
240 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

A Python Pipeline for Rapid Application Development
(RAD)

Scott D. Christensen‡∗, Marvin S. Brown‡, Robert B. Haehnel‡, Joshua Q. Church‡, Amanda Catlett‡, Dallon C.
Schofield‡, Quyen T. Brannon‡, Stacy T. Smith‡

F

Abstract—Rapid Application Development (RAD) is the ability to rapidly pro-
totype an interactive interface through frequent feedback, so that it can be
quickly deployed and delivered to stakeholders and customers. RAD is a critical
capability needed to meet the ever-evolving demands in scientific research and
data science. To further this capability in the Python ecosystem, we have curated
and developed a set of open-source tools, including Panel, Bokeh, and Tethys
Platform. These tools enable prototyping interfaces in a Jupyter Notebook and
facilitate the progression of the interface into a fully-featured, deployable web-
application.

Index Terms—web app, Panel, Tethys, Tethys Platform, Bokeh, Jupyter

Introduction

With the tools for data science continually improving and an al-
most innumerable supply of new data sources, there are seemingly
endless opportunities to create new insights and decision support
systems. Yet, an investment of resources are needed to extract
the value from data using new and improved tools. Well-timed
and impactful proposals are necessary to gain the support and
resources needed from stakeholders and decision makers to pursue
these opportunities. The ability to rapidly prototype capabilities
and new ideas provides a powerful visual tool to communicate
the impact of a proposal. Interactive applications are even more
impactful by engaging the user in the data analysis process.

After a prototype is implemented to communicate ideas and
feasibility of a project, additional success is determined by the
ability to produce the end product on time and within budget.
If the deployable product needs to be completely re-written using
different tools, programing languages, and/or frameworks from the
prototype, then significantly more time and resources are required.
The ability to quickly mature a prototype to production-ready
application using the same tool stack can make the difference in
the success of a project.

Background

At the US Army Engineer Research and Development Center
(ERDC) there are evolving needs to support the missions of the
US Army Corps of Engineers and our partners. The scientific

* Corresponding author: Scott.D.Christensen@usace.army.mil
‡ US Army Engineer Research and Development Center

Copyright © 2022 Scott D. Christensen et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Python ecosystem provides a rich set of tools that can be applied to
various data sources to provide valuable insights. These insitghts
can be integrated into decision support systems that can enhance
the information available when making mission critical decisions.
Yet, while the opportunities are vast, the ability to get the resources
necessary to pursue those opportunities requires effective and
timely communication of the value and feasibility of a proposed
project.

We have found that rapid prototyping is a very impactful way
to concretely show the value that can be obtained from a proposal.
Moreover, it also illustrates with clarity that the project is feasible
and likely to succeed. Many scientific workflows are developed in
Python, and often the prototyping phase is done in a Jupyter Note-
book. The Jupyter environment provides an easy way to quickly
modify code and visualize output. However, the visualizations are
interlaced with the code and thus it does not serve as an ideal way
demonstrate the prototype to stakeholders, that may not be familiar
with Jupyter Notebooks or code. The Jupyter Dashboard project
was addressing this issue before support for it was dropped in
2017. To address this technical gap, we worked with the Holoviz
team to develop the Panel library. [Panel] Panel is a high-level
Python library for developing apps and dashboards. It enables
building layouts with interactive widgets in a Jupyter Notebook
environment, but can then easily transition to serving the same
code on a standalone secure webserver. This capability enabled
us to rapidly prototype workflows and dashboards that could be
directly accessed by potential sponsors.

Panel makes prototyping and deploying simple. It can also
be iterative. As new features are developed we can continue to
work in the Jupyter Notebook environment and then seamlessly
transition the new code to a deployed application. Since appli-
cations continue to mature they often require production-level
features. Panel apps are deployed via Bokeh, and the Bokeh
framework lacks some aspects that are needed in some production
applications (e.g. a user management system for authentication
and permissions, and a database to persist data beyond a session).
Bokeh doesn’t provide either of these aspects natively.

Tethys Platform is a Django-based web framework that is
geared toward making scientific web applications easier to de-
velop by scientists and engineers. [Swain] It provides a Python
Software Development Kit (SDK) that enables web apps to be
created almost purely in Python, while still leaving the flexibility
to add custom HTML, JavaScript, and CSS. Tethys provides
user management and role-based permissions control. It also
enables database persistence and computational job management

mailto:Scott.D.Christensen@usace.army.mil


A PYTHON PIPELINE FOR RAPID APPLICATION DEVELOPMENT (RAD) 241

[Christensen], in addition to many visualization tools. Tethys of-
fers the power of a fully-featured web framework without the need
to be an expert in full-stack web development. However, Tethys
lacks the ease of prototyping in a Jupyter Notebook environment
that is provided by Panel.

To support both the rapid prototyping capability provided
by Panel and the production-level features of Tethys Platform,
we needed a pipeline that could take our Panel-based code
and integrate it into the Tethys Platform framework. Through
collaborations with the Bokeh development team and developers
at Aquaveo, LLC, we were able to create that integration of
Panel (Bokeh) and Tethys. This paper demonstrates the seamless
pipeline that facilitates Rapid Application Development (RAD).
In the next section we describe how the RAD pipeline is used at
the ERDC for a particular use case, but first we will provide some
background on the use case itself.

Use Case

Helios is a computational fluid dynamics (CFD) code for simulat-
ing rotorcraft. It is very computationally demanding and requires
High Performance Computing (HPC) resources to execute any-
thing but the most basic of models. At the ERDC we often face a
need to run parameter sweeps to determine the affects of varying
a particular parameter (or set of parameters). Setting up a Helios
model to run on the HPC is a somewhat involved process that
requires file management and creating a script to submit the job
to the queueing system. When executing a parameter sweep the
process becomes even more cumbersome, and is often avoided.

While tedeous to perform manually, the process of modifying
input files, transferring to the HPC, and generating and submitting
job scripts to the the HPC queueing system can be automated
with Python. Furthermore, it can be made much more accessible,
even to those without extensive knowledge of how Helios works,
through a web-based interface.

Methods

To automate the process of submitting Helios model parameter
sweeps to the HPC via a simple interactive web application
we developed and used the RAD pipeline. Initially three Helios
parameter sweep workflows were identified:

1) Collective Sweep
2) Speed Sweep
3) Ensemble Analysis

The process of submitting each of these workflows to the HPC
was similar. They each involved the same basic steps:

1) Authentication to the HPC
2) Connecting to a specific HPC system
3) Specifying the parameter sweep inputs
4) Submtting the job to the queuing system
5) Monitoring the job as it runs
6) Visualizing the results

In fact, these steps are essentially the same for any job being
submitted to the HPC. To ensure that we were able to resuse
as much code as possible we created PyUIT, a generic, open-
source Python library that enables this workflow. The ability to
authenticate and connect to the DoD HPC systems is enabled
by a service called User Interface Toolkit Plus (UIT+). [PyUIT]
UIT+ provides an OAuth2 authentication service and a RESTful

Fig. 1: Collective Sweep Inputs Stage rendered in a Jupyter Notebook.

Fig. 2: Collective Sweep Inputs Stage rendered as a stand-alone
Bokeh app.

API to execute commands on the login nodes of the DoD HPC
systems. The PyUIT library provides a Python wrapper for the
UIT+ REST API. Additionally, it provides Panel-based interfaces
for each of the workflow steps listed above. Panel refers to a
workflow comprised of a sequence of steps as a pipeline, and
each step in the pipeline is called a stage. Thus, PyUIT provides a
template stage class for each step in the basisc HPC workflow.

The PyUIT pipeline stages were customized to create inter-
faces for each of the three Helios workflows. Other than the
inputs stage, the rest of the stages are the same for each of the
workflows (See figures 1, 2, and 3). The inputs stage allows the
user to select a Helios input file and then provides inputs to allow
the user to specify the values for the parameter(s) that will be
varied in the sweep. Each of these stages was first created in a
Jupyter Notebook. We were then able to deploy each workflow as
a standalone Bokeh application. Finally we integrated the Panel-
based app into Tethys to leverage the compute job management
system and single-sign-on authentication.

As additional features are required, we are able to leverage



242 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Collective Sweep Inputs Stage rendered in the Helios Tethys
App.

the same pipeline: first developing the capability in a Jupyter
Notebook, then testing with a Bokeh-served app, and finally, a
full integration into Tethys.

Results

By integrating the Panel workflows into the Helios Tethys app
we can take advantage of Tethys Platform features, such as the
jobs table, which persists metadata about computational jobs in a
database.

Fig. 4: Helios Tethys App home page showing a table of previously
submitted Helios simulations.

Each of the three workflows can be launched from the home
page of the Helios Tethys app as shown in Figure 5. Although
the home page was created in the Tethys framework, once the
workflows are launched the same Panel code that was previously
developed is called to display the workflow (refer to figures 1, 2,
and 3).

From the Tethys Jobs Table different actions are available for
each job including viewing results once the job has completed (see
6).

View job results is much more natural in the Tethys app. Helios
jobs often take multiple days to complete. By embedding the
Helios Panel workflows in Tethys users can leave the web app
(ending their session), and then come back later and pull up the

Fig. 5: The Helios Tethys App is the framework for launching each of
the three Panel-based Helios parameter sweep workflows.

Fig. 6: Actions associated with a job. The available actions depend
on the job’s status.

results to view. The pages that display the results are built with
Panel, but Tethys enables them to be populated with information
about the job from the database. Figure 7 shows the Tracking Data
tab of the results viewer page. The plot is a dynamic Bokeh plot
that enables the user to select the data to plot on each axis. This
particular plot is showing the variation of the coeffient of drag of
the fuselage body over the simulation time.

Figure 8 shows what is called CoViz data, or data that is
extracted from the solution as the model is running. This image is
showing an isosurface colored by density.

Conclusion

The Helios Tethys App has demonstrated the value of the RAD pi-
pline, which enables both rapid prototyping and rapid progression
to production. This enables researchers to quickly communicate
and prove ideas and deliver successful products on time. In
addition to the Helios Tethys App, RAD has been instrumental
for the mission success of various projects at the ERDC.

REFERENCES

[Christensen] Christensen, S. D., Swain, N. R., Jones, N. L., Nelson, E.
J., Snow, A. D., & Dolder, H. G. (2017). A Comprehensive
Python Toolkit for Accessing High-Throughput Computing to
Support Large Hydrologic Modeling Tasks. JAWRA Journal
of the American Water Resources Association, 53(2), 333-343.
https://doi.org/10.1111/1752-1688.12455

https://doi.org/10.1111/1752-1688.12455


A PYTHON PIPELINE FOR RAPID APPLICATION DEVELOPMENT (RAD) 243

Fig. 7: Timeseries output associated with a Helios Speed Sweep run.

Fig. 8: Isosurface visualization from a Helios Speed Sweep run.

[Panel] https://www.panel.org
[PyUIT] https://github.com/erdc/pyuit
[Swain] Swain, N. R., Christensen, S. D., Snow, A. D., Dolder, H.,

Espinoza-Dávalos, G., Goharian, E., Jones, N. L., Ames, D.P.,
& Burian, S. J. (2016). A new open source platform for
lowering the barrier for environmental web app development.
Environmental Modelling & Software, 85, 11-26. https://doi.
org/10.1016/j.envsoft.2016.08.003

https://www.panel.org
https://github.com/erdc/pyuit
https://doi.org/10.1016/j.envsoft.2016.08.003
https://doi.org/10.1016/j.envsoft.2016.08.003

	Introduction
	Background
	Use Case

	Methods
	Results
	Conclusion
	References

