
148 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

SHADOW: A workflow scheduling algorithm reference
and testing framework

Ryan W. Bunney§‡∗, Andreas Wicenec§‡, Mark Reynolds‡

F

Abstract—As the scale of science projects increase, so does the demand
on computing infrastructures. The complexity of science processing pipelines,
and the heterogeneity of the environments on which they are run, continues to
increase; in order to deal with this, the algorithmic approaches to executing these
applications must also be adapted and improved to deal with this increased
complexity. An example of this is workflow scheduling, algorithms for which
are continually being developed; however, in many systems that are used to
deploy science workflows for major science projects, the same algorithms and
heuristics are used for scheduling. We have developed SHADOW, a workflow-
oriented scheduling algorithm framework built to address an absence of open
implementations of these common algorithms, and to facilitate the development
and testing of new algorithms against these ’industry standards’. SHADOW
has implementations of common scheduling heuristics, with the intention of
continually updating the framework with heuristics, metaheuristics, and math-
ematical optimisation approaches in the near future. In addition to the algo-
rithm implementations, there is also a number of workflow and environment
generation options, using the companion utility SHADOWGen; this has been
provided to improve the productivity of algorithm developers in experimenting
with their new algorithms over a large variety of workflows and computing
environments. SHADOWGen also has a translation utilities that will convert
from other formats, like the Pegasus DAX file, into the SHADOW-JSON con-
figuration. SHADOW is open-source and uses key SciPy libraries; the intention
is for the framework to become a reference implementation of scheduling al-
gorithms, and provide algorithm designers an opportunity to develop and test
their own algorithms with the framework. SHADOW code is hosted on GitHub
at https://github.com/myxie/shadow; documentation for the project is available in
the repository, as well as at https://shadowscheduling.readthedocs.org.

Introduction

To obtain useful results from the raw data produced by science
experiments, a series of scripts or applications is often required
to produce tangible results. These application pipelines are re-
ferred to as Science Workflows [ALRP16], which are typically a
Directed-Acyclic Graph (DAG) representation of the dependency
relationships between application tasks in a pipeline. An example
of science workflow usage is Montage1, which takes sky images
and re-projects, background corrects and add astronomical images
into custom mosaics of the sky [BCD+08], [JCD+13]. A Montage
pipeline may consist of more than 10,000 jobs, perform more
than 200GB of I/O (read and write), and take 5 hours to run

* Corresponding author: ryan.bunney@research.uwa.edu.au
§ International Centre for Radio Astronomy Research
‡ University of Western Australia

Copyright © 2020 Ryan W. Bunney et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

[JCD+13]. This would be deployed using a workflow management
system (for example, Pegasus [DVJ+15]), which coordinates the
deployment and execution of the workflow. It is this workflow
management system that passes the workflow to a workflow
scheduling algorithm, which will pre-allocate the individual ap-
plication tasks to nodes on the execution environment (e.g. a local
grid or a cloud environment) in preparation for the workflow’s
execution.

The processing of Science Workflows is an example of the
DAG-Task scheduling problem, a classic problem at the inter-
section of operations research and high performance computing
[KA99a]. Science workflow scheduling is a field with varied
contributions in algorithm development and optimisation, which
address a number of different sub-problems within the field
[WWT15], [CCAT14], [BÇRS13], [HDRD98], [RB16], [Bur].
Unfortunately, implementations of these contributions are difficult
to find; for example, implementations that are only be found in
code that uses it, such as in simulation frameworks like Work-
flowSim [THW02], [CD12]; others are not implemented in any
public way at all [YB06], [ANE10]. These are also typically used
as benchmarking or stepping stones for new algorithms; for ex-
ample, the Heterogeneous Earliest Finish Time (HEFT) heuristic
continues to be used as the foundation for scheduling heuristics
[DFP12], [CCCR18], meta-heuristics, and even mathematical op-
timisation procedures [BBL+16], despite being 20 years old. The
lack of a consistent testing environment and implementation of
algorithms makes it hard to reproduce and verify the results of
published material, especially when a common workflow model
cannot be verified.

Researchers benefit as a community from having open im-
plementations of algorithms, as it improves reproducibility and
accuracy of benchmarking and algorithmic analysis [CHI14].
There exists a number of open-source frameworks designed for
testing and benchmarking of algorithms, demonstrate typical im-
plementations, and provide an infrastructure for the development
and testing of new algorithms; examples include NLOPT for non-
linear optimisation in a number of languages (C/C++, Python,
Java) [Joh], NetworkX for graph and network implementations
in Python, MOEA for Java, and DEAP for distributed EAs in
Python [DRFG+12]. SHADOW (Scheduling Algorithms for DAG
Workflows) is our answer to the absence of Workflow Scheduling-
based algorithm and testing framework, like those discussed
above. It is an algorithm repository and testing environment, in
which the performance of single- and multi-objective workflow
scheduling algorithms may be compared to implementations of
common algorithms. The intended audience of SHADOW is those

https://github.com/myxie/shadow
https://shadowscheduling.readthedocs.org
mailto:ryan.bunney@research.uwa.edu.au


SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 149

Fig. 1: A sample DAG; vertices represent compute tasks, and edges
show precedence relationships between nodes. Vertex- and edge-
weights are conventionally used to describe computational and data
costs, respectively. This is adapted from [THW02], and is a simple
example of the DAG structure of a science workflow; a typical
workflow in deployment will often be more complex and contain many
hundreds of nodes and edges.

developing and testing novel workflow scheduling algorithms, as
well as those interested in exploring existing approaches within an
accessible framework.

To the best of our knowledge, there is no single-source
repository of implementations of DAG or Workflow scheduling
algorithms. The emphasis in SHADOW is on reproducibility and
accuracy in algorithm performance analysis, rather than a simu-
lated demonstration of the application of a particular algorithm in
certain environments. Additionally, with the popularity of Python
in other domains that are also growing within the workflow com-
munity, such as Machine and Deep Learning, SHADOW provides
a frictionless opportunity to integrate with the frameworks and
libraries commonly used in those domains.

Workflow Scheduling

A workflow is commonly represented in the literature as a Directed
Acyclic Graph (DAG) [CK88], [CA93], [Ull75], [KA99a]; a
sequence of tasks will have precedence constraints that limit when
a task may start. A DAG task-graph is represented formally as a
graph G = (V,E), where V is a set of v vertices and E is a set
of e edges [KA99a]; an example is featured in Figure 1, which
will be build upon as the paper progresses. Vertices and Edges
represent communication and computation costs respectively. The
objective of the DAG-scheduling problem is to map tasks to a
set of resources in an order and combination that minimise the
execution length of the final schedule; this is referred to as the
makespan.

The complexity and size of data products from modern science
projects necessitates dedicated infrastructure for compute, in a
way that requires re-organisation of existing tasks and processes.
As a result, it is often not enough to run a sequence of tasks in
series, or submit them to batch processing; this would likely be
computationally inefficient, as well taking as much longer than
necessary. As a result, science projects that have computationally-
and data-intensive programs, that are interrelated, have adopted the
DAG-scheduling model for representing their compute pipelines;
this is where science workflow scheduling is derived.

Design and Core Architecture

Design

SHADOW adopts a workflow-oriented design approach, where
workflows are at the centre of all decisions made within the
framework; environments are assigned to workflows, algorithms
operate on workflows, and the main object that is manipulated and
interacted with when developing an algorithm is likely to be a
workflow object.

By adopting a workflow-oriented model to developing algo-
rithms to test, three important outcomes are achieved:

• Freedom of implementation; for users wishing to develop
their own algorithms, there is no prohibition of additional
libraries or data-structures, provided the workflow struc-
ture is used within the algorithm.

• Focus on the workflow and reproducibility; when run-
ning analysis and benchmarking experiments, the same
workflow model is used by all algorithms, which ensures
comparisons between differing approaches (e.g. a single-
objective model such as HEFT vs. a dynamic implemen-
tation of a multi-objective heuristic model) are applied to
the same workflow.

• Examples: We have implemented popular and well-
documented algorithms that are commonly used to bench-
mark new algorithms and approaches. There is no need to
follow the approaches taken by these implementations, but
they provide a useful starting point for those interested in
developing their own.

SHADOW is not intended to accurately simulate the execution
of a workflow in an real-world environment; for example, working
with delays in processing, or node failure in a cluster. Strategies to
mitigate these are often implemented secondary to the scheduling
algorithms, especially in the case of static scheduling, and would
not be a fair approach to benchmarking the relative performance
between each application. Instead, it provides algorithms that
may be used, statically or dynamically, in a larger simulation
environment, where one would be able to compare the specific
environmental performance of one algorithm over another.

Architecture

SHADOW is split into three main components that are separated
by their intended use case, whether it be designing new algorithms,
or to benchmark against the existing implementations. These
components are:

• models
• algorithms
• visualiser

The models module is likely the main entry point for
researchers or developers of algorithms; it contains a number
of key components of the framework, the uses of which are
demonstrated both in the examples directory, as well as the
implemented sample algorithms in the algorithms module.
The algorithms module is concerned with the implementations
of algorithms, with the intention of providing both a recipe
for implementing algorithms using SHADOW components, and
benchmark implementations for performance analysis and testing.
The visualiser is a useful way to add graphical components to a
benchmarking recipe, or can be invoked using the command line
interface to quickly run one of the in-built algorithms.



150 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: An example workflow DAG adapted from [THW02] (the same
workflow as in Figure 1); weights on the edges describe data products
from the respective parent node being sent to the child. In SHADOW,
task computation cost is represented by the total number of Floating
Point Operations required to run the task (see Table 1). This is
intended to alleviate the difficulty of converting the run-time between
different test environment configurations.

Workflow and Costs Environment

Task FLOPs Machine FLOP/s
0 119000 cat0_m0 7000
1 92000 cat1_m1 6000
2 95000 cat2_m2 11000
3 109000
4 107000
5 169000
6 110000
7 147000
8 146000
9 101000

TABLE 1: Table of Task (Giga) FLOP requirements, with the (Giga)
FLOP/second provided by each respective machine. It is intended to
be applied to Figure 2.

These components are all contained within the main shadow
directory; there are also additional codes that are located in
utils, which are covered in the Additional Tools section.

Models

The models module provides the Workflow class, the founda-
tional data structure of shadow. Currently, a Workflow object
is initialised using a JSON configuration file that represents the
underlying DAG structure of the workflow, along with storing
different attributes for task-nodes and edges in Figure 2 (which
is an extension of Figure 1).

These attributes are implicitly defined within the configuration
file; for example, if the task graph has compute demand (as
total number of FLOPs/task) but not memory demand (as average
GB/task), then the Workflow object is initialised without memory,
requiring no additional input from the developer.

Using the example workflow shown in Figures 1 and 2, we
can demonstrate how to initialise a Workflow in SHADOW, and
what options exist for extending or adapting the object.

from shadow.models.workflow import Workflow
HEFTWorkflow = Workflow('heft.json')

The heft.json file contains the graph structure, based the
JSON dump received when using networks. Nodes and their
respective costs (computation, memory, monetary etc.) are stored
with their IDs.

...
"nodes": [

{
"comp": 119000,
"id": 0

},
{

"comp": 92000,
"id": 1

},
{

"comp": 95000,
"id": 2

},
...

],

It is clear from Figure HEFT Edges in the graph, which are the
dependency relationship between tasks, are described by links,
along with the related data-products:

"links": [
{

"data_size": 18,
"source": 0,
"target": 1

},
{

"data_size": 12,
"source": 0,
"target": 2

},
...

For example, looking at Figure 2 we see the dependency between
tasks 0 and 1, and the weight 18 on the edge. This is reflected in
the above component of the JSON file.

NetworkX is used to form the base-graph structure for the
workflow; it allows the user to specify nodes as Python objects,
so tasks are stored using the SHADOW Task object structure.
By using the NetworkX.DiGraph as the storage object for the
workflow structure, users familiar with NetworkX may use with
the SHADOW Workflow object in any way they would normally
interact with a NetworkX Graph.

In addition to the JSON configuration for the workflow
DAG, a Workflow object also requires an Environment object.
Environment objects represent the compute platform on which
the Workflow is executed; they are add to Workflow objects
in the event that different environments are being analysed. The
environment is also specified in JSON; currently, there is no
prescribed way to specify an environment in code, although it
is possible to do so if using JSON is not an option.

In our example, we have three machines on which we are
attempting to schedule the workflow from Figure 2. The different
performance of each machine is described in Table 1, with the
JSON equivalent below:

"system": {
"resources": {

"cat0_m0": {
"flops": 7000.0
"mem":
"io" :

},
"cat1_m1": {

"flops": 6000.0
},



SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 151

Fig. 3: This is a replication of the costs provided in [THW02]. The
table shows a different run-time for each task-machine pairing. It
is the same structure as Figure 2; however, the JSON specification
is different to cater for the pre-calculated run-time on separate
machines.

"cat2_m2": {
"flops": 11000.0

}
},
"rates": {
"cat0": 1.0, # GB/s
"cat1": 1.0,
"cat2": 1.0

}
}

Environments are added to the Workflow object in the following
manner:
from shadow.models.environment import Environment
env = Environment('sys.json')
HEFTWorkflow.add_environment(env)

The Workflow class calculates task run-time and other values
based on its current environment when the environment is passed
to the Workflow); however, users of the environment class may
interact with these compute values if necessary. Configuration files
may be generated in a number of ways, following a variety of
specifications, using the SHADOWGen utility.

It is also possible to use pre-calculated costs (i.e. completion
time in seconds) when scheduling with SHADOW.

This approach is less flexible for scheduling workflows, but
is a common approach used in the scheduling algorithm literature
[KA99a], [KA99b], [?], [BM08], [YB06]; an example of this is
shown in Figure 3. This can be achieved by adding a list of costs-
per-tasks to the workflow specification JSON file, in addition to
the following header. For example, if instead of the total FLOPS
we had provided to us in Table 1, we instead had timed the run-
time of the applications on each machine separately, the JSON for
Figure 2 would reflect the following:
{

"header" : {
"time": true
},
...

"nodes": [
{

"comp": [
14,
16,
9

],
"id": 0

},
...

}

The final class that may be of interest to algorithm developers is
the Solution class. For single-objective heuristics like HEFT
or min-min, the final result is a single solution, which is a set of
machine-task pairs. However, for population- and search-based
metaheuristics, multiple solutions must be generated, and then
evaluated, often for two or more (competing) objectives. These
solutions also need to be sanity-checked in order to ensure that
randomly generated task-machine pairs still follow the prece-
dence constraints defined by the original workflow DAG. The
Solution provides a basic object structure that stores machines
and task pairs as a dictionary of Allocations; allocations store
the task-ID and its start and finish time on the machine. This
provides an additional ease-of-use functionality for developers,
who can interact with allocations using intuitive attributes (rather
than navigating a dictionary of stored keywords). The Solution
currently stores a single objective (makespan) but can be expanded
to include other, algorithm-specific requirements. For example,
NSGAII* ranks each generated solution using the non-dominated
rank and crowding distance operator; as a result, the SHADOW
implementation creates a class, NSGASolution, that inherits the
basic Solution class and adds the these additional attributes.
This reduces the complexity of the global solution class whilst
providing the flexibility for designers to create more elaborate
solutions (and algorithms).

Algorithms

These algorithms may be extended by others, or used when run-
ning comparisons and benchmarking. The examples directory
gives you an overview of recipes that one can follow to use the
algorithms to perform benchmarking.

The SHADOW approach to describing an algorithm presents
the algorithm as a single entity (e.g. heft()), with an initialised
workflow object passed as a function parameter. The typical
structure of a SHADOW algorithm function is as follows:

• The main algorithm (the function to which a Workflow
well be passed) is titled using its publication name or title
(e.g. HEFT, PCP, NSGAII* etc.). Following PEP8, this is
(ideally) in lower-case.

• Within the main algorithm function, effort has been made
to keep it structured in a similar way to the pseudo-code as
presented in the respective paper. For example, HEFT has
two main components to the algorithm; Upward Ranking
of tasks in the workflow, and the Insertion Policy allocation
scheme. This is presented in SHADOW as:

def heft(workflow):
"""
Implementation of the original 1999 HEFT algorithm.

:params workflow: The workflow object to schedule
:returns: The solution object from the scheduled workflow
"""
upward_rank(workflow)
workflow.sort_tasks('rank')
insertion_policy(workflow)
return workflow.solution

Complete information of the final schedule is stored in the
HEFTWorkflow.solution object, which provides additional
information, such as task-machine allocation pairs. It is convention



152 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

ca
t0

_m
0

1 7 9

ca
t1

_m
1

4

0 20 40 60 80 100
Makespan (s)

ca
t2

_m
2

0 3 2 5 6 8

Fig. 4: Result of running shadow.heuristic.heft on the graph
shown in Figure 2. Final makespan is 98; gaps between tasks are
indicative of data transfer times between parent and child tasks on
different machines. This is generated using the AllocationPlot
wrapper from the Visualiser.

in SHADOW to have the algorithm return the Solution object
attached to the workflow:
solution = heft(HEFTWorkflow)

In keeping with the generic requirements of DAG-based schedul-
ing algorithms, the base Solution class prioritises makespan over
other objectives; however, this may be amended (or even ignored)
for other approaches. For example, the NSGAII algorithm uses
a sub-class for this purpose, as it generates multiple solutions
before ranking each solution using the crowded distance or non-
dominated sort [SD94]:
class NSGASolution(Solution):
""" A simple class to store each solutions'

related information
"""

def __init__(self, machines):
super().__init__(machines)
self.dom_counter = 0
self.nondom_rank = -1
self.crowding_dist = -1
self.solution_cost = 0

Visualiser

SHADOW provides wrappers to matplotlib that are struc-
tured around the Workflow and Solution classes. The
Visualiser uses the Solution class to retrieve allocation
data, and generates a plot based on that information. For example,
Figure 4 is the result of visualising the HEFTWorkflow example
mentioned previously:

This can be achieved by creating a script using the algorithms
as described above, and then passing the scheduled workflow to
one of the Visualiser classes:
from shadow.visualiser.visualiser import AllocationPlot

sample_allocation = AllocationPlot(
solution=HEFTWorkflow.solution

)

sample_allocation.plot(
save=True,

figname='sample_allocation.pdf'
)

Additional tools

Command-line interface

SHADOW provides a simple command-line interface (CLI) that
allows users to run algorithms on workflows without composing
a separate Python file to do so; this provides more flexibility and
allows users to use a scripting language of their choice to run
experiments and analysis.
python3 shadow.py algorithm heft \
'heft.json' 'sys.json'

It is also possible to use the unittest module from the script to
run through all tests if necessary:
python3 shadow.py test --all

SHADOWGen

SHADOWGen is a utility built into the framework to generate
workflows that are reproducible and interpretable. It is designed
to generate a variety of workflows that have been documented
and characterised in the literature in a way that augments current
techniques, rather than replacing them entirely.

This includes the following:

• Python code that runs the GGen graph generator2, which
produces graphs in a variety of shapes and sizes based
on provided parameters. This was originally designed to
produce task graphs to test the performance of DAG
scheduling algorithms.

• DAX Translator: This takes the commonly used Directed
Acyclic XML (DAX) file format, used to generate graphs
for Pegasus, and translates them into the SHADOW for-
mat. Future work will also interface with the Workflow-
Generator code that is based on the work conduced in
[BCD+08], which generates DAX graphs.

• DALiuGE/EAGLE Translator [WTV+17]: EAGLE logical
graphs must be unrolled into Physical Graph Templates
(PGT) before they are in a DAG that can be scheduled in
SHADOW. SHADOWGen will run the DALiUGE unroll
code, and then convert this PGT into a SHADOW-based
JSON workflow.

Cost generation in SHADOWGen

A majority of work published in workflow scheduling will use
workflows generated using the approach laid out in [BCD+08].
The five workflows described in the paper (Montage, CyberShake,
Epigenomics, SIPHT and LIGO) had their task run-time, memory
and I/O rates profiled, from which they created a WorkflowGen-
erator tool3. This tool uses the distribution sizes for run-time etc.,
without requiring any information on the hardware on which the
workflows are being scheduled. This means that the characterisa-
tion is only accurate for that particular hardware, if those values
are to be used across the board; testing on heterogeneous systems,
for example, is not possible unless the values are to be changed.

This is dealt with in varied ways across the literature. For
example, [RB18] use the distributions from [BCD+08] paper,
and change the units from seconds to MIPS, rather than do-
ing a conversion between the two. Others use the values taken
from distribution and workflow generator, without explaining how



SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 153

Run-time I/O Read I/O Write Peak Memory CPU Util
Job Count Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (%) Std. Dev

mProjectPP 2102 1.73 0.09 2.05 0.07 8.09 0.31 11.81 0.32 86.96 0.03
mDiffFit 6172 0.66 0.56 16.56 0.53 0.64 0.46 5.76 0.67 28.39 0.16

mConcatFit 1 143.26 0.00 1.95 0.00 1.22 0.00 8.13 0.00 53.17 0.00
mBgModel 1 384.49 0.00 1.56 0.00 0.10 0.00 13.64 0.00 99.89 0.00

mBackground 2102 1.72 0.65 8.36 0.34 8.09 0.31 16.19 0.32 8.46 0.10
mImgtbl 17 2.78 1.37 1.55 0.38 0.12 0.03 8.06 0.34 3.48 0.03
mAdd 17 282.37 137.93 1102.57 302.84 775.45 196.44 16.04 1.75 8.48 0.11

mShrink 16 66.10 46.37 411.50 7.09 0.49 0.01 4.62 0.03 2.30 0.03
mJPEG 1 0.64 0.00 25.33 0.00 0.39 0.00 3.96 0.00 77.14 0.00

TABLE 2: Example profile of Montage workflow, as presented in [JCD+13]

their run-time differ between resources [ANE13], [MJDN15];
Malawski et al. generate different workflow instances. using
parameters and task run-time distributions from real workflow
traces, but do not provide these parameters [MJDN15]. Recent
research from [WLZ+19] still uses the workflows identified in
[BCD+08], [JCD+13], but only the structure of the workflows is
assessed, replacing the tasks from the original with other, unrelated
examples.

SHADOWGen differs from the literature by using a
normalised-cost approach, in which the values calculated for the
run-time, memory, and I/O for each tasks is derived from the
normalised size as profiled in [JCD+13] and [BCD+08]. This way,
the costs per-workflow are indicative of the relative length and
complexity of each task, and are more likely to transpose across
different hardware configurations than using the varied approaches
in the literature.

X ′ =
(X×ntask)−Xmin

Xmax−Xmin
(1)

The distribution of values is derived from a table of normalised
values using a variation on min-max feature scaling for each
mean or standard deviation column in Table 2. The formula to
calculate each task’s normalised values is described in Equation 1;
the results of applying this to Table 2 is shown in Table 3:

This approach allows algorithm designers and testers to de-
scribe what units they are interested in (e.g. seconds, MIPS, or
FLOP seconds for run-time, MB or GB for Memory etc.) whilst
still retaining the relative costs of that task within the workflow.
In the example of Table 3, it is clear that mAdd and mBackground
are still the longest running and I/O intensive tasks, making the
units less of a concern.

Alternatives to SHADOW

It should be noted that existing work already addresses testing
workflow scheduling algorithms in real-world environments; tools
like SimGrid [CLQ], BatSim [DMPR17], GridSim [BM02], and
its extensions, CloudSim [CRB+11] and WorkflowSim [CD12],
all feature strongly in the literature. These are excellent resources
for determining the effectiveness of the implementations at the ap-
plication level; however, they do not provide a standardised reposi-
tory of existing algorithms, or a template workflow model that can
be used to ensure consistency across performance testing. Current
implementations of workflow scheduling algorithms may be found
in a number of different environments; for example, HEFT and
dynamic-HEFT implementations exist in WorkflowSim4 , but one
must traverse large repositories in order to reach them. There
are also a number of implementations that are present on open-
source repositories such as GitHub, but these are not always

official releases from papers, and it is difficult to keep track of
multiple implementations to ensure quality and consistency. The
algorithms that form the algorithms module in SHADOW are
open and continually updated, and share a consistent workflow
model. Kwok and Ahmed [KA99a] provide a comprehensive
overview of the metrics and foundations of what is required
when benchmarking DAG-scheduling algorithms, Maurya et al.
maurya2018‘ extend this work and describe key features of a
potential framework for scheduling algorithms; SHADOW takes
inspiration from, and extends, both approaches.

Conclusion

SHADOW is a development framework that addresses the absence
of a repository of workflow scheduling algorithms, which is
important for benchmarking and reproducibility [MT18]. This
repository continues to be updated, providing a resource for
future developers. SHADOWGen extends on existing research
from both the task- and workflow-scheduling communities in
graph generation by using existing techniques and wrapping them
into a simple and flexible utility. The adoption of a JSON data
format compliments the move towards JSON as a standardised
way of representing workflows, as demonstrated by the Common
Workflow Language [CCH+16] and WorkflowHub5.

Future work

Moving forward, heuristics and metaheuristics will continue to be
added to the SHADOW algorithms module to facilitate broader
benchmarking and to provide a living repository of workflow
scheduling algorithms. Further investigation into workflow vi-
sualisation techniques will also be conducted. There are plans
to develop a tool that uses the specifications in hpconfig6, a
Python class-based of different hardware (e.g. class XeonPhi
) and High Performance Computing facilities (e.g class
PawseyGalaxy). The motivation behind hpconfig is that
classes can be quickly unwrapped into a large cluster or system,
without having large JSON files in the repository or on disk;
they also improve readability, as specification data is represented
clearly as class attributes.

1. https://github.com/pegasus-isi/montage-workflow-v2
2. https://github.com/WorkflowSim/WorkflowSim-1.0/tree/master/sources/

org/workflowsim/planning
3. https://github.com/perarnau/ggen
4. https://github.com/pegasus-isi/WorkflowGenerator
5. github.com/myxie/hpconfig
6. https://workflowhub.org/simulator.html

https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/WorkflowSim/WorkflowSim-1.0/tree/master/sources/org/workflowsim/planning
https://github.com/WorkflowSim/WorkflowSim-1.0/tree/master/sources/org/workflowsim/planning
https://github.com/perarnau/ggen
https://github.com/pegasus-isi/WorkflowGenerator
https://workflowhub.org/simulator.html


154 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Run-time I/O Read I/O Write Peak Memory CPU Util
job Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (%) Std. Dev

mProject PP 9.47 0.49 11.22 0.38 44.30 1.70 64.66 1.75 476.20 0.16
mDiffFit 10.61 9.00 266.27 8.52 10.29 7.40 92.61 10.77 456.48 2.57

mConcatFit 0.37 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.00
mBgModel 1.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.25 0.00

mBackground 9.42 3.56 45.78 1.86 44.30 1.70 88.65 1.75 46.32 0.55
mImgtbl 0.12 0.06 0.06 0.02 0.01 0.00 0.35 0.02 0.15 0.00
mAdd 12.50 6.11 48.83 13.41 34.34 8.70 0.70 0.08 0.37 0.00

mShrink 2.75 1.93 17.15 0.30 0.02 0.00 0.18 0.00 0.09 0.00
mJPEG 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.19 0.00

TABLE 3: Updated relative cost values using the min-max feature scaling method described in Equation 1.

REFERENCES

[ALRP16] Ehab Nabiel Alkhanak, Sai Peck Lee, Reza Rezaei, and
Reza Meimandi Parizi. Cost optimization approaches for scien-
tific workflow scheduling in cloud and grid computing: A review,
classifications, and open issues. Journal of Systems and Software,
113:1–26, March 2016. doi:10.1016/j.jss.2015.11.
023.

[ANE10] S. Abrishami, M. Naghibzadeh, and D. Epema. Cost-driven
scheduling of grid workflows using Partial Critical Paths. In 2010
11th IEEE/ACM International Conference on Grid Computing,
pages 81–88, October 2010. doi:10.1109/GRID.2010.
5697955.

[ANE13] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H. J.
Epema. Deadline-constrained workflow scheduling algorithms
for Infrastructure as a Service Clouds. Future Generation
Computer Systems, 29(1):158–169, January 2013. doi:10.
1016/j.future.2012.05.004.

[BBL+16] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.
A Constraint Programming Scheduler for Heterogeneous High-
Performance Computing Machines. IEEE Transactions on Par-
allel and Distributed Systems, 27(10):2781–2794, October 2016.
doi:10.1109/TPDS.2016.2516997.

[BCD+08] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang
Mehta, Mei-Hui Su, and Karan Vahi. Characterization of sci-
entific workflows. In 2008 Third Workshop on Workflows in
Support of Large-Scale Science, pages 1–10, November 2008.
doi:10.1109/WORKS.2008.4723958.

[BÇRS13] Anne Benoit, Ümit V. Çatalyürek, Yves Robert, and Erik Saule.
A Survey of Pipelined Workflow Scheduling: Models and Al-
gorithms. ACM Comput. Surv., 45(4):50:1–50:36, August 2013.
doi:10.1145/2501654.2501664.

[BM02] Rajkumar Buyya and Manzur Murshed. GridSim: A toolkit for
the modeling and simulation of distributed resource management
and scheduling for Grid computing. Concurrency and Computa-
tion: Practice and Experience, 14(13-15):1175–1220, November
2002. doi:10.1002/cpe.710.

[BM08] Jorge Barbosa and António P. Monteiro. A List Scheduling
Algorithm for Scheduling Multi-user Jobs on Clusters. In José
M. Laginha M. Palma, Patrick R. Amestoy, Michel Daydé, Marta
Mattoso, and João Correia Lopes, editors, High Performance
Computing for Computational Science - VECPAR 2008, volume
5336, pages 123–136. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008. doi:10.1007/978-3-540-92859-1_13.

[Bur] Andrew Marc Burkimsher. Fair, Responsive Scheduling of
Engineering Workflows on Computing Grids. page 238.

[CA93] V. Chaudhary and J. K. Aggarwal. A generalized scheme for
mapping parallel algorithms. IEEE Transactions on Parallel
and Distributed Systems, 4(3):328–346, March 1993. doi:
10.1109/71.210815.

[CCAT14] Tarek Chaari, Sondes Chaabane, Nassima Aissani, and Damien
Trentesaux. Scheduling under uncertainty: Survey and research
directions. In 2014 International Conference on Advanced
Logistics and Transport (ICALT), pages 229–234, May 2014.
doi:10.1109/ICAdLT.2014.6866316.

[CCCR18] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert. Budget-
Aware Scheduling Algorithms for Scientific Workflows with
Stochastic Task Weights on Heterogeneous IaaS Cloud Plat-
forms. In 2018 IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops (IPDPSW), pages 15–26, May
2018. doi:10.1109/IPDPSW.2018.00014.

[CCH+16] Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov,
Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales,
Stian Soiland-Reyes, and Luka Stojanovic. Common Workflow
Language, v1.0. figshare, United States, July 2016. doi:10.
6084/m9.figshare.3115156.v2.

[CD12] Weiwei Chen and Ewa Deelman. WorkflowSim: A toolkit for
simulating scientific workflows in distributed environments. In
2012 IEEE 8th International Conference on E-Science, pages
1–8, October 2012. doi:10.1109/eScience.2012.
6404430.

[CHI14] Tom Crick, Benjamin A. Hall, and Samin Ishtiaq. "Can
I Implement Your Algorithm?": A Model for Reproducible
Research Software. arXiv:1407.5981 [cs], September 2014.
arXiv:1407.5981.

[CK88] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Transac-
tions on Software Engineering, 14(2):141–154, February 1988.
doi:10.1109/32.4634.

[CLQ] Henri Casanova, Arnaud Legrand, and Martin Quinson. Sim-
Grid: A Generic Framework for Large-Scale Distributed Experi-
ments. page 7.

[CRB+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César
A. F. De Rose, and Rajkumar Buyya. CloudSim: A toolkit
for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1):23–50, January 2011. doi:
10.1002/spe.995.

[DFP12] J. J. Durillo, H. M. Fard, and R. Prodan. MOHEFT: A multi-
objective list-based method for workflow scheduling. In 4th
IEEE International Conference on Cloud Computing Technol-
ogy and Science Proceedings, pages 185–192, December 2012.
doi:10.1109/CloudCom.2012.6427573.

[DMPR17] Pierre-François Dutot, Michael Mercier, Millian Poquet, and
Olivier Richard. Batsim: A Realistic Language-Independent
Resources and Jobs Management Systems Simulator. In Narayan
Desai and Walfredo Cirne, editors, Job Scheduling Strategies
for Parallel Processing, volume 10353, pages 178–197. Springer
International Publishing, Cham, 2017. doi:10.1007/978-
3-319-61756-5_10.

[DRFG+12] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André
Gardner, Marc Parizeau, and Christian Gagné. DEAP: A python
framework for evolutionary algorithms. In Proceedings of the
Fourteenth International Conference on Genetic and Evolution-
ary Computation Conference Companion - GECCO Companion
’12, page 85, Philadelphia, Pennsylvania, USA, 2012. ACM
Press. doi:10.1145/2330784.2330799.

[DVJ+15] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott
Callaghan, Philip J. Maechling, Rajiv Mayani, Weiwei Chen,
Rafael Ferreira da Silva, Miron Livny, and Kent Wenger. Pe-
gasus, a workflow management system for science automation.
Future Generation Computer Systems, 46:17–35, May 2015.
doi:10.1016/j.future.2014.10.008.

[HDRD98] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester.
Resource-constrained project scheduling: A survey of recent de-
velopments. Computers & Operations Research, 25(4):279–302,
April 1998. doi:10.1016/S0305-0548(97)00055-5.

[JCD+13] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi,
Gaurang Mehta, and Karan Vahi. Characterizing and profiling

http://dx.doi.org/10.1016/j.jss.2015.11.023
http://dx.doi.org/10.1016/j.jss.2015.11.023
http://dx.doi.org/10.1109/GRID.2010.5697955
http://dx.doi.org/10.1109/GRID.2010.5697955
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1109/TPDS.2016.2516997
http://dx.doi.org/10.1109/WORKS.2008.4723958
http://dx.doi.org/10.1145/2501654.2501664
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1007/978-3-540-92859-1_13
http://dx.doi.org/10.1109/71.210815
http://dx.doi.org/10.1109/71.210815
http://dx.doi.org/10.1109/ICAdLT.2014.6866316
http://dx.doi.org/10.1109/IPDPSW.2018.00014
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1109/eScience.2012.6404430
http://dx.doi.org/10.1109/eScience.2012.6404430
http://arxiv.org/abs/1407.5981
http://dx.doi.org/10.1109/32.4634
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1109/CloudCom.2012.6427573
http://dx.doi.org/10.1007/978-3-319-61756-5_10
http://dx.doi.org/10.1007/978-3-319-61756-5_10
http://dx.doi.org/10.1145/2330784.2330799
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1016/S0305-0548(97)00055-5


SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 155

scientific workflows. Future Generation Computer Systems,
29(3):682–692, March 2013. doi:10.1016/j.future.
2012.08.015.

[Joh] Steven G. Johnson. The NLopt nonlinear-optimization package,.
[KA99a] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and Com-

parison of the Task Graph Scheduling Algorithms. Journal of
Parallel and Distributed Computing, 59(3):381–422, December
1999. doi:10.1006/jpdc.1999.1578.

[KA99b] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Al-
gorithms for Allocating Directed Task Graphs to Multiproces-
sors. ACM Comput. Surv., 31(4):406–471, December 1999.
doi:10.1145/344588.344618.

[MJDN15] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek
Nabrzyski. Algorithms for cost- and deadline-constrained pro-
visioning for scientific workflow ensembles in IaaS clouds.
Future Generation Computer Systems, 48:1–18, July 2015.
doi:10.1016/j.future.2015.01.004.

[MT18] Ashish Kumar Maurya and Anil Kumar Tripathi. On benchmark-
ing task scheduling algorithms for heterogeneous computing
systems. The Journal of Supercomputing, 74(7):3039–3070, July
2018. doi:10.1007/s11227-018-2355-0.

[RB16] Maria Alejandra Rodriguez and Rajkumar Buyya. A taxon-
omy and survey on scheduling algorithms for scientific work-
flows in IaaS cloud computing environments. Concurrency
and Computation: Practice and Experience, 29(8):e4041, 2016.
doi:10.1002/cpe.4041.

[RB18] Maria A. Rodriguez and Rajkumar Buyya. Scheduling dy-
namic workloads in multi-tenant scientific workflow as a service
platforms. Future Generation Computer Systems, 79:739–750,
February 2018. doi:10.1016/j.future.2017.05.009.

[SD94] N. Srinivas and Kalyanmoy Deb. Muiltiobjective Optimization
Using Nondominated Sorting in Genetic Algorithms. Evol.
Comput., 2(3):221–248, September 1994. doi:10.1162/
evco.1994.2.3.221.

[THW02] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-
effective and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274, March 2002. doi:10.1109/71.
993206.

[Ull75] J. D. Ullman. NP-complete Scheduling Problems. J. Comput.
Syst. Sci., 10(3):384–393, June 1975. doi:10.1016/S0022-
0000(75)80008-0.

[WLZ+19] Yuandou Wang, Hang Liu, Wanbo Zheng, Yunni Xia, Yawen Li,
Peng Chen, Kunyin Guo, and Hong Xie. Multi-Objective Work-
flow Scheduling With Deep-Q-Network-Based Multi-Agent Re-
inforcement Learning. IEEE Access, 7:39974–39982, 2019.
doi:10.1109/ACCESS.2019.2902846.

[WTV+17] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B. Lao,
R. Wang, T. An, M. Boulton, I. Cooper, R. Dodson, M. Dolensky,
Y. Mei, and F. Wang. DALiuGE: A graph execution framework
for harnessing the astronomical data deluge. Astronomy and
Computing, 20:1–15, July 2017. doi:10.1016/j.ascom.
2017.03.007.

[WWT15] Fuhui Wu, Qingbo Wu, and Yusong Tan. Workflow schedul-
ing in cloud: A survey. The Journal of Supercomputing,
71(9):3373–3418, September 2015. doi:10.1007/s11227-
015-1438-4.

[YB06] Jia Yu and Rajkumar Buyya. Scheduling Sci-
entific Workflow Applications with Deadline and
Budget Constraints Using Genetic Algorithms.
https://www.hindawi.com/journals/sp/2006/271608/abs/, 2006.
doi:10.1155/2006/271608.

http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1007/s11227-018-2355-0
http://dx.doi.org/10.1002/cpe.4041
http://dx.doi.org/10.1016/j.future.2017.05.009
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1109/ACCESS.2019.2902846
http://dx.doi.org/10.1016/j.ascom.2017.03.007
http://dx.doi.org/10.1016/j.ascom.2017.03.007
http://dx.doi.org/10.1007/s11227-015-1438-4
http://dx.doi.org/10.1007/s11227-015-1438-4
http://dx.doi.org/10.1155/2006/271608

	Introduction
	Workflow Scheduling

	Design and Core Architecture
	Design

	Architecture
	Models
	Algorithms
	Visualiser

	Additional tools
	Command-line interface
	SHADOWGen

	Cost generation in SHADOWGen
	Alternatives to SHADOW
	Conclusion
	Future work
	References

