plotting tools.

The second area identified was Flexibility; there are a wide
range of things a histogram should be able to do; these tradi-
tionally are split into different functions and objects, but as we
show, a clear, consistent design makes it possible to unify around a
single object. Axes should support several forms of binning: vari-
able width binnings, regularly spaced binnings (a performance-
optimized subset of variable binning), and categorical binning.
Out-of-range bins (called flow bins, discussed later) are also key
for enabling lossless sums over a partial collection of axes. Axes
should also be able to optionally grow when a fill is out of range
instead. The bins themselves should support simple sums, like
NumPy, but should also support means (sometimes called profile
histograms). High-precision weighted summing is also useful.
Finally, if you add a sample parameter to the fill, you can also
keep track of the variance for each bin.

The third area identified was Performance; when dealing
with very large datasets that will not fit in memory, the filling
performance becomes critical. High performance filling is also
useful in real-time applications. A highly performance histogram
library should support fast filling with a compiled loop, it should
avoid reverting to a slower &'(n) lookup when filling a regularly
spaced axes, and it should be able to take advantage of multiple
cores when filling from a large dataset. NumPy, for example, does
do well for a single regularly spaced axes, but it still does not
optimize for two regularly spaced axes (an image is an example of
a common regularly spaced 2D histogram).

The fourth and final area identified was Distribution. A great
library is not useful if no one can install it; it is especially
important that students and inexperienced users be able to install
the histogramming package. This is one of Python’s strengths
compared to something like C++, but the above requirements
necessitate compiled components, so this is important to get right.
It also needed to work flawlessly in virtual environments and in
the Conda package manager. It also needed to be available on as
many platforms and for as many Python versions as possible to

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS

40000 -

35000

30000 A

25000

20000

15000 4

10000 4

5000 A

Fig. 2: An example of a 1D-histogram.

support both old and new data acquisition and analysis systems.

About a year ago, a new C++14 library was proposed to the
Boost C++ libraries called Boost.Histogram; it was unanimously
accepted and released as part of the Boost C++ libraries version
1.70 after the review process. It was a well designed header-only
package that fulfilled exactly what we wanted, but in C++14 rather
than Python. A proposal was made to get a full-featured Python
binding developed as part of an institute for sustainable software
for HEP [IRIS-HEP], as one of the foundations for a Python
based software stack being designed to be part of the Scikit-
HEP community [SkHEP]. We built boost-histogram for Python in
close collaboration with the original Histogram for Boost author,
Hans Dembinski, who had always intended Boost.Histogram to be
accessible from Python. Due to this close collaboration, concepts
and design closely mimic the spirit of the Boost counterpart.

An example of the boost-histogram library approach, creating
a 1D-histogram and adding values, is shown below, with results
plotted in Figure 2:
import boost_histogram as bh

import numpy as np
import matplotlib.pyplot as plt

ax = bh.axes.Regular (100,
hist = bh.Histogram(ax)

start=-5, stop=5)

hist.fill (np.random.randn(1_000_000))

plt.bar (hist.axes[0].centers,
hist.view(),
width=hist.axes[0] .widths)

For future code snippets, the imports used above will be assumed.
Using .view () is optional, but is included to make these
explicit. You can access ax as hist .axes [0]. Note that boost-
histogram is not plotting; this is simply accessing histogram prop-
erties and leveraging existing Matplotlib functionality. A similar
example, but this time in 2D, is shown in Figure 3, illustrating the
identical API regardless of the number of dimensions:

hist_2d = bh.Histogram(bh.axis.Regular (100, -3, 3),
bh.axis.Regular (100, -3, 3)

hist_2d.fill (np.random.randn (1_000_000),
np.random.randn (1_000_000))

X, Y =
plt.pcolormesh(X.T,

hist_2d.axes.centers
Y.T, hist_2d.view() .T)

65

Fig. 3: An example of a 2D-histogram.

Regular axis

Storage

Accumulator

Q
int, double,

4 unlimited, ...

1 Regular axis with
e —1 ' | T | log transform

|
axes I \ I I I

Optional underflow

Optional overflow

Fig. 4: The components of a histogram, shown for a 2D histogram.

Boost-histogram is available on PyPI and conda-forge, and the
source is BSD licensed and available on GitHub’. Extensive
documentation is available on ReadTheDocs*.

The Design of a Histogram

Let’s revisit our description of a histogram, this time mapping
boost-histogram components to each piece. See Figure 4 for
an example of how these visually fit together to create an 2D
histogram.

The components in a bin are the smallest atomic piece
of boost-histogram, and are called Accumulators. Four such
accumulators are available. Sum just provides a high-accuracy
floating point sum using the Neumaier algorithm [Neu74], and is
automatically used for floating point histograms. WeightedSum
provides an extra term to allow sample sizes to be given. Mean
stores a mean instead of a sum, created what is sometimes called
a "profile histogram". And WeightedMean adds an extra term
allowing the user to provide samples. Accumulators are like a 0D
or scalar histogram, much like dtypes are like OD scalar arrays in
NumPy.

The above accumulators are then provided in a container
called a Storage, of which boost-histogram provides several. The
available storages include choices for the four accumulators listed

3. https://github.com/scikit-hep/boost-histogram
4. https://boost-histogram.readthedocs.io

66

above (the storage using Sum is just called Double (), and is the
default; unlike the other accumulator-based storages it provides a
simple NumPy array rather than a specialized record array when
viewed). Other storages include Int64 (), which stores integers
directly, AtomicInt 64, which stores atomic integers, so can be
filled from different threads concurrently, and Unlimited ().
which is a special growing storage that offers a no-overflow
guarantee and automatically uses the least possible amount of
memory for a dense uniform array of counters, which is very
helpful for high-dimensional histograms. It also automatically
converts to doubles if filled with a weighted fill or scaled by a
float.

The next piece of a histogram is an Axis. A Regular axis
describes an evenly spaced binning with start and end points,
and takes advantage of the simplicity of the transform to pro-
vide €(1) computational complexity. You can also provide a
Transform for a Regular axes; this is a pair of C function
pointers (possibly generated by a JIT compiler [Numba]) that
can apply a function to the transform, allowing for things like
log-scale axes to be supported at the same sort of complexity
as a Regular axis. Several common transforms are supplied,
including log and power spacings. You can also supply a list of
bin edges with a Variable axis. If you want discrete axes,
Integer provides a slightly simpler version of a Regular
axes, and IntCategory/StrCategory provide true non-
continuous categorical axes for arbitrary integers or strings, re-
spectively. Most axes have configurable end behaviors for when a
value is encountered by a fill that is outside the range described
by the axis, allowing underflow/overflow bins to be turned off, or
replaced with growing bins. All axes also have a metadata slot
that can store arbitrary Python objects for each axis; no special
meaning is applied by boost-histogram, but these can be used for
titles, units, or other information.

An example of a custom transform applied to a Regular
axis is shown below using Numba to create C pointers; any ctypes
pointer is accepted.

import numba

@numba.cfunc (numba.float64 (numba.float64))
def exp(x):
return math.exp (x)

@numba.cfunc (numba.float64 (numba.float64))
def log(x):
return math.log (x)

transform_log = bh.axis.transform.Function(log, exp)

bh.axis.Regular (10, 1, 4, transform=transform_log)

You need to provide both directions in the transform, so
that boost-histogram can add values to bins and find bin
edges. Note: don’t actually use exactly this code; there is a
bh.axis.transform.log already compiled in the library.

A Histogram is the combination of a storage and one or more
axes. Histograms always manage their own memory, though they
provide a view of that storage to Python via the buffer protocol and
NumPy. Histograms have the same API regardless of whether they
have one axes or thirty-two, and they have a rich set of interactions
defined, which will be the topic of the next section. This is an
incredibly flexible design; you can orthogonally combine any
mixture of axes and storages with associated accumulators, and
in the future, new axes types or accumulators and storages can be
added.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Interactions with a Histogram

A Histogram supports a variety of operations, many of which
use Python’s syntax to be expressed naturally and succinctly.
Histograms can be added, copied, pickled (special attention was
paid to ensure even accumulator storages are pickled quickly and
efficiently), and used most places a NumPy array is accepted.
Scaling a histogram can be done simply by using Python’s
multiplication and division operators.

Conversion to a NumPy array was carefully designed to
provide a comfortable interface for Python users. The "flow" bins,
which are the bins that are used when an event is encountered
outside the range of the current axis, are an essential feature
for partial summations. These extra bins are not as common in
NumPy based analyses (though you can create flow bins manually
in NumPy by using +o0), so these generally are not needed or
expected when converting to an array. The array interface and all
external methods do not include flow bins by default, but they
can be activated by passing flow=True to any of the methods
that could be affected by flow bins. You can directly access a
view of the data without flow bins with .view (), and you can
include flow bins with . view (flow=True). The stride system
is descriptive enough to avoid needing to copy memory in either
case. Views of accumulator storages are NumPy record arrays,
enhanced with property-based access for the fields as well as
common computed properties, like the variance. Finally, there is
an explicit .to_numpy () method that returns the same tuple
you would get if you used one of the np.histogram functions.

Axes are presented as a property returning an enhanced tuple.
You can use access any method or property on all axes at once
directly from the AxesTuple. Array properties (like edges) are
returned in a shape that is ready for broadcasting, allowing natural
manipulations directly on the returned values. For example, the
following snippet computes the density of a histogram, regardless
of the number of dimensions:

"vol bin for 2D+)

ute the me" of each
volumes = np.prod(hist.axes.widths,

(us

axis=0)

Conm

Compute the densit
density = hist.view(

y of each bin

) / hist.sum() / volumes

Unified Histogram Indexing

Indexing in boost-histogram, based on a proposal called Unified
Histogram Indexing (UHI)’, allows NumPy-like slicing and is
based on tags that can be used cross-library. They can be used to
select items from axes, sum over axes, and slice as well, in either
data or bin coordinates. One of the benefits of the axes based
design is that selections that traditionally would have required
multiple histograms now can simply be represented as an axes in
a single histogram and then UHI is used to select the subset of
interest.

The key design is that any indexing expression valid in both
NumPy and boost-histogram should return the same thing regard-
less of whether you have converted the histogram into an array via
.view () or np.asarray or not. Freedom to access the unique
parts of boost-histogram are only granted through syntax that is
not valid on a NumPy array. This is done through special tags that
are not valid in NumPy indexing. These tags do not depend on
the internals of boost-histogram, however, and could be written

5. https://boost-histogram.readthedocs.io/en/latest/usage/indexing.html

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS

by a user or come from a different library; the are mostly simple
callables, with minor additions to make their repr’s look nicer.

There are several tags provided: bh.loc (float) con-
verts a data-coordinate into bin coordinates, and supports ad-
dition/subtraction. For example, hist [bh.loc (2.0) + 2]
would find the bin number containing 2.0, then add two to it. There
are also bh.underflow and bh.overflow tags for accessing
the flow bins.

Slicing is supported, and works much like NumPy, though
it does return a new Histogram object. You can use tags when
slicing. A single value, when mixed with a slice, will select out
a single value from the axes and remove it, just like it would in
NumPy (you will see later why this is very useful). Most interest-
ing, though, is the third parameter of a slice - normally called the
step. Stepping in histograms is not supported, as that would be a
set of non-continuous but non-discrete bins; but you can pass two
different types of tags in. The first is a "rebinning" tag, which can
modify the axis -- bh.rebin (2) would double the size of the
bins. The second is a reduction, of which bh. sum is provided;
this reduces the bins along an axes to a scalar and removes the
axes; builtins.sum will trigger this behavior as well. User
provided functions will eventually work here, as well. Endpoints
on these special operations are important; leaving off the endpoints
will include the flow bins, including the endpoints will remove the
flow bins. So hist [: :sum] will sum over the entire histogram,
including the flow bins, and hist [0:1len:sum] will sum over
the contents of the histogram, not including the flow bin. Note that
Python’s len is a perfectly valid in this system - start and stop tags
are simply callables that accept an axis and return an index from
-1 (underflow bin) to len (axis) +1 (overflow bin), and axes
support len ().

Setting is also supported, and comes with one more nice
feature. When you set a histogram with an array and one or more
endpoints are empty and include a flow bin, you have two options;
you can either match the inner size, which will leave the flow
bin(s) alone, or you can match the total size, which will fill the
flow bins too. For example, in the following snippet the array can
be either size 10 or size 12:
hist = bh.Histogram(bh.axis

hist[:] = np.arange(10) #
hist[:] = np.arange(l2) #

ow bins too

You can force the flow bins to be explicitly excluded if you want
to by adding endpoints to the slice:

hist[0:1len] = np.arange(10)

Finally, for advanced indexing, dictionaries are supported, where
the key is the axis number. This allows easy access into a
large number of axes, or simple programmatic access. With
dictionary-based indexing, Ellipsis are not required. There is also
a .project (xaxes) method, which allows you to sum over all
axes except the ones listed, which is the inverse to listing : : sum
operations on the axes you want to remove.

Performance when Filling

A histogram can be viewed as a lossy data compression tool;
you lose the exact details of each data point, but you have a
have a representation that does not depend on the number of data
points and has several very useful properties for computation. One
common use beyond plotting is distribution fitting; you can fit an
arbitrarily large number of data points to a distribution as long as
you choose a binning dense enough to capture the details of your

67

Setup Single threaded X Multithreaded X
NumPy 1D 74.5 +2.4 ms 1

BH 1D 41.6 £ 0.7 ms 1.8 133+£02ms 5.5
BHNP 1D 43.1 £0.8 ms 1.7 13.8+£0.2ms 5.4
NumPy 2D 874 £22 ms 1

BH 2D 77.6 £ 0.6 ms 11 28.7+ 0.7 ms 30
BHNP 2D 85+ 3 ms 10 29.6 £ 0.5 ms 29

TABLE 1: Comparison of several filling methods and NumPy. BH
stands for boost-histogram object mode (as seen above). BHNP
stands for boost-histogram NumPy clone, which provides the same
interface as NumPy but powered by Boost.Histogram calculations.
Multithreaded was obtained by passing threads=8 while filling.
The X column is a comparison against NumPy. Measurements done
on an 8 core 16 MBP, 2.4 GHz, Regular binning, 10M values, 32-bit
floats.

distribution function. The performance of the fit is based on the
number of bins, rather than the number of measurements made.
Many distribution fitting packages available outside of HEP, such
as Imfit [LMFIT], are designed to work with binned data, and
binned fits are common in HEP as well.

Filling performance was a key design goal for boost-
histogram. In Table 1 you can see a comparison of filling methods
with NumPy. The first comparison, a 1D histogram, shows a
nearly 2x speedup compared to NumPy on a single core. For a
1D Regular axes, NumPy has a custom fill routine that takes
advantage of the regular binning to avoid an edge lookup. If you
use multiple cores, you can get an extra 2x-4x speedup. Note
that histogramming is not trivial to parallelize. Internally, boost-
histogram is just using simple Python threading and relying on
releasing the GIL while it fills multiple histograms; the histograms
are then added into your current histogram. The overhead of doing
the copy must be small compared to the fill being done.

If we move down the table to the 2D case, you will see Boost-
histogram pull away from NumPy’s 2D regular bin edge lookup
with an over 10x speedup. This can be further improved to about
30x using threads. In both cases, boost-histogram is not actually
providing specialized code for the 1D or 2D cases; it is the same
variadic vector that it would use for any number and any mixture
of axes. So you can expect excellent performance that scales well
with the complexity of your problem.

The rows labeled "BHNP" deserve special mention. A spe-
cial module is provided, bh.numpy, that contains functions that
exactly mimic the functions in NumPy. They even use a spe-
cial, internal axes type that mimics NumPy’s special handling
of the final upper edge, including it in the final bin. You can
use it as a drop-in replacement for the histogram functions in
NumPy, and take advantage of the performance boost avail-
able. You can also add the threads= keyword. You can pass
histogram=bh.Histogram to return a Histogram object, and
you can select the storage with storage=, as well. Combined
with the ability to convert Histograms via .to_numpy (), this
should enable smooth transitions between boost-histogram and
NumPy for Histogram filling.

One further performance benefit comes from the flexibility
of combining axes. In a traditional, NumPy based analysis, you
may have a collection of related histograms with different cuts or
criteria for filling. We have already seen that it is possible to use
axis and then access the portion you want later with indexing; but

68

if you have categories or boolean selectors, you can still combine
multiple histograms into one. Then you no longer loop over the
input multiple times, but just once, filling the histogram, and then
make your selections later. Here is an example:
value_ax = bh.axis.Regular (100, -5, 5)
valid_ax = bh.axis.Integer (0, 2,

underflow=False,

overflow=False)
label_ax = bh.axis.StrCategory([], growth=True)

hist = bh.Histogram(value_ax, valid_ax, label_ax)

hist.fill([-2, 2, 4, 31,
[True, False, True, True],
["a", "b", "a", "b"])

all _valid = hist[:,
a_only = hist[...,

bh.loc(True),
bh.loc("a")]

::sum]

Above, we create three axes. The second axis is a boolean axes,
which hold a valid/invalid bool flag. The third axis holds some
sort of string-based category, which could label datasets, for
example. We then fill this in one shot. Then, we can select the
histograms that we might have originally filled separately, like the
all_valid histogram, which is a 1D histogram that contains all
labels and all events where valid=True. In the second selection,
a_only, a 2D histogram is returned that consists of all the events
labeled with "a™".

This way of thinking can radically change how you design for
a problem. Instead of running a series of histograms over a piece
of data every time you want a new selection, you can build a large
histogram that contains all the information you want, prebinned
and ready to select. This combination of multiple histograms and
later selecting or summing along axes is a close parallel to the way
Pandas combines multiple NumPy arrays in a single DataFrame
using columns, allowing you to group and select from the full set.

Distributing

Building a Python library designed to work absolutely anywhere
on a C++14 code base provided several challenges. Binding for
boost-histogram is accomplished with PyBind11 [PyBind], and all
Boost dependencies are included via git submodules and header-
only, so a compatible compiler is the only requirement for building
if a binary is not available. Serialization, which optionally depends
on the non-header only Boost.Serialization, was redesigned to
work on top of Python tuple picking in PyBind11 reusing the same
interface internally in Boost.Histogram (one of the many benefits
of a close collaboration with the original author).

The first phase of wheel building was a custom set of shareable
YAML template files for Azure DevOps. This tool, azure-wheel-
helpers®, became the basis for building several other projects in
Scikit-HEP, including the iMinuit fitter’ and the new Awkward
1.0 [Awkward]. Building a custom wheel production from scratch
is somewhat involved; and since boost-histogram is expected to
support Python 2.7 until after the first LTS release, it had to
include Python 2.7 builds, which make the process even more
convoluted. To get C++14 support in manylinux1, a custom docker
repository (skhep/manylinuxgcc®) was developed with GCC
9. The azure-wheel-helpers repository is a good place to look for
anyone wishing to learn about wheel building, but recently boost-
histogram moved to a better solution.

6. https://github.com/scikit-hep/azure- wheel-helpers
7. https://github.com/scikit-hep/iminuit
8. https://github.com/scikit-hep/manylinuxgcc

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

As the cibuildwheel [CIBW] project matured, boost-histogram
became the first Scikit-HEP azure-wheel-helpers project to mi-
grate over. Several of the special cases that were originally
supported in boost-histogram are now supported by cibuildwheel,
and it allows a custom docker image, so the modified manylinux1
image is available as well. This has freed us from lock-in to a
particular CI provider; boost-histogram now uses GitHub Actions
for everything except ARM and Power PC builds, which are done
on Travis CI. This greatly simplified the release process. The
scikit-hep.org developer pages now have extensive tutorials for
new developers, including setting up wheels; much of that work
was inspired by boost-histogram.

An extremely important resource for HEP is Conda; many of
our projects (such as CERN’s ROOT toolkit) cannot reasonably
(at least yet) be distributed by pip. Scikit-HEP has a large number
of packages in conda-forge; and boost-histogram is also available
there, including ARM and PowerPC builds. Only Python 2.7 on
Windows is excluded due to conda-forge policies on using extra
SDKs with Python.

Conclusion and Plans

The future for histogramming in Python is bright. At least
three more projects are being developed on top or using boost-
histogram. Hist’ is a histogram front-end for analysts, much like
Pandas is to NumPy, it is intended to make plotting, statistics,
file IO, and more simple and easy; a Google Summer of Code
student is working on that. One feature of note is named axes;
you can assign names to axes and then fill and index by name.
Conversions between histogram libraries, such as the HEP-specific
ROOT toolkit and file format are being developed in Aghast!°.
The mplhep'! library is making common plot styles and types for
HEP easy to make, including plots with histograms. The scikit-
hep-tutorials'? project is beginning to show how the different
pieces of Scikit-HEP packages work together, and one of the first
tutorials shows boost-histogram and Aghast. And a new library,
histoprint'®, is being reviewed for including in Scikit-HEP to
print up to five histograms at a time on the command line, either
from ROOT or boost-histogram.

An example of mplhep and boost-histogram interaction is

shown in Figure 5:
import mplhelp
mplhep.histplot (hist)
We hope that more libraries will be interested in building on top
of boost-histogram. It was designed to be a powerful back-end
for any front-end, with Hist planned as the reference front-end
implementation. The high performance, excellent flexibility, and
universal availability make an ideal choice for any toolkit.

In conclusion, boost-histogram provides a powerful abstraction
for histograms as a collection of axes with an accumulator-backed
storage. Filling and manipulating histograms is simple and natural,
while being highly performant. In the future, Scikit-HEP is rapidly
building on this foundation and we expect other libraries may want
to build on this as well. At the same time, Boost.Histogram in
C++ is continuously improved and expanded with new features,

9. https://github.com/scikit-hep/hist

10. https://github.com/scikit-hep/aghast

11. https://github.com/scikit-hep/mplhep

12. https://github.com/scikit-hep/scikit-hep-tutorials
13. https://github.com/scikit-hep/histoprint

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS

40000 A

30000 A

20000 A

10000 +

Fig. 5: An example of a 1D plot with mplhep. It is not completely
trivial to get a proper "skyline" histogram plot from Matplotlib with
prebinned data, while here it is simple.

from which boost-histogram benefits nearly automatically. The
shared code-base with C++ allows Python to profit, while boost-
histogram in C++ is profiting from ideas feed back from Python,
creating a win-win situation for all parties.

Acknowledgements

Support for this work was provided by the National Science
Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and
OAC-1450377 (DIANA/HEP).

REFERENCES

[Pandas] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference,
51-56 (2010), DOI:10.25080/Majora-92bf1922-00a

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, vol. 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

iminuit — A Python interface to Minuit, https://github.com/scikit-
hep/iminuit

J. D. Hunter. Matplotlib: A 2D graphics environment, Com-
puting in Science & Engineering, vol. 9, no. 3, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

Rene Brun and Fons Rademakers ROOT — An Object Oriented
Data Analysis Framework Nucl. Inst. & Meth. A, vol. 386, no.
1, 81-86 (1997), DOI:10.1016/S0168-9002(97)00048-X

The Boost Software Libraries, https://www.boost.org

Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python, Nature Methods, in press.
DOI:10.1038/541592-019-0686-2

Institute for Research and Innovation in Software for High
Energy Physics, https://iris-hep.org

Eduardo Rodrigues. The Scikit-HEP Project, EP] Web Conf. 214
06005 (2019), DOI:10.1051/epjconf/201921406005

A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Sum-
mation endlicher Summen, Zeitschrift fiir Angewandte Mathe-
matik und Mechanik (1974), DOI:10.1002/zamm.19740540106

Siu Kwan Lam, Antoine Pitrou, Stanley Seibert. Numba: a
LLVM-based Python JIT compiler, LLVM ’15: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in
HPC, 7, 1-6 (2015), DOI:10.1145/2833157.2833162

Matthew Newville et al. LMFIT: Non-Linear Least-Square
Minimization and Curve-Fitting for Python, Zenodo (2020),
DOI:10.5281/zenodo.3814709

Wenzel Jakob, Jason Rhinelander, Dean Moldovan. pybindl1I --
Seamless operability between C++11 and Python, https://github.
com/pybind/pybind11

[NumPy]

[iMinuit]

[Matplotlib]

[ROOT]

[Boost]
[SciPy]

[IRIS-HEP]
[SKHEP]

[Neu74]

[Numba]

[LMFIT]

[PyBind]

[Awkward]

[CIBW]

69

Jim Pivarski, Peter Elmer, David Lange. Awkward Arrays in
Python, C++, and Numba Preprint arXiv:2001.06307

Joe Rickerby et al. cibuildwheel, https://github.com/joerick/
cibuildwheel

70

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Learning from evolving data streams

Jacob Montiel+*

https://youtu.be/sw853Cv847Y

Abstract—Ubiquitous data poses challenges on current machine learning sys-
tems to store, handle and analyze data at scale. Traditionally, this task is tackled
by dividing the data into (large) batches. Models are trained on a data batch and
then used to obtain predictions. As new data becomes available, new models
are created which may contain previous data or not. This training-testing cycle
is repeated continuously. Stream learning is an active field where the goal is
to learn from infinite data streams. This gives rise to additional challenges to
those found in the traditional batch setting: First, data is not stored (it is infinite),
thus models are exposed only once to single samples of the data, and once
processed those samples are not seen again. Models shall be ready to provide
predictions at any time. Compute resources such as memory and time are
limited, consequently, they shall be carefully managed. The data can drift over
time and models shall be able to adapt accordingly. This is a key difference with
respect to batch learning, where data is assumed static and models will fail in
the presence of change. Model degradation is a side-effect of batch learning
in many real-world applications requiring additional efforts to address it. This
papers provides a brief overview of the core concepts of machine learning
for data streams and describes scikit-multiflow, an open-source Python library
specifically created for machine learning on data streams. scikit-multiflow is built
to serve two main purposes: easy to design and run experiments, easy to extend
and modify existing methods.

Index Terms—machine learning, data streams, concept drift, scikit, open-
source

Introduction

The minimum pipeline in machine learning is composed of: (1)
data collection and processing, (2) model training, and (3) model
deployment. Conventionally, data is collected and processed in
batches. Although this approach is state-of-the-art in multiple ap-
plications, it is not suitable in the context of evolving data streams.
The batch learning approach assumes that data is sufficiently large
and accessible. This is not the case in streaming data where data
is available one sample at a time, and storing it is impractical
given its (theoretically) infinite nature. In addition, non-stationary
environments require to run the pipeline multiple times in order
to minimize model degradation, in other words maintain optimal
performance. This is especially challenging in fast-changing envi-
ronments where efficient and effective adaptation is vital.

As a matter of fact, multiple real-world machine learning
applications exhibit the characteristics of evolving data streams,
in particular we can mention:

« Corresponding author: jacob.montiel @waikato.ac.nz
Department of Computer Science, University of Waikato

Copyright © 2020 Jacob Montiel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

+

Financial markets generate huge volumes of data daily.
For instance, the New York Stock Exchange captures 1
terabyte of information each day'. Depending on the state
of such markets and multiple external factors data can
become obsolete quickly rendering it useless for creating
accurate models. Predictive models must be able to adapt
fast to be useful in this dynamic environment.

Predictive maintenance. The contribution of IoT to the
digital universe is substantial. Data only from embedded
systems accounted for 2% of the world’s data in 2013,
and is expected to hit 10% by 2020>. IoT sensors are
used to monitor the health of multiple systems, from
complex systems such as airplanes to simpler ones such
as household appliances. Predictive systems are required
to react fast to prevent disruptions from malfunctioning
elements.

Online fraud detection. The speed of reaction of an au-
tomatic system is also an important factor in multiple
applications. As a case in point, VisaNet has a capacity (as
of June 2019) to handle more than 65,000 transactions per
second’. Fraud detection in online banking involves ad-
ditional challenges beside data collection and processing.
Fraud detection systems must adapt quickly to changes
such as consumer behavior (for example during holidays),
the stability of the financial markets, as well as the fact that
attackers constantly change their behavior to beat these
systems.

Supply chain. Several sectors use automatic systems in
their supply chain to cope with the demand for products
efficiently. However, the COVID-19 pandemic brought to
attention the fragility of these systems to sudden changes,
e.g., in less than 1 week, products related to the pandemic
such as face masks filled the top 10 searched terms in
Amazon®. Many automatic systems failed to cope with
change resulting in the disruption in the supply chain.
Climate change. Environmental science data is a
quintessential example of the five v’s of big data: volume,
velocity, variety, veracity, and value. In particular, NASA’s
Earth Science Data and Information System project, holds
24 petabytes of data in its archive and distributed 1.3 bil-
lion files in 2017°. Understanding environmental data has
many implications in our daily lives, e.g., food production
can be severally impacted by climate change, disruption
of the water cycle has resulted in a rise of heavy rains
with the associated risk of floodings. IoT sensors are now
making environmental data available at a faster rate and

LEARNING FROM EVOLVING DATA STREAMS

Batch learning

Stream learning

reasonable

investment 7

i
i
reasonable]
investment /
/
/
/

L usable data /
- opportunity

unusable data /
missed opportunity

investment
investment
N

data/model size
Source: AWS, 2018

data/model size

Fig. 1: Batch learning systems are characterized by the investment
in resources like memory and training time as the volume of data
increases. Once a reasonable investment threshold is reached, data
becomes unusable turning into a missed opportunity. On the other
hand, efficient management of resources makes stream learning an
interesting alternative for big data applications.

machine learning systems must adapt to this new norm.

As shown in the previous examples, dynamic environments
pose an additional set of challenges to batch learning systems.
Model degradation is a predominant problem in multiple real-
world applications. As enough data has been generated and col-
lected, proactive users might decide to train their models to make
sure that they agree with the current data. This is complicated for
two reasons: First, batch models (in general) are not able to use
new data into account, so the machine learning pipeline must be
run multiples times as data is collected over time. Second, the
decision for such an action is not trivial and involves multiple
aspects. For example, should a new model be trained only on
new data? This depends on the amount of variation in the data.
Small variations might not be enough to justify retraining and
re-deploying a model. This is why a reactive approach is predom-
inantly employed in the industry. Model degradation is monitored
and corrective measures are enforced if a user-defined threshold is
exceeded (accuracy, type I, and type II errors, etc.). Fig. 1 depicts
another important aspect to consider, the tradeoff between the
investment in resources such as memory and time (and associated
cost) and the pay-off in predictive performance. In stream learning,
resource-wise efficiency is fundamental, predictive models not
only must be accurate but also must be able to handle theoretically
infinite data streams. Models must fit in memory no matter the
amount of data seen (constant memory). Additionally, training
time is expected to grow sub-linearly with respect to the volume
of data processed. New samples must be processed as soon as they
become available so it is vital to process them as fast as possible
to be ready for the next sample in the stream.

Machine learning for streaming data

Formally, the task of supervised learning from evolving data
streams is defined as follows. Consider a stream of data S =
{Z,y)}Ht =1,...,T where T — oo. Input %, is a feature vector
and y; the corresponding target where y is continuous in the case
of regression and discrete for classification. The objective is to

1. How Big Data Has Changed Finance, Trevir Nath, Investopedia, June
2019.

2. The Digital Universe of Opportunities: Rich Data and the Increasing
Value of the Internet of Things, IDC, April 2014.

3. Visa fact sheet, July 2019.

4. Our weird behavior during the pandemic is messing with Al models. Will
Douglas Heaven. MIT Technology Review. May 11, 2020.

5. Big data goes green, Neil Savage, Nature Index 2018 Earth and Environ-
mental Sciences, June 2018

7

predict the target y for an unknown sample X. For illustrative
purposes, this paper focuses on the classification task.

In stream learning, models are trained incrementally, one
sample at a time, as new samples (¥;,y;) become available. Since
streams are theoretically infinite, the training phase is non-stop and
predictive models are continuously updating their internal state in
agreement with incoming data. This is fundamentally different
from the batch learning approach, where models have access to all
(available) data during training. As previously mentioned, in the
stream learning paradigm, predictive models must be resource-
wise efficient. For this purpose, a set of requirements [BHKP11]
must be fulfilled by streaming methods:

« Process one sample at a time, and inspect it only once.
The assumption is that there is not enough time nor space
to store multiple samples, failing to meet this requirement
implies the risk of missing incoming data.

o« Use a limited amount of memory. Data streams are
assumed infinite, thus storing data for further processing
is impractical.

« Work in a limited amount of time. In other words, avoid
bottlenecks generated by time-consuming tasks which in
the long run could make the algorithm fail.

+ Beready to predict at any point. Stream models are con-
tinuously updated and must be able to provide predictions
at any point in time.

Concept drift

A challenging element of dynamic environments is the chances
that the underlying relationship between features X and target(s)
¥ can evolve (change) over time. This phenomenon is known as
Concept Drift. Real concept drift is defined as changes in the
posterior distribution of the data p(¥|X). Real concept drift means
that the unlabeled data distribution does not change, whereas data
evolution refers to the unconditional data distribution p(X). In
batch learning, the joint distribution of data p(X,¥) is, in general,
assumed to remain stationary. In the context of evolving data
streams, concept drift is defined between two points in time #,,1;
as

pto(X75;) 7& ptl (va)

Concept drift is known to harm learning [GZB " 14]. The following
patterns, shown in Fig. 2, are usually considered:

o Abrupt. When a new concept is immediately introduced.
The transition between concepts is minimal. In this case,
adaptation time is vital since the old concept becomes is
no longer valid.

« Incremental. It can be interpreted as the transition from
an old concept into a new concept where intermediate
concepts appear during the transition.

e Gradual. When old and new concepts concur within the
transition period. It can be challenging since both concepts
are somewhat valid during the transition.

o Recurring. If an old concept is seen again as the stream
progresses. For example, when the data corresponds to a
periodic phenomenon such as the circadian rhythm.

e Outliers. Not to be confused with true drift. A drift
detection method must be robust to noise, in other words,
minimize the number of false positives in the presence of
outliers or noise.

72

A

abrupt

H L
t

incremental

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Jata a .
\/
gradual recurring outlier

Fig. 2: Drift patterns depicted as the change of mean data values over time. Note that an outlier is not a change but noise in the data. This

figure is based on [GZB™" 14].

Although the continuous learning nature of stream methods
provides some robustness to concept drift, specialized methods
have been proposed to detect drift. Multiple methods have been
proposed in the literature, [GZB ™ 14] provides a thorough survey
of this topic. In general, the goal of drift detection methods is to
accurately detect changes in the data distribution while showing
robustness to noise and being resources-wise efficient. Drift-aware
methods use specialized detection mechanisms to react faster and
efficiently to drift. For example, the Hoeffding Tree algorithm
[DHOO0], a kind of decision tree for data streams, does not handle
concept drift explicitly, whereas the Hoeffding Adaptive Tree
[BGO9] uses ADaptive WINdowing (ADWIN) [BGO7] to detect
drifts. If a drift is detected at a given branch, an alternate branch
is created and eventually replaces the original branch if it shows
better performance on new data.

ADWIN, a popular drift detection method with mathematical
guarantees, keeps a variable-length window of recent items; guar-
anteeing that there has been no change in the data distribution
within the window. Internally, two sub-windows (Wp, W}) are used
to determine if a change has happened. With each new item
observed, the average values of items in Wy and W) are compared
to confirm that they correspond to the same distribution. If the
distribution equality no longer holds, then an alarm signal is raised
indicating that drift has occurred. Upon detecting a drift, W is
replaced by W, and a new W is initialized.

Performance evaluation

Predictive performance P of a given model % is usually measured
using some loss function ¢ that evaluates the difference between
expected (true) class labels y and the predicted class labels .

P(h) = £(y,9)

A popular and straightforward loss function for classification is the
zero-one loss function which corresponds to the notion of whether
the model made a mistake or not when predicting.

R 0, y=y
f(w)—{l V45

Due to the incremental nature of stream leaning methods, special
considerations are used to evaluate their performance. Two preva-
lent methods in the literature are holdout [Koh95] and prequential
[Daw84] evaluation. Holdout evaluation is a popular method in
both batch and stream learning where testing is performed on an
independent set of samples. On the other hand, prequential eval-
uation, is specific to the stream setting. In prequential evaluation,
tests are performed on new data samples before they are used to
train (update) the model. The benefit of this approach is that all
samples are used for both test and training.

This is just a brief overview of machine learning for streaming
data. However, it is important to mention that the field of machine
learning for streaming data covers other tasks such as regression,
clustering, anomaly detection, to name a few. We direct the reader

to [GRB ™ 19] for an extensive and deeper description of this field,
the state-of-the-art, and its active challenges.

The scikit-multiflow package

scikit-mutlifiow [MRBAI18] is a machine learning library for
multi-output/multi-label and stream data written in Python. Devel-
oped as free and open-source software and distributed under the
BSD 3-Clause License. Following the SciKits philosophy, scikit-
multiflow extends the existing set of tools for scientific purposes.
It features a collection of state-of-the-art methods for classifica-
tion, regression, concept drift detection and anomaly detection,
alongside a set of data generators and evaluators. scikit-multiflow
is designed to seamlessly interact with NumPy [vCV11] and SciPy
[VGO™20]. Additionally, it contributes to the democratization
of stream learning by leveraging the popularity of the Python
language. scikit-multifiow is mainly written in Python, and some
core elements are written in Cython [BBC" 11] for performance.

scikit-multiflow is intended for users with different levels
of expertise. Its conception and development follow two main
objectives:

1) Easy to design and run experiments. This follows the
need for a platform that allows fast prototyping and
experimentation. Complex experiments can be easily per-
formed using evaluation classes. Different data streams
and models can be analyzed and benchmarked under
multiple conditions, and the amount of code required
from the user is kept to the minimum.

2) Easy to extend existing methods. Advanced users can cre-
ate new capabilities by extending or modifying existing
methods. This way users can focus on the details of their
work rather than on the overhead when working from
scratch

scikit-multiflow is not intended as a stand-alone solution for
machine learning. It integrates with other Python libraries such as
Matplotlib [Hun07] for plotting, scikit-learn [PVG™11] for incre-
mental learning® compatible with the streaming setting, Pandas
[pdt20] for data manipulation, Numpy and SciPy for numerical
and scientific computations. However, it is important to note that
scikit-multiflow does not extend scikit-learn, whose main focus
in on batch learning. A key difference is that estimators in scikit-
multiflow are incremental by design and training is performed by
calling multiple times the partial_ fit () method. The ma-
jority of estimators implemented in scikit-multiflow are instance-
incremental, meaning single instances are used to update their
internal state. A small number of estimators are batch-incremental,
where mini-batches of data are used. On the other hand, calling
fit () multiple times on a scikit-learn estimator will result in it
overwriting its internal state on each call.

As of version 0.5.0, the following sub-packages are available:

6. Only a small number of methods in scikit-learn are incremental.

LEARNING FROM EVOLVING DATA STREAMS

e anomaly_detection: anomaly detection methods.

e data: data stream methods including methods for batch-
to-stream conversion and generators.

e drift_detection: methods for concept drift detec-
tion.

¢ evaluation: evaluation methods for stream learning.

e lazy: methods in which generalization of the training
data is delayed until a query is received, e.g., neighbors-
based methods such as kNN.

e« meta: meta learning (also known as ensemble) methods.

¢ neural_networks: methods based on neural networks.

e prototype: prototype-based learning methods.

e rules: rule-based learning methods.

¢ transform: perform data transformations.

e trees: tree-based methods,

In a nutshell

In this section, we provide a quick overview of different elements
of scikit-multifiow and show how to easily define and run exper-
iments in scikit-multiflow. Specifically, we provide examples of
classification and drift detection.

Architecture

Here we describe the basic components of scikit-multiflow. The
BaseSKMObject class is the base class. All estimators in
scikit-multiflow are created by extending the base class and the

corresponding task-specific mixin(s): ClassifierMixin,
RegressorMixin, MetaEstimatorMixin and
MultiOutputMixin.

The ClassifierMixin defines the following methods:

e partial_fit -- Incrementally train the estimator with
the provided labeled data.

e« fit -- Interface used for passing training data as batches.
Internally calls partial_ fit.

e predict -- Predict the class-value for the passed unla-
beled data.

e predict_proba -- Calculates the probability of a sam-
ple pertaining to a given class.

During a learning task, three main tasks are performed: data is
provided by the stream, the estimator is trained on incoming data,
the estimator performance is evaluated. In scikit-multiflow, data is
represented by the St ream class, where the next_sample ()
method is used to request new data. The StreamEvaluator
class provides an easy way to set-up experiments. Implementations
for holdout and prequential evaluation methods are available. A
stream and one or more estimators can be passed to an evaluator.

Classification task

In this example, we will use the SEA generator. A stream gen-
erator does not store any data but generates it on demand. The
SEAGenerator class creates data corresponding to a binary
classification problem. The data contains 3 numerical features,
from which only 2 are relevant for learning’. We will use the data
from the generator to train a Naive Bayes classifier. For compact-
ness, the following examples do not include import statements,
and external libraries are referenced by standard aliases.

As previously mentioned, a popular method to monitor the
performance of stream learning methods is the prequential eval-
uation. When a new data sample (X, vy) arrives: 1. Predictions

73

are obtained for the new data sample (X) to evaluate how well the
model performs. 2. Then the new data sample (X, y) is used
to train the model so it updates its internal state. The prequential
evaluation can be easily implemented as a loop:

stream = SEAGenerator (random_state=1)
classifier = NaiveBayes ()

n_samples = 0

correct_cnt = 0

max_samples = 2000

Prequential evaluation loop

while n_samples < max_samples and \
stream.has_more_samples () :

X, y = stream.next_sample ()
Predict class for new data
y_pred = classifier.predict (X)
if y[0] == y_pred[0]:
correct_cnt += 1
Partially fit (train) model with new data
classifier.partial_fit (X, vy)
n_samples += 1
print ('{} samples analyzed.'.format (n_samples))

print ('Accuracy: {}'.format (correct_cnt / n_samples))

> 2000 samples analyzed.

> NaiveBayes classifier accuracy: 0.9395

The previous example shows that the Naive Bayes classifier
achieves an accuracy of 93.95% after processing all the samples.
However, learning from data streams is a continuous task and a
best-practice is to monitor the performance of the model at differ-
ent points of the stream. In this example, we use an instance of
the St ream class as it provides the next_sample () method to
request data and the returned data is a tuple of numpy . ndarray.
Thus, the above loop can be easily modified to read from other data
structures such as numpy.ndarray or pandas.DataFrame.
For real-time applications where data is actually represented as a
stream (e.g. Google’s protocol buffers), the St ream class can be
extended to wrap the necessary code to interact with the stream.

The prequential evaluation method is implemented in the
EvaluatePrequential class. This class provides extra func-
tionalities including:

« Easy setup of different evaluation configurations

o Selection of different performance metrics

o Visualization of performance over time

o Ability to benchmark multiple models concurrently
o Saving evaluation results to a csv file

We can run the same experiment on the SEA data.
This time we compare two classifiers: NaiveBayes and
SGDClassifier (linear SVM with SGD training). We use the
SGDClassifier in order to demonstrate the compatibility with
incremental methods from scikit-learn.

stream = SEAGenerator (random_state=1)

nb = NaiveBayes ()

svm = SGDClassifier ()

Setup the evaluation

metrics = ['accuracy', 'kappa',

'running_time', 'model_size']

eval = EvaluatePrequential (show_plot=True,
max_samples=20000,
metrics=metrics)

Run the evaluation

7. Some data generators and estimators use random numbers generators.
When set, the random_state parameter enforces reproducible results.

74

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

SEA Generator - 1 target(s), 2 classes, 3 features

Accuracy
1.00 Model | Mean | Current
NE 0.9430 0.9200
0.7% S5WVM 0.9553 0.9550
5 050
0.25 4
0.00 4
T T T T T T T
1] 2500 5000 7500 10000 12500 15000 17500
Kappa
1.00 Model | Mean | Current
NE 0.8621 0.8217
075 SVM 0.8966 0.9037
m
g 050
m
3
0.25
0.00
T T T T T T T
1] 2500 5000 7500 10000 12500 15000 17500
Samples
Meodel | Train(s) | Predict{s) | Total(s) | Mem (kB} —— NB (current, 200 samples) NE (mean)
NB 0.52 1.24 176 681 = S5¥M {current, 200 samples) SVM (mean)
S5WVM 4.38 1.61 5.99 3.45

Fig. 3: Performance comparison between NaiveBayes and SGDClassifier using the EvaluatePrequential class.

eval.evaluate (stream=stream, model=[nb,
model_names=['NB',

svm],
"SVM']) ;

We set two metrics to measure predictive performance: accuracy
and kappa statistics [Coh60] (for benchmarking classification
accuracy under class imbalance, compares the models accuracy
against that of a random classifier). During the evaluation, a
dynamic plot displays the performance of both estimators over
the stream, Fig. 3. Once the evaluation is completed, a summary
is displayed in the terminal. For this example and considering the
evaluation configuration:

Processed samples: 20000

Mean performance:

NB - Accuracy 0.9430

NB - Kappa 0.862

NB - Training time (s) : 0.56

NB - Testing time (s) : 1.31

NB - Total time (s) : 1.87

NB - Size (kB) : 6.8076
SVM - Accuracy 0.9560

SVM - Kappa 0.8984

SVM - Training time (s) 4.70
SVM - Testing time (s) 1.73
SVM - Total time (s) : 6.43
SVM - Size (kB) : 3.4531
In Fig. 3, we observe the evolution of both estimators as they are

trained on data from the stream. Although NaiveBayes
has better performance at the beginning of the stream,
SGDClassifier eventually outperforms it. In the plot
we show performance at multiple points, measured by the given
metric (accuracy, kappa, etc.) in two ways: Mean corresponds to
the average performance on all data seen previously, resulting
in a smooth line. Current indicates the performance over a
sliding window with the latest data from the stream, The

size of the sliding window can be defined by the user and is
useful to analyze the ’current’ performance of an estimator. In
this experiment, we also measure resources in terms of time
(training + testing) and memory. NaiveBayes' "is faster
and uses slightly more memory. On the other
hand, " 'SGDClassifier is slower and has a smaller
memory footprint.

Concept drift detection

For this example, we will generate a synthetic data stream. The
first 1000 samples of the stream contain a sequence from a normal
distribution with u, = 0.8, o, = 0.05, followed by 1000 samples
from a normal distribution with u;, = 0.4, o, = 0.2, and the last
1000 samples from a normal distribution with y. = 0.6, o, = 0.1.
The distribution of data in the described synthetic stream is shown
in Fig. 4.

. dists

250 e disty

0.9+

0.8 200 4

[

150 A
06+

054 100 A

044
50

0.3+

T T T T T T 0-
o 500 1000 1500 2000 2500 3000 0

Fig. 4: Synthetic data simulating a drift. The stream is composed by
two distributions of 500 samples.

random_state =
dist_a =

np.random.RandomState (12345)
random_state.normal (0.8, 0.05, 1000)

LEARNING FROM EVOLVING DATA STREAMS 75
agr_a 20k.csv - 1 target(s), 2 classes
Accuracy
1.00 Model | Mean | Current
HT 0.7279 0.6900
0.75 HAT 0.7810 0.8100
5 050
025 o
0.00
T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500
Kappa
1.00 Model | Mean | Current
HT 0.4530 0.3648
0.75 4 HAT 0.5594 06107
m
2 050
m
3
0.25 A
0.00
T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500
Samples
Model | Mem (kB) —— HT (current, 100 samples) «---. HT {mean)
HT 175.87 —— HAT (current, 100 samples) + HAT {mean)
HAT 12225

Fig. 5: Benchmarking the Hoeffding Tree vs the Hoeffding Adaptive Tree on presence of drift.

dist_b = random_state.normal (0.4,
dist_c = random_state.normal (0.6,
stream = np.concatenate ((dist_a,

0.02, 1000)
0.1, 1000)
dist_b, dist_c))

We will use the ADaptive WINdowing (ADWIN) drift detection
method. The goal is to detect that drift has occurred after samples
1000 and 2000 in the synthetic data stream.

drift_detector = ADWIN ()

for i, val in enumerate (stream_int) :
drift_detector.add_element (val)
if drift_detector.detected_change() :
print ('Change detected at index {}'.format (i))

drift_detector.reset ()

> Change detected at index 1055
> Change detected at index 2079

Impact of drift on learning

Concept drift can have a significant impact on predictive perfor-
mance if not handled properly. Most batch models will fail in the
presence of drift as they are essentially trained on different data.
On the other hand, stream learning methods continuously update
themselves and can adapt to new concepts. Furthermore, drift-
aware methods use change detection methods to trigger mitigation
mechanisms if a change in performance is detected.

In this example, we compare two popular stream models: the
HoeffdingTreeClassifier, and its drift-aware version, the
HoeffdingAdaptiveTreeClassifier.

For this example, we will load the data from a csv file using
the FileStream class. The data corresponds to the output of the
AGRAWALGenerator with 3 gradual drifts at the 5k, 10k, and

15k marks. A gradual drift means that the old concept is gradually
replaced by a new one, in other words, there exists a transition
period in which the two concepts are present.

stream = FileStream("agr_a_20k.csv")

ht HoeffdingTreeClassifier (),

hat = HoeffdingAdaptiveTreeClassifier ()

Setup the evaluation

metrics = ['accuracy', 'kappa', 'model_size']

eval = EvaluatePrequential (show_plot=True,
metrics=metrics,
n_wait=100)

Run the evaluation

eval.evaluate (stream=stream, model=[hy, hat],
model_names=["'HT', 'HAT']);

The summary of the evaluation is:

Processed samples: 20000

Mean performance:

HT - Accuracy 0.7279

HT - Kappa 0.4530

HT - Size (kB) 175.8711

HAT - Accuracy 0.8070

HAT - Kappa 0.6122

HAT - Size (kB) 122.0986

The result of this experiment is shown in Fig. 5. Dur-
ing the first 5K samples, we see that both methods be-
have in a very similar way, which is expected as the
HoeffdingAdaptiveTreeClassifier essentially works
as the HoeffdingTreeClassifier when there is no drift.
At the 5K mark, the first drift is observable by the sudden
drop in the performance of both estimators. However, notice that
the HoeffdingAdaptiveTreeClassifier has the edge
and recovers faster. The same behavior is observed after the
drift in the 15K mark. Interestingly, after the drift at 10K,

76

the HoeffdingTreeClassifier is better for a small pe-
riod but is quickly overtaken. In this experiment, we can also
see that the current performance evaluation provides richer in-
sights on the performance of each estimator. It is worth not-
ing the difference in memory between these estimators. The
HoeffdingAdaptiveTreeClassifier achieves better per-
formance while requiring less space in memory. This indicates that
the branch replacement mechanism triggered by ADWIN has been
applied, resulting in a less complex tree structure representing the
data.

Real-time applications

We recognize that previous examples use static synthetic data for
illustrative purposes. However, the goal is to work on real-world
streaming applications where data is continuously generated and
must be processed in real-time. In this context, scikit-multiflow
is designed to interact with specialized streaming tools, providing
flexibility to the users to deploy streaming models and tools in
different environments. For instance, an IoT architecture on an
edge/fog/cloud computing environment is proposed in [CW19].
This architecture is designed to capture, manage, process, ana-
lyze, and visualize IoT data streams. In this architecture, scikit-
multiflow is the stream machine learning library inside the pro-
cessing and analytics block.

In the following example, we show how we can leverage
existing Python tools to interact with dynamic data. We use
Streamz® to get data from Apache Kafka. The data from the
stream is used to incrementally train, one sample at a time,
a HoeffdingTreeClassifier model. The output on each
iteration is a boolean value indicating if the model correctly
classified the last sample from the stream.

from streamz import Stream
from skmultiflow.trees import HoeffdingTreeClassifier

@Stream.register_api ()
class extended (Stream) :

def _ _init__ (self, upstream, model, xxkwargs):
self.model = model
super () .__init__ (upstream, =**kwargs)

def update(self, x, who=None):

Tuple x represents one data sample

x[0] is the features array and
x[1] is the target label
y_pred = self.model.predict (x[0])

incrementally learn the current sample
self.model.partial_ fit (x[0], x[1])

output indicating if the model

ed the

x[1])

correctly classi

self._emit (y_pred ==

sample
s_in = Stream.from_kafka (x+xconfiqg)
ht = HoeffdingTreeClassifier ()

s_learn = s.map (read) .extended (model=ht)
out = s_learn.sink_to_list ()

s_in.start ()

Alternatively, we could define two nodes, one for training and one
for predicting. In this case, we just need to make sure that we
maintain the rest-then-train order.

8. https://github.com/python-streamz/streamz

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Get scikit-multiflow

scikit-multifiow work with Python 3.5+ and can be used on
Linux, macOS, and Windows. The source code is publicly
available in GitHub. The stable release version is available via
conda-forge (recommended) and pip:

$ conda install -c conda-forge scikit-multiflow

$ pip install -U scikit-multiflow

The latest development version is available in the project’s repos-
itory: https://github.com/scikit-multifiow/scikit-multifiow. Stable
and development versions are also available as docker images.

Conclusions and final remarks

In this paper, we provide a brief overview of machine learning for
data streams. Stream learning is an alternative to standard batch
learning in dynamic environments where data is continuously gen-
erated (potentially infinite) and data is non-stationary but evolves
(concept drift). We present examples of applications and describe
the challenges and requirements of machine learning techniques
to be used on streaming data effectively and efficiently.

We describe scikit-multiflow, an open-source machine learning
library for data streams in Python. The design of scikit-multiflow
is based on two principles: to be easy to design and run experi-
ments, and to be easy to extend and modify existing methods. We
provide a quick overview of the core elements of scikit-multiflow
and show how it can be used for the tasks of classification and
drift detection.

Acknowledgments

The author is particularly grateful to Prof. Albert Bifet from the
Department of Computer Science at the University of Waikato for
his continuous support. We also thank Saulo Martiello Mastelini
from the Institute of Mathematics and Computer Sciences at the
University of S3o Paulo, for his active collaboration on scikit-
multifiow and his valuable work as one of the maintainers of the
project. We thank interns who have helped in the development of
scikit-multiflow and the open-source community which motivates
and contributes in the continuous improvement of this project.
We gratefully acknowledge the reviewers from the SciPy 2020
conference for their constructive comments.

REFERENCES

[BBCT11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing
in Science Engineering, 13(2):31 -39, 2011. doi:10.1109/
MCSE.2010.118.

Albert Bifet and Ricard Gavalda. Learning from Time-Changing
Data with Adaptive Windowing. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 443-448, 2007.
doi:10.1137/1.9781611972771.42.

Albert Bifet and Ricard Gavalda. Adaptive Learning from Evolv-
ing Data Streams. In 8th International Symposium on Intelligent
Data Analysis, pages 249-260, 2009. doi:10.1007/978-3~
642-03915-7_22.

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. Data stream mining a practical approach, 2011.
Jacob Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37-46, 1960.
doi:10.1177/001316446002000104.

Hung Cao and Monica Wachowicz. Analytics everywhere for
streaming iot data. In 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS),
pages 18-25, 2019. doi:10.1109/I0TSMS48152.2019.
8939171.

[BGO7]

[BGO9]

[BHKP11]

[Coh60]

[CW19]

LEARNING FROM EVOLVING DATA STREAMS

[Daw84]

[DHOO0]

[GRB*19]

[GZB+14]

[Hun07]

[Koh95]

[MRBAI1S]

[pdt20]

[PVGT11]

[vCV11]

[VGO™20]

A Philip Dawid. Present position and potential developments:
Some personal views: Statistical theory: The prequential ap-
proach. Journal of the Royal Statistical Society. Series A (Gen-
eral), pages 278-292, 1984.

Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’00,
pages 71-80. ACM, 2000.

Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Bard-
dal, and Jodo Gama. Machine learning for streaming data: State
of the art, challenges, and opportunities. SIGKDD Explor. Newsl.,
21(2):6-22, 2019. doi:10.1145/3373464.3373470.

Joao Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift adap-
tation. ACM Computing Surveys, 46(4):1-37, 2014. doi:
10.1145/2523813.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing
in Science & Engineering, 9(3):90-95, 2007. doi:10.1109/
MCSE.2007.55.

Ron Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelli-
gence, volume 14, pages 1137-1145, 1995.

Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
Scikit-Multiflow: A Multi-output Streaming Framework. Journal
of Machine Learning Research, 19(72):1-5, 2018. URL: http:
/fjmlr.org/papers/v19/18-251.html.

The pandas development team. pandas-dev/pandas: Pandas,
February 2020. doi:10.5281/zenodo.3509134.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing
in Science Engineering, 13(2):22-30, 2011. doi:10.1109/
MCSE.2011.37.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, CJ Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald,
Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272,
2020. doi:https://doi.org/10.1038/s41592-019-
0686-2.

77

78

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Awkward Array: JSON-like data, NumPy-like idioms

Jim Pivarski**, lanna Osborne*, Pratyush Das'l, Anish Biswas?, Peter EImer*

https://youtu.be/WlnUF3LRBj4

Abstract—NumPy simplifies and accelerates mathematical calculations in
Python, but only for rectilinear arrays of numbers. Awkward Array provides a
similar interface for JSON-like data: slicing, masking, broadcasting, and per-
forming vectorized math on the attributes of objects, unequal-length nested lists
(i.e. ragged/jagged arrays), and heterogeneous data types.

Awkward Arrays are columnar data structures, like (and convertible to/from)
Apache Arrow, with a focus on manipulation, rather than serialization/transport.
These arrays can be passed between C++ and Python, and they can be used in
functions that are JIT-compiled by Numba.

Development of a GPU backend is in progress, which would allow data anal-
yses written in array-programming style to run on GPUs without modification.

Index Terms—NumPy, Numba, Pandas, C++, Apache Arrow, Columnar data,
AOS-to-SOA, Ragged array, Jagged array, JSON

Introduction

NumPy [np] is a powerful tool for data processing, at the center of
a large ecosystem of scientific software. Its built-in functions are
general enough for many scientific domains, particularly those that
analyze time series, images, or voxel grids. However, it is difficult
to apply NumPy to tasks that require data structures beyond N-
dimensional arrays of numbers.

More general data structures can be expressed as JSON and
processed in pure Python, but at the expense of performance and
often conciseness. NumPy is faster and more memory efficient
than pure Python because its routines are precompiled and its
arrays of numbers are packed in a regular way in contiguous mem-
ory. Some expressions are more concise in NumPy’s "vectorized"
notation, which describe actions to perform on whole arrays, rather
than scalar values.

In this paper, we describe Awkward Array [akl], [ak2], a
generalization of NumPy’s core functions to the nested records,
variable-length lists, missing values, and heterogeneity of JSON-
like data. The internal representation of these data structures is
columnar, very similar to (and compatible with) Apache Arrow
[arrow]. But unlike Arrow, the focus of Awkward Array is to
provide a suite of data manipulation routines, just as NumPy’s
role is focused on transforming arrays, rather than standardizing a
serialization format.

« Corresponding author: pivarski@princeton.edu
Princeton University

q Institute of Engineering and Management

§ Manipal Institute of Technology

Copyright © 2020 Jim Pivarski et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

+

Our goal in developing Awkward Array is not to replace
NumPy, but to extend the set of problems to which it can be
applied. We use NumPy’s extension mechanisms to generalize its
interface in a way that returns identical output where the appli-
cability of the two libraries overlap (i.e. rectilinear arrays), and
the implementation of non-structure-changing, numerical math is
deferred to NumPy itself. Thus, all the universal functions (ufuncs)
in the SciPy project [scipy] and its ecosystem can already be
applied to Awkward structures because they inherit NumPy and
SciPy’s own implementations.

Origin and development

Awkward Array was intended as a way to enable particle physics
analyses to take advantage of scientific Python tools. Particle
physics problems are inherently structured, frequently needing
nested loops over variable-length lists. They also involve big data,
typically tens to hundreds of terabytes per analysis. Traditionally,
this required physicists to do data analysis in Fortran (with
custom libraries for data structures [hydra] before Fortran 90) and
C++, but many physicists are now moving to Python for end-
stage analysis [phypy]. Awkward Array provides the link between
scalable, interactive, NumPy-based tools and the nested, variable-
length data structures that physicists need.

Since its release in September 2018, Awkward Array has
become one of the most popular Python libraries for particle
physics, as shown in Figure 1. The Awkward 0.x branch was
written using NumPy only, which limited its development because
every operation must be vectorized for performance. We (the
developers) also made some mistakes in interface design and
learned from the physicists’ feedback.

Spurred by these shortcomings and the popularity of the
general concept, we redesigned the library as Awkward 1.x in
a half-year project starting in August 2019. The new library is
compiled as an extension module to allow us to write custom
precompiled loops, and its Python interface is improved: it is
now a strict generalization of NumPy, is compatible with Pandas
[pandas] (Awkward Arrays can be DataFrame columns), and is
implemented as a Numba [numba] extension (Awkward Arrays
can be used in Numba’s just-in-time compiled functions).

Although the Awkward 1.x branch is feature-complete, serial-
ization to and from a popular physics file format (ROOT [root],
which represents over an exabyte of physics data [root-EB]) is
not. Adoption among physicists is ongoing, but the usefulness of
JSON-like structures in data analysis is not domain-specific and
should be made known to the broader community.

AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS

pip-installs on MacOS and Windows (not batch jobs)

&
© 10°
g —
& 10¢ 1 numpy
2 scipy
2 103] — pandas
€ —— matplotlib
) 2
o 104 4
o
‘; 101 { ===- root-numpy .
& ~=== iminuit o :!\-.f:" M:,::.M‘ «3,4 <’ P ey \,:.T_':,
@ 1004 ---- rootpy e VIR ”
2 .
£ 107! 4 -
z uproot awkward coffea
a
1072 T T

Q\p “\p Q\p Q@ o Q{\ o Q\;z; 0\,% Q\;z; o 1@) l“\,q
qﬂ O e T ee® T et e el T e Tl el T e Y e

Fig. 1: Adoption of Awkward 0.x, measured by PyPl statistics,
compared to other popular particle physics packages (root-numpy,
iminuit, rootpy) and popular data science packages.

Demonstration using a GeoJSON dataset

To show how Awkward Arrays can be applied beyond particle
physics, this section presents a short exploratory analysis of
Chicago bike routes [bikes] in GeoJSON format. GeoJSON has
a complex structure with multiple levels of nested records and
variable-length arrays of numbers, as well as strings and missing
data. These structures could not be represented as a NumPy array
(without dt ype=object, which are Python objects wrapped in
an array), but there are reasons to want to perform NumPy-like
math on the numerical longitude, latitude coordinates.
To begin, we load the publicly available GeoJSON file,

import urllib.request
import json

url = "https://raw.githubusercontent.com/Chicago/" \

"osd-bike-routes/master/data/Bikeroutes.geojson"

bikeroutes_json =
bikeroutes_pyob]j =

urllib.request.urlopen (url) .read()
json.loads (bikeroutes_json)

and convert it to an Awkward Array. The two main data types
are ak . Array (a sequence of items, which may contain records)
and ak .Record (a single object with named, typed fields, which
may contain arrays). Since the dataset is a single JSON object, we
pass it to the ak . Record constructor.

import awkwardl as ak
bikeroutes = ak.Record(bikeroutes_pyobj)

The record-oriented structure of the JSON object, in which fields
of the same object are serialized next to each other, has now been
transformed into a columnar structure, in which data from a single
field across all objects are contiguous in memory. This requires
more than one buffer in memory, as heterogeneous data must be
split into separate buffers by type.

The structure of this particular file (expressed as a Datashape,
obtained by calling ak . type (bikeroutes))is

{"type": string,
"crs": {
"type": string,
"properties": {"name": string}},
"features": wvar * {
"type": string,
"properties": {
"STREET": string,
"TYPE": string,
"BIKEROUTE": string,
"F_STREET": string,

79

"T_STREET":
"geometry": {
"type": string,
"coordinates":
var x* var var float64}}}

option[string]},

We are interested in the longitude, latitude coordinates, which
are in the "coordinates" field of the "geometry" of the
"features", at the end of several levels of variable-length lists
(var). At the deepest level, longitude values are in coordinate O
and latitude values are in coordinate 1.

We can access each of these, eliminating all other fields, with
a NumPy-like multidimensional slice. Strings in the slice select
fields of records and ellipsis (. . .) skips dimensions as it does in

NumPy.

longitude = bikeroutes|["features", "geometry",
"coord1nat9°" ..., 0]

latitude = bikeroutes["features", "geometry",

"coordinates”, ., 1]

The longitude and 1atitude arrays both have type 1061 *
var x var * floaté64; thatis, 1061 routes with a variable
number of variable-length polylines.

At this point, we might want to compute the length of each
route, and we can use NumPy ufuncs to do that, despite the
irregular shape of the longitude and latitude arrays. First,
we subtract off the mean and convert degrees into a unit of distance
(82.7and 111.1 are conversion factors at Chicago’s latitude).

* 82.7
* 111.1

km_east =
km_north =

(longitude - np.mean (longitude))
(latitude - np.mean(latitude))
Subtraction and multiplication defer to np.subtract and
np.multiply, respectively, and these are ufuncs, overrid-
den using NumPy’s __array_ufunc__ protocol [nepl3]. The
np.mean function is not a ufunc, but it, too, can be overridden
using the __array_function__ protocol [nepl8]. All ufuncs
and a handful of more generic functions can be applied to

Awkward Arrays.

To compute distances between points in an array a in NumPy,
we would use an expression like the following,
differences = 1 - al

all: :-1]

which views the same array without the first element (a[1:])
and without the last element (a[:—1]) to subtract "between the
fenceposts." We can do so in the nested lists with

differences = km_east[:, :, 1:] — km_east[:, :, :-1]

even though the first two dimensions have variable lengths.
They’re derived from the same array (km_east), so they have
the same lengths and every element in the first term can be paired
with an element in the second term.

Two-dimensional distances are the square root of the sum of
squares of these differences,

segment_length = np.sqrt(
(km_east[:, :, 1:] — km_east[:, :, :=1])*xx2 +
(km_north[:, :, 1:] - km_north[:, :, =11)*%2)

and we can sum up the lengths of each segment in each polyline
in each route by calling np . sum on the deepest axis.

polyline_length =
route_length =

np.sum(segment_length, axis=-1)
np.sum(polyline_length, axis=-1)

The same could be performed with the following pure Python
code, though the vectorized form is shorter, more exploratory, and
8x faster (Intel 2.6 GHz i7-9750H processor with 12 MB cache
on a single thread); see Figure 2.

80

1.6 T T T T T T
- time to compute
3 14T versus size of problem T
c
8 12k (lower is better) B
b3
-~ 10 B
s
3 08F _
g original
o problem B
2 0.4 - B
o O
£ e
s 021 AWkWard Arrays -

0 I L L L L
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

number of bike routes

Fig. 2: Scaling of Awkward Arrays and pure Python loops for the bike
routes calculation shown in the text.

route_length = []
for route in bikeroutes_pyobj["features"]:
polyline_length = []

for polyline in route["geometry"]["coordinates"]:
segment_length = []
last = None
for 1ng, lat in polyline:
km_east = 1lng % 82.7
km_north = lat % 111.1

if last is not None:
dx2 = (km_east - last[0])*x2
dy2 = (km_north - last[1])*x2
segment_length.append (
np.sqgrt (dx2 + dy2))

last = (km_east, km_north)

polyline_length.append (sum(segment_length))
route_length.append(sum(polyline_length))

The performance advantage is due to Awkward Array’s precom-
piled loops, though this is mitigated by the creation of intermediate
arrays and many passes over the same data (once per user-
visible operation). When the single-pass Python code is just-in-
time compiled by Numba and evaluated over Awkward Arrays,
the runtime is 250x faster than pure Python (same architecture).

Scope: data types and common operations

Awkward Array supports the same suite of abstract data types and
features as "typed JSON" serialization formats—Arrow, Parquet,
Protobuf, Thrift, Avro, etc. Namely, there are

e primitive types: numbers and booleans,

« variable-length lists,

« regular-length lists as a distinct type (i.e. tensors),

« records/structs/objects (named, typed fields),

« fixed-width tuples (unnamed, typed fields),

« missing/nullable data,

« mixed, yet specified, types (i.e. union/sum types),

o virtual arrays (functions generate arrays on demand),
« partitioned arrays (for off-core and parallel analysis).

Like Arrow and Parquet, arrays with these features are laid out
as columns in memory (more on that below).

Like NumPy, the Awkward Array library consists of a primary
Python class, ak . Array, and a collection of generic operations.
Most of these operations change the structure of the data in the
array, since NumPy, SciPy, and others already provide numerical
math as ufuncs.

Awkward functions include

e Dbasic and advanced slices (__getitem__) including
variable-length and missing data as advanced slices,

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

« masking, an alternative to slices that maintains length but
introduces missing values instead of dropping elements,

o broadcasting of universal functions into structures,

o reducers of and across variable-length lists,

« zip/unzip/projecting free arrays into and out of records,

« flattening and padding to make rectilinear data,

« Cartesian products (cross join) and combinations (self
join) at axis >= 1 (per element of one or more arrays).

Conversions to other formats, such as Arrow, and interoper-
ability with common Python libraries, such as Pandas and Numba,
are also in the library’s scope.

Columnar representation, columnar implementation

Awkward Arrays are columnar, not record-oriented, data struc-
tures. Instead of concentrating all data for one array element in
nearby memory (as an "array of structs"), all data for a given
field are contiguous, and all data for another field are elsewhere
contiguous (as a "struct of arrays"). This favors a pattern of data
access in which only a few fields are needed at a time, such as the
longitude, latitude coordinates in the bike routes example.

Additionally, Awkward operations are performed on columnar
data without returning to the record-oriented format. To illustrate,
consider an array of variable-length lists, such as the following toy
example:

(rr.x, 2.2, 3.31, [4.41, [5.5, 6.6], [7.7, 8.8, 9.9]]

Instead of creating four C++ objects to represent the four lists, we
can put all of the numerical data in one buffer and indicate where
the lists start and stop with two integer arrays:

starts: 0, 3, 4, o

stops: 3, 4, 6, 9

content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9
For an array of lists of lists, we could introduce two levels
of starts and stops arrays, one to specify where the outer
square brackets start and stop, another to specify the inner square
brackets. Any tree-like data structure can be built in this way;
the hierarchy of nested array groups mirrors the hierarchy of the
nested data, except that the number of these nodes scales with
the complexity of the data type, not the number of elements in
the array. Particle physics use-cases require thousands of nodes
to describe complex collision events, but billions of events in
memory at a time. Figure 3 shows a small example.

In the bike routes example, we computed distances using slices
like km_east[:, :, 1:], which dropped the first element
from each list. In the implementation, list objects are not created
for the sake of removing one element before translating back into
a columnar format; the operation is performed directly on the
columnar data.

For instance, to drop the first element from each list in an array
of lists a, we only need to add 1 to the starts:
starts: 1, 4, 5, 7

stops: 3, 4, 6, 9
content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9

Without modifying the content, this new array represents

[t 2.2, 3.31, [1,0 6.61, [8.8, 9.91]

because the first list starts at index 1 and stops at 3, the second
starts at 4 and ends at 4, etc. The "removed" elements are still
present in the content array, but they are now unreachable,
much like the stride tricks used for slicing in NumPy.

AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS

ak.Array (high-level wrapper)

1 1
| 1
1 1
- contents "x" !
- NumpyArray .
1 content |
i ListArray RecordArray i
I content 1
1 1
: starts ListArray NumpyArray !
i stops contents "y" 1
. starts .
i stops !

81

Fig. 3: Hierarchy for an example data structure: an array of lists of records, in which field "x" of the records are numbers and field "y " of

the records are lists of numbers. This might, for example, represent [[],

[{"x": 1, "y": [1]}, {"x": 2, "y": [2, 2]}]],

but it also might represent an array with billions of elements (of the same type). The number of nodes scales with complexity, not data volume.

Leaving the content untouched means that the precompiled
slice operation does not depend on the content type, not even
whether the content is a numeric array or a tree structure, as in
Figure 3. It also means that this operation does not cascade down
such a tree structure, if it exists. Most operations leave nested
structure untouched and return views, rather than copies, of most
of the input buffers.

Architecture of Awkward 1.x

In August 2019, we began a half-year project to rewrite the
library in C++ (Awkward 1.x), which is now complete. Whereas
Awkward 0.x consists of Python classes that call NumPy on
internal arrays to produce effects like the slice operation described
in the previous section, Awkward 1.x consists of C++ classes that
perform loops in custom compiled code, wrapped in a Python
interface through pybind11.

However, the distinction between slow, bookkeeping code and
fast math enforced by Python and NumPy is a useful one: we
maintained that distinction by building Awkward 1.x in layers that
separate the (relatively slow) polymorphic C++ classes, whose job
is to organize and track the ownership of data buffers, from the
optimized loops in C that manipulate data in those buffers.

These layers are fully broken down below and in Figure 4:

o The high-level interface is in Python.

o The array nodes (managing node hierarchy and owner-
ship/lifetime) are in C++, accessed through pybind11.

¢ An alternate implementation of array navigation was writ-
ten for Python functions that are compiled by Numba.

e Array manipulation algorithms (without memory manage-
ment) are independently implemented as "cpu-kernels" and
"cuda-kernels" plugins. The kernels’ interface is pure C,
allowing for reuse in other languages.

The separation of "kernels" from "navigation" has two advan-
tages: (1) optimization efforts can focus on the kernels, since these
are the only loops that scale with data volume, and (2) CPU-based
kernels can, in principle, be swapped for GPU-based kernels. The
latter is an ongoing project.

Numba for just-in-time compilation

Some expressions are simpler in "vectorized" form, such as the
Awkward Array solution to the bike routes calculation. Others are
simpler to express as imperative code. This issue arose repeatedly
as physicists used Awkward Array 0.x in real problems, both

user interface ak.Array in Python hasa cc

AE
pybind11
data navigation C++ classes Numba models
and/or ownership
A\

\

/ \
~~~~~~~~~~~~~~~~~~~ extern "C" interface --------------oo-

\
\

array manipulation cpu-kernels cuda-kernels

erate on CPU pointer operate on GPU pointers

Fig. 4: Components of Awkward Array, as described in the text. All
components have been implemented except for the "cuda-kernels."

because they were more familiar with imperative code (in C++)
and because the problems truly favored non-vectorized solutions.
For instance, walking up a tree, looking for nodes of a particular
type (such as a tree of particle decays) is hard to express in
vectorized form because some elements of a test array reach the
stopping condition before others; preventing them from continuing
to walk the tree adds complexity to a data analysis. Any problem
that must "iterate until converged" is also of this form.

These problems are readily solved by Numba, a just-in-time
compiler for Python, but Numba cannot compile code involving
arrays from Awkward 0.x. To solve physics problems, we had to
break the array abstraction described above. Ensuring that Numba
would recognize Awkward 1.x arrays was therefore a high priority,
and it is a major component of the final system.

Numba has an extension mechanism for registering new types
and overloading operators for new types. We added Numba ex-
tensions for the ak . Array and ak.Record types, overloading
__getitem__ (square bracket) and _ _getattr__ (dot) oper-
ators and iterators, so that users can walk over the data structures
with conventional loops.

Returning to the bike routes example, the following performs
the same calculation with Numba:

import numba as nb

@nb. jit
def compute_lengths (bikeroutes):
# allocate output array

route_length = np.zeros(len(bikeroutes["features"]))

# loop over routes
for i in range(len(bikeroutes|["features"])):
route = bikeroutes["features"][1]



82

# loop over polylines

for polyline in route["geometry"]["coordinates
first True
last_east

last_north

0.0
0.

0

for 1ng_lat in polyline:
km_east lng_lat[0]
km_north Ing_lat[1]

* 82.7
* 111.1

# compute distances between points

if not first:

dx2 = (km_east - last_east) «*2
dy2 = (km_north - last_north) %2
distance = np.sqrt (dx2 + dy2)
route_length[i] += distance

# keep track of previous value

first = False

last_east = km_east

last_north = km_north

return route_length

This expression is not concise, but it is 250x faster than the pure
Python solution and 30x faster than even the Awkward Array
(precompiled) solution. It makes a single pass over all buffers,
maximizing CPU cache efficiency, and it does not allocate or
fill any intermediate arrays. This is possible because nb. jit
compiles specialized machine code for this particular problem.

Combining Awkward Array with Numba has benefits that
neither has alone. Ordinarily, complex data structures would have
to be passed into Numba as Python objects, which means a
second copy of the data that must be "unboxed" (converted into
a compiler-friendly form) and "boxed" (converted back). If the
datasets are large, this consumes memory and time. Awkward
Arrays use less memory than the equivalent Python objects (5.2x
smaller for the bike routes) and they use the same internal
representation (columnar arrays) inside and outside functions just-
in-time compiled by Numba.

The disadvantage of Numba and Awkward Arrays in Numba is
that neither support the whole language: Numba can only compile
a subset of Python and the NumPy library and Awkward Arrays
are limited to imperative-style access (no array-at-a-time func-
tions) and homogeneous data (no union type). Any code that works
in a just-in-time compiled function works without compilation, but
not vice-versa. Thus, there is a user cost to preparing a function
for compilation, which can be seen in a comparison of the code
listing above with the pure Python example in the original bike
routes section. However, this finagling is considerably less time-
consuming than translating a Python function to a language like
C or C++ and converting the data structures. It favors gradual
transition of an analysis from no just-in-time compilation to a
judicious use of it in the parts of the workflow where performance
is critical.

ArrayBuilder: creating columnar data in-place

Awkward Arrays are immutable; NumPy’s ability to assign ele-
ments in place is not supported or generalized by the Awkward
Array library. (As an exception, users can assign fields to records
using __setitem__ syntax, but this replaces the inner tree with
one having the new field.) Restricting Awkward Arrays to read-
only access allows whole subtrees of nodes to be shared among
different versions of an array.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

To create new arrays, we introduced ak .ArrayBuilder,
~an append-only structure that accumulates data and creates

(lji(.z-\rrays by taking a "snapshot" of the current state. The
ak.ArrayBuilder is also implemented for Numba, so just-
in-time compiled Python can build arbitrary data structures.

The ak.ArrayBuilder is a dynamically typed object,
inferring its type from the types and order of data appended to
it. As elements are added, the ak . ArrayBuilder builds a tree
of columns and their types to refine the inferred type.

e

> of b.snapshot ()
unknown
.begin_record()
.field("x™)
.integer (1)
.end_record()
.begin_record()
.field("xM)
.real (2.2)
Lfield("y")
.integer (2)
.end_record()
.null ()
.string("hello")

inknown}
unxKknown ;

[

~ =
My My My
My b b b b
o O
S

—~ 0 O

OO0 O0oO0CO0OO0C0oOO0C0U0D0U00
N
v O

ShOM TR YR SR YR SR R SR R SR SR SR W
a W

In the above example, an initially empty ak.ArrayBuilder
named b has unknown type and zero length. With
begin_record, its type becomes a record with no fields. Call-
ing field adds a field of unknown type, and following that with
integer sets the field type to an integer. The length of the array
is only increased when the record is closed by end_record.

In the next record, field "x" is filled with a floating point
number, which retroactively updates previous integers to floats.
Calling b.field("y") introduces a field "y" to all records,
though it has option type because this field is missing for all
previous records. The third record is missing (b.null () ), which
refines its type as optional, and in place of a fourth record, we
append a string, so the type becomes a union.

Internally, ak .ArrayBuilder maintains a similar tree of
array buffers as an ak.Array, except that all buffers can grow
(when the preallocated space is used up, the buffer is reallocated
and copied into a buffer 1.5x larger), and content nodes can be
replaced from specialized types to more general types. Taking a
snapshot shares buffers with the new array, so it is a lightweight
operation.

Although ak.ArrayBuilder is compiled code and calls
into it are specialized by Numba, its dynamic typing has a
runtime cost: filling NumPy arrays is faster. ak . ArrayBuilder
trades runtime performance for convenience; faster array-building
methods would have to be specialized by type.

High-level behaviors

One of the surprisingly popular uses of Awkward 0.x has been to
add domain-specific methods to records and arrays by subclassing
their hierarchical node types. These can act on scalar records
returning scalars, like a C++ or Python object,

# distance between pointsl[0] and points2[0]
pointsl[0] .distance (points2[0])

or they may be "vectorized," like a ufunc,

# distance between all pointsl[i] and points2[i]

pointsl.distance (points2)

This capability has been ported to Awkward 1.x and expanded
upon. In Awkward 1.x, records can be named (as part of more



AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS

general "properties” metadata in C++) and record names are linked
to Python classes through an ak .behavior dict.
class Point:

def distance(self, other):

return np.sqgrt ((self.x - other.x)**2 +
(self.y - other.y)*%2)

class PointRecord (Point, ak.Record):

pass
class PointArray (Point, ak.Array):
pass

ak.behavior["point"] = PointRecord

ak.behavior["«", "point"] = PointArray

pointsl = ak.Array ([{"x": 1.1, "y": 1},
{"X": 2'2, HyH: 2),
{("x": 3.3, "y': 3}],

with_name="point")

points2 = ak.Array ([{"x": 1, "y": 1.1},
("x": 2, "y": 2.2},
"X": 3, HVH: 3.3}],

with_name="point")

pointsl[0].distance (points2[0]
# 0.14142135623730964

pointsl.distance (points2)
0.424]

# <Array [0.141, 0.283, type='3 x float64'>
pointsl.distance (points2[0]) # broadcasting
<Array [0.141, 1.5, 2.98] type='3 » float64'>

When an operation on array nodes completes and the result is
wrapped in a high-level ak.Array or ak.Record class for
the user, the ak.behavior is checked for signatures that link
records and arrays of records to user-defined subclasses. Only the
name "point™" is stored with the data; methods are all added at
runtime, which allows schemas to evolve.

Other kinds of behaviors can be assigned through different
signatures in the ak .behavior dict, such as overriding ufuncs,
# link np.absolute ("point") to a custom function
def magnitude (point) :

return np.sqgrt (point.x**2 + point.yx*2)

ak.behavior[np.absolute, "point"] = magnitude

np.absolute (pointsl)

# <Array [1.49, 2.97, 4.46] type='3 x floaté64'>

as well as custom broadcasting rules, and Numba extensions
(typing and lowering functions).

As a special case, strings are not defined as an array type,
but as a parameter label on variable-length lists. Behaviors that
present these lists as strings (overriding __repr__ ) and define
per-string equality (overriding np.equal) are preloaded in the
default ak .behavior.

Awkward Arrays and Pandas

Awkward Arrays are registered as a Pandas extension, so they
can be losslessly embedded within a Series or a DataFrame
as a column. Some Pandas operations can be performed on
them—particularly, NumPy ufuncs and any high-level behaviors
that override ufuncs—but best practices for using Awkward Arrays
within Pandas are largely unexplored. Most Pandas functions were
written without deeply nested structures in mind.

It is also possible (and perhaps more useful) to translate
Awkward Arrays into Pandas’s own ways of representing nested

83

structures. Pandas’s Multilndex is particularly useful: variable-
length lists translate naturally into Multilndex rows:

ak.pandas.df (ak.Array ([[[1.1, 2.2]1, [], [3.311,
[1,
[[4.41, [5.5, 6.611,
[e7.711,
[[8.8111))

# values

# entry subentry subsubentry

# 0 0 0 1.1

# 1 2.2

# 2 0 3.3

# 2 0 0 4.4

# 1 0 5.5

# 1 6.6

# 3 0 0 7.7

# 4 0 0 8.8

and nested records translate into Multilndex column names:
ak.pandas.df (ak.Array ([{"I":

{"a": . llb": {"C": _}},
"II":
{IIXII: {uyu: nom. _}}}}
for _ in range(0, 50, 10)1))
# I IT
# a b X
# c v
# z
# entry
# 0 0 0 0
# 1 10 10 10
# 2 20 20 20
# 3 30 30 30
# 4 40 40 40

In the first of these two examples, empty lists in the Awkward
Array do not appear in the Pandas output, though their existence
may be inferred from gaps between entry and subentry indexes.
When analyzing both lists and non-list data, or lists of different
lengths, it is more convenient to translate an Awkward Array into
multiple DataFrames and JOIN those DataFrames as relational
data than to try to express it all in one DataFrame.

This example highlights a difference in applicability between
Pandas and Awkward Array: Pandas is better at solving problems
with long-range relationships, joining on relational keys, but the
structures that a single DataFrame can represent (without resorting
to Python objects) is limited. Awkward Array allows general data
structures with different length lists in the same structure, but most
calculations are elementwise, as in NumPy.

GPU backend

One of the advantages of a vectorized user interface is that it is
already optimal for calculations on a GPU. Imperative loops have
to be redesigned when porting algorithms to GPUs, but CuPy,
Torch, TensorFlow, and JAX demonstrate that an interface con-
sisting of array-at-a-time functions hides the distinction between
CPU calculations and GPU calculations, making the hardware
transparent to users.

Partly for the sake of adding a GPU backend, all instances
of reading or writing to an array’s buffers were restricted to the
"array manipulation" layer of the project (see Figure 4). The first
implementation of this layer, "cpu-kernels," performs all opera-
tions that actually access the array buffers, and it is compiled into
a physically separate file: 1ibawkward-cpu-kernels.so,
as opposed to the main libawkward.so, Python extension
module, and Python code.

In May 2020, we began developing the "cuda-kernels" li-
brary, provisionally named 1ibawkward-cuda-kernels.so



84

embarrassingly

parallel (74) counting

index (26)

\ loop-carried
d

\ependency (7)

dynamic memory (1)

Fig. 5: CPU kernels by algorithmic complexity, as of February 2020.

(to allow for future non-CUDA versions). Since the main code-
base (lLibawkward.so) never dereferences any pointers to its
buffers, main memory pointers can be transparently swapped for
GPU pointers with additional metadata to identify which kernel
to call for a given set of pointers. Thus, the main library does
not need to be recompiled to support GPUs and it can manage
arrays in main memory and on GPUs in the same process, which
could be important, given the limited size of GPU memory. The
"cuda-kernels" will be deployed as a separate package in PyPI
and Conda so that users can choose to install it separately as an
"extras" package.

The kernels library contains many functions (428 in the
"extern C" interface with 124 independent implementations,
as of May 2020) because it defines all array manipulations. All of
these must be ported to CUDA for the first GPU implementation.
Fortunately, the majority are easy to translate: Figure 5 shows that
almost 70% are simple, embarrassingly parallel loops, 25% use a
counting index that could be implemented with a parallel prefix
sum, and the remainder have loop-carried dependencies or worse
(one used dynamic memory, but it has since been rewritten). The
kernels were written in a simple style that may be sufficiently
analyzable for machine-translation, a prospect we are currently
investigating with pycparser.

Transition from Awkward 0.x

Awkward 0.x is popular among physicists, and some data analyses
have come to depend on it and its interface. User feedback, how-
ever, has taught us that the Awkward 0.x interface has some incon-
sistencies, confusing names, and incompatibilities with NumPy
that would always be a pain point for beginners if maintained,
yet ongoing analyses must be supported. (Data analyses, unlike
software stacks, have a finite lifetime and can’t be required to
"upgrade or perish," especially when a student’s graduation is at
stake.)

To support both new and ongoing analyses, we gave the
Awkward 1.x project a different Python package name and PyPI
package name from the original Awkward Array: awkwardl
versus awkward. This makes it possible to install both and
load both in the same process (unlike Python 2 and Python
3). Conversion functions have also been provided to aid in the
transition.

We are already recommending Awkward 1.x for new physics
analyses, even though serialization to and from the popular ROOT
file format is not yet complete. Nevertheless, the conversion
functions introduce an extra step and we don’t expect widespread
adoption until the Uproot library natively converts ROOT data to
and from Awkward 1.x arrays.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Eventually, however, it will be time to give Awkward 1.x
"official" status by naming it awkward in Python and PyPI. At
that time, Awkward 0.x will be renamed awkwardO, so that a
single
import awkwardO as awkward

would be required to maintain old analysis scripts.

As an incentive for adopting Awkward 1.x in new projects,
it has been heavily documented, with complete docstring and
doxygen coverage (already exceeding Awkward 0.x).

Summary

By providing NumPy-like idioms on JSON-like data, Awkward
Array satisfies a need required by the particle physics community.
The inclusion of data structures in array types and operations was
an enabling factor in this community’s adoption of other scientific
Python tools. However, the Awkward Array library itself is not
domain-specific and is open to use in other domains. We are
very interested in applications and feedback from the wider data
analysis community.

Acknowledgements

Support for this work was provided by NSF cooperative agreement
OAC-1836650 (IRIS-HEP), grant OAC-1450377 (DIANA/HEP)
and PHY-1520942 (US-CMS LHC Ops).

REFERENCES

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux.
The NumPy Array: A Structure for Efficient Numerical Compu-
tation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

Jim Pivarski, Jaydeep Nandi, David Lange, Peter Elmer. Columnar
data processing for HEP analysis, Proceedings of the 23rd Inter-
national Conference on Computing in High Energy and Nuclear
Physics (CHEP 2018). DOI:10.1051/epjcont/201921406026

Jim Pivarski, Peter Elmer, David Lange. Awkward Arrays in Python,
C++, and Numba, CHEP 2019 proceedings, EPJ Web of Confer-
ences (CHEP 2019). arxiv:2001.06307

Apache Software Foundation. Arrow: a cross-language develop-
ment platform for in-memory data, https://arrow.apache.org

Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python, SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, in press.
DOI:10.1038/s41592-019-0686-2

R. K. Bock. Initiation to Hydra, https://cds.cern.ch/record/864527
(1974), DOI:10.5170/CERN-1974-023.402

Jim Pivarski. Programming languages and particle physics, https:
/levents.fnal.gov/colloquium/events/event/pivarski-collog-2019
(2019).

Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010), DOI:10.25080/Majora-92bf1922-00a

Siu Kwan Lam, Antoine Pitrou, Stanley Seibert. Numba: a LLVM-
based Python JIT compiler, LLVM ’15: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, 7, 1-6
(2015), DOI:10.1145/2833157.2833162

Rene Brun and Fons Rademakers, ROOT: an object oriented
data analysis framework, Proceedings ATHENP’96 Workshop, Lau-
sanne, (1996), Nucl. Inst. & Meth. in Phys. Res. A 389 (1997)
81-86.

[root-EB] Axel Naumann. ROOT as a framework and analysis tool in
run 3 and the HL-LHC era, https://indico.cern.ch/event/913205/
contributions/3840338 (2020).

[np]

[ak1]

[ak2]

[arrow]

[scipy]

[hydra]

[phypy]

[pandas]

[numba]

[root]

[bikes] City of Chicago Data Portal, https://data.cityofchicago.org

[nepl13] Pauli Virtanen, Nathaniel Smith, Marten van Kerkwijk, Stephan
Hoyer. NEP 13 — A Mechanism for Overriding Ufuncs, https://
numpy.org/neps/nep-0013-ufunc-overrides.html

[nepl18]  Stephan Hoyer, Matthew Rocklin, Marten van Kerkwijk, Hameer

Abbasi, Eric Wieser. NEP 18 — A dispatch mechanism for NumPy'’s
high level array functions, https://numpy.org/neps/nep-0018-array-
function-protocol.html



PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

85

High-performance operator evaluations with ease of
use: libCEED’s Python interface

Valeria Barra®*, Jed Brown?, Jeremy Thompson®, Yohann Dudouit

Abstract—IlibCEED is a new lightweight, open-source library for high-
performance matrix-free Finite Element computations. libCEED offers a portable
interface to high-performance implementations, selectable at runtime, tuned for
a variety of current and emerging computational architectures, including CPUs
and GPUs. IibCEED's interface is purely algebraic, facilitating co-design with
vendors and enabling unintrusive integration in new and legacy software. In this
work, we present libCEED’s newly-available Python interface, which opens up
new strategies for parallelism and scaling in high-performance Python, without
compromising ease of use.

Index Terms—High-performance Python, performance portability, scalability,
parallelism, high-order finite elements

Introduction

Historically, high-order Finite Element Methods (FEM) have seen
very limited use for industrial problems because the matrix de-
scribing the action of the operator loses sparsity as the order
is increased [Ors80], leading to unaffordable solve times and
memory requirements [Brol0]. Consequently, most industrial ap-
plications have used at most quadratic polynomial bases, for which
assembled matrices appear to be a good choice, at least when
one seeks to minimize the number of floating point operations
(FLOPs) per degree of freedom (DOF); see the right panel of Fig.
1. Nowadays, high-order numerical methods, such as the spectral
element method (SEM)—a special case of nodal p-Finite Element
Method that can reuse the interpolation nodes for quadrature—are
employed (e.g., in scientific computing packages such as MFEM
[MFE20] and Nek5000 [Nek20]), especially with applications for
which implicit solves are limited to linear constant-coefficient
separable equations on (nearly) affine elements, which can be
efficiently solved with sum factorization and multigrid [LF05].

In Fig. 1, we analyze and compare the asymptotic costs of
applying the action of a finite element matrix using different
configurations: assembling the sparse matrix representing the
action of the operator (labeled as assembled), applying the action
without assembly while using a tensor-product decomposition of
the basis and metric terms computed on the fly with a compact rep-
resentation of the linearization stored at quadrature points (labeled
as tensor), and similarly, but with a precomputed pull-back of the

= Corresponding author: valeria.barra@colorado.edu
§ University of Colorado Boulder
# Lawrence Livermore National Laboratory

Copyright © 2020 Valeria Barra et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

bytes/dof
flops/dof

10% {7
7
tensor b =1
- tensorb=3
_ . F 102
tensor-gstore b = 1
—<- tensor-gqstore b =3
—@— assembled b=1
-@- assembled b =3
T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
polynomial order polynomial order

102 4

Fig. 1: Comparison of asymptotic memory transfer and floating point
operations per degree of freedom for different representations of
a linear operator for a PDE (on a 3D hexahedral mesh) with b
components and variable coefficients arising due to Newton lineariza-
tion of a material nonlinearity. The representation labeled as tensor
computes metric terms on the fly and stores a compact representation
of the linearization at quadrature points. The representation labeled
as tensor-qstore pulls the metric terms into the stored representation.
The assembled representation uses a (block) CSR format.

linearization to reference elements (labeled as tensor-gstore). In
the right panel, we show the cost in terms of FLOPs/DOF. This
metric for computational efficiency made sense historically, when
performance was primarily limited by floating point arithmetic.
Memory bandwidth is the overwhelming bottleneck on today’s
machines, which can perform 40-100 FLOPs per floating point
load from memory, and thus the left panel of Fig. 1 becomes a
more accurate performance model for modern architectures. We
can see that well-implemented high-order methods require low
memory motion that decreases with polynomial order and FLOPs
that are relatively insensitive to polynomial order for operator
evaluation. Thus, high-order methods in matrix-free representation
not only possess favorable properties, such as higher accuracy and
faster convergence to solution, but also manifest an efficiency gain
compared to their corresponding assembled representations.

For the reasons mentioned above, in recent years, high-order
numerical methods have been widely used in Partial Differential
Equation (PDE) solvers, but software packages that provide high-
performance implementations have often been special-purpose and
intrusive. In contrast, libCEED [lib20b], the Code for Efficient
Extensible Discretizations is light-weight, minimally intrusive,
and very versatile. In fact, libCEED offers a purely algebraic
interface for matrix-free operator representation and supports run-



86

Fig. 2: The role of libCEED as a lightweight, portable library that
provides a low-level API for efficient, specialized implementations.
libCEED allows different applications to share highly optimized
discretization kernels.

time selection of implementations tuned for a variety of com-
putational device types, including CPUs and GPUs. 1ibCEED’s
algebraic interface can unobtrusively be integrated in new and
legacy software to provide performance portable interfaces. While
libCEED’s focus is on high-order finite elements, the approach is
algebraic and thus applicable to other discretizations in factored
form (e.g., spectral difference). libCEED’s role, as a low-level
library that allows a wide variety of applications to share highly
optimized discretization kernels, is illustrated in Fig. 2, where a
non-exhaustive list of specialized implementations (backends) is
provided. libCEED provides a low-level Application Programming
Interface (API) for user codes so that applications with their
own discretization infrastructure (e.g., those in PETSc [BAAT20],
MFEM and Nek5000) can evaluate and use the core operations
provided by libCEED. GPU implementations are available via
pure CUDA [CUD20] as well as the OCCA [OCC20] and
MAGMA [MAG?20] libraries. CPU implementations are available
via pure C and AVX intrinsics as well as the LIBXSMM [LIB20c]
library. libCEED provides a unified interface, so that users only
need to write a single source code and can select the desired
specialized implementation at run time. Moreover, each process
or thread can instantiate an arbitrary number of backends.

In this work, we first introduce libCEED’s conceptual model
and interface, then illustrate its new Python interface, which was
developed using the C Foreign Function Interface (CFFI) for
Python. CFFI allows reuse of most of the C declarations and
requires only a minimal adaptation of some of them. The C and
Python APIs are mapped in a nearly 1:1 correspondence. For in-
stance, a CeedVector object is exposed as 1ibceed.Vector
in Python, and may reference memory that is also accessed via
Python arrays from the NumPy [vCV11] or Numba [LPS15]
packages, for handling host or device memory (when interested
in GPU computations with CUDA). Flexible pointer handling in
libCEED makes it easy to provide zero-copy host and (GPU)
device support for any desired Python array container.

libCEED’s API

As illustrated in the Introduction, it is favorable to minimize
memory motion, especially when computations are performed in
parallel computing environments. In Finite Element codes that
exploit data parallelism, the action of the operator can be described
as global, when the operator is applied to data distributed across

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

different nodes or compute devices, or local, when operating on
a single portion of the data partition. libCEED’s API provides the
local action of an operator (linear or nonlinear) without assembling
its sparse representation. The purely algebraic nature of libCEED
allows efficient operator evaluations (selectable at runtime) and
offers matrix-free preconditioning ingredients. While 1ibCEED’s
focus is on high-order finite elements, the approach with which it
is designed is algebraic and thus applicable to other discretizations
in factored form. This algebraic decomposition also presents the
benefit that it can equally represent linear or non-linear finite
element operators.
Let us define the global operator as

A=P" G"B"DBG P, 1
libCEED’s scope

where P is the parallel process decomposition operator (external
to libCEED, which needs to be managed by the user via external
packages, such as petscdpy [BAAT20], [DPKCI11]) in which
the degrees of freedom (DOFs) are scattered to and gathered
from the different compute devices. The operator denoted by
Ar = GTBTDBG gives the local action on a compute node or
process, where G is a local element restriction operation that
localizes DOFs based on the elements, B defines the action of
the basis functions (or their gradients) on the nodes, and D
is the user-defined pointwise function describing the physics of
the problem at the quadrature points, also called the QFunction
(see Fig. 3). Instead of forming a single operator using a sparse
matrix representation, libCEED composes the different parts of
the operator described in equation (1) to apply the action of the
operator A, = G” B DBG in a fashion that is tuned for the different
compute devices, according to the backend selected at run time.

In libCEED’s terminology, the global or total vector is called
a T-vector (cf. Fig. 3). This stores the true degrees of freedom of
the problem. In a T-vector, each unknown has exactly one copy,
on exactly one processor, or rank. The process decomposition,
denoted by P in equation (1), is a non-overlapping partitioning.
The application of the operator P to a T-vector results in an
L-vector, or local vector. This stores the data owned by each
rank. In an L-vector, each unknown has exactly one copy on
each processor that owns an element containing it. This is an
overlapping vector decomposition with overlaps only across differ-
ent processors—there is no duplication of unknowns on a single
processor. The nodes adjacent to different elements (at element
corners or edges) will be the one that have more than one copy,
on different processors. Applying an element restriction operator,
denoted by G in equation (1), to an L-vector creates an E-vector.
This stores the nodes grouped by the elements they belong to.
In fact, in an E-vector each unknown has as many copies as the
number of elements that contain it. The application of a basis
operator B to an E-vector returns a Q-vector. This has the same
layout of an E-vector, but instead of holding the different unknown
values, a Q-vector stores the values at quadrature points, grouped
by element.

The mathematical formulation of QFunctions, described in
weak form, is fully separated from the parallelization and meshing
concerns. In fact, QFunctions, which can either be defined by the
user or selected from a gallery of available built-in functions in
the library, are pointwise functions that do not depend on element
resolution, topology, or basis degree (selectable at run time).
This easily allows hp-refinement studies (where & commonly
denotes the average element size and p the polynomial degree



HIGH-PERFORMANCE OPERATOR EVALUATIONS WITH EASE OF USE: LIBCEED’S PYTHON INTERFACE 87

= I
A=P'G"B"DBGP

global domain sub-domains elements quadrature D
all (shared) dofs device (local) dofs element dofs point values /->

P G =} s, (R EE]

— — ] —
a S ¢ : & %%%%
T-vector L-vector E-vector Q-vector
wTTTTmTTommmommomees IbCEED API -==========---=------->

Fig. 3: Operator decomposition.

of the basis functions in 1D) and p-multigrid solvers. libCEED
also supports composition of different operators for multiphysics
problems and mixed-element meshes (see Fig. 4). Currently, user-
defined QFunctions are written in C and must be precompiled as
a foreign function library and loaded via ctypes. The single-
source C QFunctions allow users to equally compute on CPU
or GPU devices, all supported by 1ibCEED. The ultimate goal
is for users to write only Python code. This will be achieved
in the near future by using the Numba high-performance Python
compiler or Google’s extensible system for composable function
transformations, JAX [BFH ™ 18], which can use just-in-time (JIT)
compilation to compile for coprocessors and speed-up executions
when sequences of operations are performed.

Go By E
3D
—
V- (Vu)
k
D
G i By @

Fig. 4: A schematic of element restriction and basis applicator
operators for elements with different topology. This sketch shows the
independence of QFunctions (in this case representing a Laplacian)
element resolution, topology, or basis degree.

Source Code Examples

LibCEED for Python is distributed through PyPI [PyP20] and can
be easily installed via

$ pip install libceed
or
$ python -m pip install libceed

The package can then be simply imported via

>>> import libceed

The simple declaration of a libceed.Ceed instance, with
default resource (/cpu/self) can be obtained as

>>> ceed = libceed.Ceed()

If 1ibCEED is built with GPU support, the user can specify a GPU
backend, e.g., /gpu/occa or /gpu/cuda/gen, with

>>> ceed = libceed.Ceed('/gpu/cuda/gen')

Next, we show the creation of a 1ibceed.Vector of a specified
size

>>> n = 10

>>> x = ceed.Vector (n)

Similarly, this could have been achieved by running

>>> x = ceed.Vector (size=10)

In the following example, we associate the data stored in a
libceed.Vector with a numpy.array and use it to set and
read the 1ibceed.Vector’s data

>>> import numpy as np

>>> x = ceed.Vector (size=3)

>>> a = np.arange(l, 4, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read() as b:

print (b)
[1. 2. 3.1
Similarly, we can set all entries of a 1ibceed.Vector to the

same value (e.g., 10) via

>>> x.set_value (10)

If the user has installed libCEED with CUDA support and
Numba, they can use device memory for 1ibceed.Vectors.
In the following example, we create a 1ibceed.Vector with
a libCEED context that supports CUDA, associate the data stored
in a CeedVector with a numpy.array, and get a Numba
DeviceNDArray containing the data on the device.

>>> ceed_gpu = libceed.Ceed('/gpu/cuda')

>>> n = 4
>>> x = ceed_gpu.Vector (n)

>>> a = np.arange(l, n + 1, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read(memtype=libceed.MEM_DEVICE) as
device_array:
print (device_array)

ii: 2. 3. 4.]

Among the Finite Elements objects needed to compose an opera-
tor, in the following example we illustrate the creation and apply
action of an element restriction, denoted by G in equation (1)

>>> ne = 3
>>> x = ceed.Vector (ne+l)

>>> a = np.arange (10, 10 + ne+l, dtype="floate64d")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> ind = np.zeros (2+ne, dtype="int32")
>>> for i1 in range (ne):
ind[2x1+0] = 1
ind[2x1+1] = i+1
>>> r = ceed.ElemRestriction(ne, 2, 1, 1, ne+l, ind,
cmode=1libceed.USE_POINTER)
>>> y = ceed.Vector (2+ne)

>>> y.set_value (0)

>>> r.apply(x, V)



88

>>> with y.array_read()
print('y =',

as y_array:
y_array)

y = [10. 11. 11. 12. 12. 13.]

An H' Lagrange basis in d dimensions can be defined with the
following code snippet

>>> d =1
>>> b = ceed.BasisTensorHlLagrange (
dim=d, # topological dimension
ncomp=1, # number of components
pP=2, # number of basis functions (nodes)
# per dimension
Q=2, # number of quadrature points

# per dimension
... gmode=libceed.GAUSS_LOBATTO)
>>> print (b)

CeedBasis: dim=1 P=2 Q=2
gqrefld: -1.00000000 1.00000000
gweightld: 1.00000000 1.00000000
interpld[0]: 1.00000000 0.00000000
interpld[1]: 0.00000000 1.00000000
gradld[0]: -0.50000000 0.50000000
gradld[1] -0.50000000 0.50000000

In the following example, we show how to apply a 1D basis
operator, denoted by B in equation (1), from an E-vector named
Ev, to a Q-vector named Qv, and vice-versa, its transpose operator
BT
>>> Q = 4
>>> dim = 1
>>> Xdim = 2%xdim
>>> Qdim = Qxxdim
>>> x = np.empty (Xdimxdim,
>>> for d in range (dim) :
for i in range (Xdim) :
x[d#*Xdim + 1] = 1 if
// (2% (dim-d-1)) else -1

dtype="float64")
(1 % (2% (dim-d)))

>>> Ev = ceed.Vector (Xdim+dim)
>>> Ev.set_array(x, cmode=libceed.USE_POINTER)
>>> Qv = ceed.Vector (Qdim+dim)
>>> Qv.set_value (0)
>>> pbx = ceed.BasisTensorHlLagrange (dim,
... libceed.GAUSS_LOBATTO)
>>> bx.apply(l, libceed.EVAL_INTERP, Ev, Qv)
>>> print (Qv)
CeedVector length 4

-1.000000

-0.447214

0.447214

1.000000

dim, 2, Q,

>>> bx.T.apply (1,
>>> print (Ev)
CeedVector length 2
-1.200000

1.200000

libceed.EVAL_INTERP, Qv, Ev)

In the following example, we create two QFunctions (for the setup
and apply, respectively, of the mass operator in 1D) from the
gallery of available built-in QFunctions in libCEED

>>> qgf_setup = ceed.QFunctionByName ("Massl1DBuild")
>>> print (gf_setup)
Gallery CeedQFunction MasslDBuild
2 Input Fields:
Input Field [0]:

Name: "dx"
Size: 1
EvalMode: "gradient"
Input Field [1]:
Name: "weights"
Size: 1
EvalMode: "quadrature weights"

1 Output Field:

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Output Field [0]:
Name: "gdata"
Size: 1
EvalMode: "none"

>>> gf_mass = ceed.QFunction