
32 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Biomolecular Crystallographic Computing with Jupyter

Blaine H. M. Mooers‡§¶∥∗

✦

Abstract—The ease of use of Jupyter notebooks has helped biologists enter
scientific computing, especially in protein crystallography, where a collaborative
community develops extensive libraries, user-friendly GUIs, and Python APIs.
The APIs allow users to use the libraries in Jupyter. To further advance this
use of Jupyter, we developed a collection of code fragments that use the vast
Computational Crystallography Toolbox (cctbx) library for novel analyses. We
made versions of this library for use in JupyterLab and Colab. We also made
versions of the snippet library for the text editors VS Code, Vim, and Emacs
that support editing live code cells in Jupyter notebooks via the GhostText web
browser extension. Readers of this paper may be inspired to adapt this latter
capability to their domains of science.

Index Terms—literate programming, reproducible research, scientific rigor,
electronic notebooks, JupyterLab, Jupyter notebooks, Colab notebook, OnDe-
mand notebooks, computational structural biology, computational crystallogra-
phy, biomolecular crystallography, protein crystallography, biomolecular struc-
ture, computational molecular biophysics, biomedical research, data visualiza-
tion, scientific communication, GhostText, text editors, snippet libraries, SciPy
software stack, interactive software development

Introduction

Biomolecular crystallography involves the determination of the
molecular structure of proteins and nucleic acids and their com-
plexes by using X-rays, neutrons, or electrons. The molecular
structure determines the protein’s biological function, so the exper-
imentally determined structures provide valuable insights vital for
understanding biology and developing new therapies in medicine.
The recent resolution revolution in cryo-electron microscopy
(cryo-EM) [1] and the breakthrough in protein structure prediction
with neural networks now provide complementary sources of
insights into biomolecular structure [2], [3], [4]. However, the
crystallographic approach continues to play a vital role because
it still supplies the most precise structures, [5].

About half of the crystal structures of protein molecules are
refined with the program Phenix [6]. This program has a user-
friendly GUI that supports standard analyses [7]. Phenix runs
on top of cctbx [8]. The Computational Crystallography Toolbox

* Corresponding author: blaine-mooers@ouhsc.edu
‡ Department of Biochemistry and Molecular Biology, University of Oklahoma
Health Sciences Center, Oklahoma City, OK 97104
§ Stephenson Cancer Center, University of Oklahoma Health Sciences Center,
Oklahoma City, OK 97104
¶ Laboratory of Biomolecular Structure and Function, University of Oklahoma
Health Sciences Center, Oklahoma City, OK 97104
|| Biomolecular Structure Core, Oklahoma COBRE in Structural Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK 97104

Copyright © 2023 Blaine H. M. Mooers. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

(cctbx) provides a transparent API, so most users of Phenix are
barely aware that it relies on cctbx. However, nonstandard analyses
are not available in Phenix and require accessing the functions in
the cctbx library (e.g., [9]). The backend cctbx was written in
C++ in the early 2000s for speed and to provide customized data
structures for crystallography. Likewise, the GUI-driven Olex2
small molecule refinement program uses cctbx for many of its
crystallographic computations [10].

To ease the use of cctbx by general users, the C++ interfaces,
classes, and functions of cctbx are exposed to Python via the
Boost.Python Library [11]. Recently, dependency management in
cctbx was reworked by leveraging the Anaconda infrastructure to
ease its installation. In spite of these conveniences, the widespread
adoption of Python by field practitioners over the past decade,
and the presence of several on-line tutorials about cctbx, many
structural biologists still find cctbx hard to master and adoption has
remained low. This difficulty drove several groups to develop soft-
ware libraries (e.g. reciprocalspaceship [12], GEMMI [13]) that
reinvent some features of cctbx while utilizing the more familiar
pandas DataFrames in place of cctbx’s customized data structures.
In contrast to these new competitors, cctbx has more extensive
coverage of advanced crystallographic data analysis tasks and is
more thoroughly tested as the result running underneath Phenix for
almost two decades. cctbx remains the ultimate library for building
advanced crystallographic data analyses tools, so the field would
benefit if cctbx were easier to use.

To foster adoption of cctbx, we present a collection of cctbx
code snippets to be used in Jupyter notebooks [14]. Jupyter
provides an excellent platform for exploring the cctbx library
and prototyping new analysis tools. The Python API of cctbx
simplifies running cctbx in Jupyter via a kernel specific for its
conda environment. We formatted our snippet library for several
snippet extensions for the Classic Notebook and for Jupyter Lab.
To overcome the absence of tab triggers in the Jupyter ecosystem
to invoke the insertion of snippets, we also made the snippets
available for leading text editors. The user can use the GhostText
browser plugin to edit the contents of a Jupyter cell in a full-
powered external editor. GhostText enables the user to experience
the joy of interactive computing in Jupyter while working from the
comfort of their favorite text editor. These multiple modalities of
using cctbx in Jupyter that we describe below may inspire workers
in other domains to build similar snippet libraries for domain-
specific software.

Results

We provide a survey of the snippet library that we have customized
for several snippet extensions in JupyterLab and Google Colab.

mailto:blaine-mooers@ouhsc.edu

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 33

jupyterlabcctbxsnips

We developed the jupyterlabcctbxsnips library of code
templates for the JupyterLab extension jupyterlab-snippets
(https://github.com/QuantStack/jupyterlab-snippets).
Access to the code templates or snippets requires the editing of
the Jupyter notebook from inside of JupyterLab, a browser-based
IDE for displaying, editing, and running Jupyter notebooks.

JupyterLab supports more comprehensive workflows for aca-
demic work than what is possible in the Classic Jupyter Notebook
application. For example, it enables the writing or editing of a
document in a pane next to the Jupyter notebook. This variant is
useful for writing documentation, protocols, tutorials, blog posts,
and manuscripts next to the notebook that is being described. The
document can be a plain text, html, markdown, LaTeX, or even
an org-mode file if one activates the text area with GhostText
while running one of several advanced text editors (see the section
below about GhostText). The editing of a document next to
the related Jupyter notebook supports reproducible research and
reduces costly context switching.

We made a variant of the library, jupyterlabcctbxsnipsplus
(https://github.com/MooersLab/jupyterlabcctbxsnipsplus),
that has a copy of the code in a block comment (Fig. 1). In the
commented code, suggested sites for editing are indicated by tab
stops that are marked with dollar signs.

Fig. 1: A snippet from the jupyterlabcctbxsnipsplus library with
duplicate code in a comment block. The dollar sign marks the start of
a tab stop. The comment block guides the editing of the active code.

The figure below (Fig. 2) shows part of the cascading menus
for the jupyerlabcctbxsnipsplus library after it has been installed
successfully. The submenus correspond to the names of subfolders
in the cctbx+ folder in the snippets folder, which was manually
created inside of the Jupyter folder in the local library folder (i.e.,
~/Library/Jupyter/multimenus_snippets/cctbx+
on macOS).

Each final menu item is linked to a Python snippet file. The
selection of a snippet file by clicking on it with the left-mouse
button inserts its content into a new cell below the current cell.

In contrast, the mtzOjbectSummary.py snippet was selected
from the cctbx submenu and lacks the comment block. This code
was inserted in the current notebook cell (Fig. 3). The code in this
cell was be executed by entering Shift-Enter.

The mtzObjectSummary.py snippet prints a summary of an
mtz file. A mtz file is a binary file that contains diffraction
data in a highly customized data structure. The data in this mtz
file has columns of I(+) and I(-). These are the Bijvoet pairs
of diffraction intensities. These pairs are related by symmetry
and should have equal intensity values within experimental error.
The differences in intensities are a measure of the presence of

Fig. 2: The cascading menus for the jupyterlabcctbxsnipsplus library
for the jupyterlab-snippets version 0.4.1 extension in JupyterLab
version 3.5.2.

Fig. 3: The code and output from the mtzObjectSummary.py snippet
in JupyterLab.

anomalous scattering. Anomalous scattering can be measured for
elements like sulfur and phosphorus that are part of the native
protein and nucleic acid structures and heavier elements like
metals that are naturally occurring as part of metalloproteins or
that were purposefully introduced by soaking crystals or that were
incorporated covalently into the protein (e.g., selenomethionine)
or nucleic acid (e.g., 5-bromouracil) during its synthesis.

The anomalous differences can be used to determine the
positions of the anomalous scattering atoms. Once the positions
of the anomalous scatterers are known, it is possible to work
out the positions of the lighter atoms in the protein. We use
these data to make the I(+) vs I(-) scatter plot below (Fig.
4). The mtz file contains data for SirA-like protein (DSY4693)
from Desultobacterium hafniense, Northeast Structural Genomics
Consortium Target DhR2A. The diffraction data were retrieved

34 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

from the Protein Data Bank, a very early open science project that
recently celebrated its 50th anniversary [15].

The I(+) vs I(-) plot was made after reading the X-ray data into
a cctbx Miller array, a data structure designed for handling X-ray
data in cctbx. The I(+) and I(-) were eventually read into separate
lists. We plot the two lists against each other in a scatter plot using
matplotlib [16]. There is no scatter from the x = y line in this plot
if there is no anomalous signal. The larger the anomalous signal,
the greater the scatter. The departure from this line is expected to
be greater for intensities of large magnitude.

Fig. 4: The code snippet to generate a Ip versus Im plot and the
corresponding plot generated by the code.

Plots of this nature are useful for detecting very weak
anomalous signals from native anomalous scatters like sulfur and

phosphorus. The collection of the anomalous signal from native
scatters enables structure determination without having to spend
the extra time and money to introduce heavier atoms that are not
native to the protein. The measurement of the very weak signal
from native anomalous scatterers is still at the edge of what is
technically possible. It has rarely been achieved with in-house
instruments. Success generally requires the faster multi-million
dollar detectors at beamlines, tunable wavelengths of synchrotron
radiation available at one of 30+ laboratories around the world,
and cryogenic temperatures (-173 C) maintained by a cryostream
of nitrogen gas that slows radiation damage long enough to collect
complete datasets.

However, recently, several groups have completed successful
native phasing experiments at room temperature by collecting
data from large numbers of crystals and merging the data [17],
[18]. The advantages of room temperature data collection include
avoidance of conformational changes in the protein induced by su-
percooling the crystal. The room temperature data were collected
from each crystal briefly before radiation damage degraded the
diffraction too much. This is a remarkable achievement because
the merging of diffraction data from many crystals in various
orientations enhances the experimental error; this error can mask
the weak anomalous signal that is being sought.

The plot (Fig. 4) was adapted from an example in the re-
ciprocalspaceship project from the Hekstra Lab [12]. This new
project takes a more Pythonic approach than cctbx by utilizing
many of the packages in the SciPy stack that did not exist when
cctbx was initiated. For example, it uses the pandas package
to manage diffraction data whereas cctbx uses a custom C++
data structure for diffraction data that predates pandas by almost
a decade. The utilization of pandas enables easier integration
with the other components of the SciPy software stack including
machine learning packages.

The cctbx is most easily installed into its own
environment by using Anaconda with the command conda
create -n my_env -c conda-forge cctbx-base
python=3.11.

The atomic coordinates of the biomolecular structures are
the other major type of data that are intimately associated with
diffraction data. The fixed file format of Protein Data Bank
coordinate files with the file extension of pdb originated in the
1970s with the birth of the Protein Data Bank, but very large
biological macromolecules have been determined over the past
two decades that exceeded the limits on the number of atoms
permitted in one file. To address this and other shortcomings of the
PDB file format, the PDBx/mmCIF (Protein Data Bank Exchange
macromolecular Crystallographic Information Framework) file
format recently became the new data standard [19]. The cctbx
has been adapted to read mmCIF files.

taggedcctbxsnips

The Elyra-snippets extension for Jupyter
Lab supports the use of tagged snippets
(https://elyra.readthedocs.io/en/latest/user_guide/code-snippets.html).
Each snippet is in a separate JavaScript file with the json file
extension 5.

Each snippet file has a set of metadata. These data
include a list of tags. The tags are used to find the snippet
while editing a Jupyter notebook in JupyterLab. We made a
version of the cctbxsnips library for the Elyra-snippets extension
(https://github.com/MooersLab/taggedcctbxsnips).

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 35

Fig. 5: Snapshot of a list of snippets in JupyterLab supported by the
Elyra-snippet extension. The 80 cctbx snippets have been narrowed
to seven snippets by entering the mtz tag. Additional tags can be
entered to further narrow the list of candidate snippets.

To add a new snippet, click on the + in the upper right of the
Code Snippets icon (Fig. 6). This will open new GUI (see below)
for creating a snippet. The value of Name should be one word or
a compound word. The value of Description describes in one or
more sentences what the snippet does. The values of the Tags field
are used to narrow the listing of snippets in the menu. The value
of the Source is the programming language; the value is Python
in this example. The Code can be entered by selecting code in a
notebook cell or copying and pasting from a script file.

Fig. 6: The GUI to create a new snippet via the Elyra-snippet
extension for JupyterLab.

colabcctbxsnips

The Google Colab notebook enables the running of software
on Google’s servers in a computational notebook that resembles
the Jupyter notebook. Colab notebooks are useful for workshop

settings where there is no time for installing software on a
heterogeneous mix of operating systems when the attendees are
following the presentation by using their own computers.

Colab notebooks do no support external extensions, but they
have built-in support for snippets. A particular snippet library
is stored in a dedicated Google Colab notebook rather than in
individual files. The notebook of snippets is stored on the user’s
Google Drive account. While the software installed in a Colab
session is lost upon logging out, the snippets remain available on
the next login.

After the snippet notebook is installed, the user opens a new
notebook to use the snippets. From that new notebook, the list of
snippets will be exposed by clicking on the <> icon in the left
margin of the notebook. Click on the Insert button in the upper
righthand corner of the snippet to copy the snippet to the current
code cell in the notebook.

We developed the colabcctbxsnips li-
brary and stored it in a Colab Notebook
(https://github.com/MooersLab/colabcctbxsnips).
Two snippets have the code for installing mamba and then cctbx
(Fig. 7). These code snippets have to be run before cctbx can be
accessed. The two code fragments require less than two minutes
to install the software.

Fig. 7: Snippets from the cctbx library for installing mamba and then
cctbx on Google Colab.

The Colab snippet system also lacks support for tab triggers
and tab stops. We address this problem by supplying a copy of the
snippet with the sites of the tab stops marked up like a yasnippet
snippet. Unlike the case of the jupyterlabcctbxsnipsplus library,
the marked up copy of the code snippet is displayed only in the
preview of the snippet and is not inserted into the code cell along
with the active code (Fig. 8).

Snippets for OnDemand Notebooks at HPCs

We have also worked out how to deploy this snippet library in
OnDemand notebooks at High-Performance Computing centers.
These notebooks resemble Colab notebooks in that JupyterLab
extensions cannot be installed. However, they do not have any
alternate support for accessing snippets from menus in the GUI.
Instead, we had to create IPython magics for each snippet that load

36 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 8: Preview of a Colab code snippet. The preview contains two
copies of the code. The bottom copy of the code will be inserted into
the current code cell. The top copy of the code serves as a guide to
sites to be edited. The dollar sign marks the start of a tab stop where
the enclosed placeholder value may need to be changed.

the snippet’s code into the code cell. This system would also work
on Colab and may be preferred by expert users because the snippet
names used to invoke the Ipython magic are under autocompletion.
We offer a variant library that inserts a commented out copy of the
code that has been annotated with the sites that are to be edited by
the user.

cctbxsnips for leading text editors

To support the use of the cctbx code snippets in text editors, we
made versions of the library for Emacs, Vim, Neovim, Visual
Studio Code, Atom, and Sublime Text3. We selected these text
editors because they are the most advanced and most popular
with software developers and because they are supported by the
GhostText project described below .

For Emacs, we developed a library
for use with the yasnippets package
(https://github.com/MooersLab/cctbxsnips-Emacs).
Emacs supports repel-driven software development, which
resembles the interactive software development experience in
Jupyter notebooks. Emacs also supports the use of literate
programming in several kinds of documents, including the
very popular org-mode document [20]. Code blocks in org
documents can be given a jupyter option with a Jupyter
kernel name that enables running a specific Jupyter kernel
including one mapped to a conda environment that has the
cctbx package installed. A similar example using the molecular
graphics package PyMOL is demonstrated in this short video
(https://www.youtube.com/watch?v=ZTocGPS-Uqk&t=2s).

Using GhostText to edit Jupyter cells from a favorite text editor

By adding the GhostText extension
(https://ghosttext.fregante.com/) to the web
browser and a server to one of several leading text editors, it is
possible to send the text from the browser through a WebSocket
to a server in the text editor. Thus, it is possible to edit the
contents of a computational notebook cell from inside a text
editor. Changes made in the text editor instantly appear in the
notebook and vice versa. By applying the power of a text editor
to computational notebooks, experienced developers can continue
to use familiar editing commands and tools in their preferred text
editor.

GhostText is a Javascript program developed by Federico
Brigante, a prolific JavaScript developer. Versions of the extension
are available for the Google Chrome, Firefox, Edge, Opera, and

Safari. The extension for the Google Chrome browser works in
the Brave browser, and the extension for Firefox works in the
Waterfox and Icecat browsers. GhostText was developed initially
for Sublime Text 3, so Sublime Text 3 can serve as a positive
control even if another editor in the list is the favored editor.
(Sublime Text 3 is available for most platforms for a free trial
period of infinite length.)

The snippet extensions for the Classic Jupyter Notebook and
JupyterLab lack support for tab triggers to insert snippets as you
type and tab stops inside the snippet to advance to sites in the
snippet that may need to be edited. These two features are standard
in the software that supports the use of snippet libraries in most
text editors.

As a quick reminder, tab triggers in text editors insert chunks
of computer code after the user enters the tab trigger name and
hits the TAB key (Fig. 9). The tab trigger name can be as short
as several letters. Many text editors and IDEs have pop-up menus
that aid the selection of the correct tab trigger. Tab stops are sites
within the code snippet where the cursor advances to after entering
TAB again. These sites often have placeholder values that can
be either edited or accepted by entering TAB again. Sites with
identical placeholder values can be mirrored so that a change in
value at one site is propagated to the other tab stops with the
same placeholder value. The absence of tab stops can increase
the number of bugs introduced by the developer by overlooking
parameter values in the code snippet that need to be changed to
adapt the snippet to the current program.

Fig. 9: Example of a tab trigger being entered in Sublime Text 3
editor and appearing in a Jupyter Notebook cell. A pop-up menu lists
the available snippets. The list was narrowed to one snippet by the
entry of three letters.

The text editor also needs to be extended with a server
that enables two-way communication with the web page via a
WebSocket. Edits made on the browser side of the WebSocket
are immediately sent to an open page in the Text Editor and vice
versa; however, the text editor’s snippets and other editing tools
only work in the text editor. The connection can be closed from
either side of the WebSocket. It is closed on the web browser side
via an option in GhostTest’s pulldown menu, and it closed on the
text editor side by closing the active buffer.

Here, we describe the setup for Emacs as an example
of configuring a text editor to use GhostText. The
server for Emacs is provided by the atomic-chrome
package that is available in both the Milkypostman’s
Emacs Lisp Package Archive (MELPA) and on GitHub
(https://github.com/alpha22jp/atomic-chrome).
The configuration for atomic-chrome in the Emacs initialization
file (e.g., init.el) is listed below (Fig. 10). The third line in
Code listing 1 sets the default Emacs mode (equivalent to a
programming language scope): We set it to Python for Jupyter
code cells. Atomic-chrome uses text-mode by default. You can
change the default mode to other programming languages that
you may use in Jupyter, like Julia or R. The last three lines specify
the Emacs mode to be used when text is imported from the text

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 37

areas on github.com, Overleaf.com, and 750words.com. Similar
configuration options are available in the other text editors, or you
manually change the language scope for the window with the text
imported from Jupyter.

Fig. 10: Emacs lisp code to configure the atomic-chrome package
for Emacs. This configuration opens Jupyter notebooks in the Python
major mode and the 750words.com webpage in the LaTeX major
mode.

GhostText provides keyboard shortcuts to improve productiv-
ity. These shortcuts keep the developer’s hands on the keyboard
and avoid breaks in context by moving the hand to the mouse. The
shortcut by operating system is as follows: macOS, command-
shift-K; Linux, control-shift-H; and Windows, control-shift-K.

To support the use of GhostText to edit electronic notebooks
containing code from the cctbx library, we have made variants
of a collection of cctbx snippets for Visual Studio Code, Atom,
Sublime Text 3, Vim, NeoVim, and Emacs. For Vim and NeoVim, the
snippets are available for the UltiSnips, Snipmate, and neosnippets
plugins. The snippets are available for download on GitHub
(https://github.com/MooersLab). From our experience,
Sublime Text 3 has the easiest setup while Emacs provides
the highest degree of customization. The cctbx snippet library
was previously only available for use in Jupyter notebooks via
extensions for the Classic Jupyter Notebook application or Jupyter
Lab.

Note that the snippet library cannot be used with the program
nteract (https://nteract.io/). The nteract is an easy-
to-install and use desktop application for editing and running
Jupyter notebooks offline. The ease of installation makes the
nteract application popular with new users of Jupyter notebooks.
Obviously nteract is not browser-based, so it cannot work with
GhostText. nteract has yet to be extended to support the use of
code snippet libraries, but nteract allows the switching of jupyter
kernels between code cells.

While the focus of this report is on Jupyter and Colab
notebooks, the cctbxsnips snippet library can be used to aid the
development of Python scripts in plain text files, which have
the advantage of easier version control. The snippets can also
be used in other kinds of literate programming documents that
operate off-line like org-mode files in Emacs and the Quarto
(http://quarto.org) markdown representation of Jupyter
notebooks. Quarto is available for several leading text editors.
In the later case, you may have to extend the scope of the editing
session in the editor to include Python source code.

Discussion

What is new

We report a set of code template libraries for doing biomolecular
crystallographic computing in Jupyter. These template libraries
only need to be installed once because they persist between logins.

We also include support for Colab notebooks where the snip-
pets also persist between logins but other installed software is lost
upon logging out of a session. The templates include the code for
installing the software required for crystallographic computing.
The installation templates automate as many as seven installation
steps. Once the user runs the installation code at the top of a given
Colab notebook, the user only needs to rerun these blocks of code
upon logging into Colab to be able to reinstall the software during
later sessions. The user can also modify the installation templates
to install the crystallographic software on their local machine and
then run the notebook in Jupyter Classic and JupyterLab. The
template libraries presented here lower an important barrier to the
use of Colab by those interested in crystallographic computing on
the cloud.

We also report the use of GhostText to edit notebook code
cells in Jupyter notebooks and text documents in JupyterLab. This
capability enables a user to use an external text editor to edit code.
The user can thereby take advantage of the support for tab triggers
and tab stops in the external editor. This support can ensure faster
and more accurate writing and editing of new code.

Relation to other work with snippet libraries

This snippet library is among the first that is domain specific. Most
snippet libraries are for programming languages or for hypertext
languages like HTML, markdown, and LaTeX. The average snip-
pet in these libraries also tends to be quite short, and the sizes
of the libraries tend to be small. The audience for these general
purpose libraries are the millions of professional programmers and
web page developers. We reasoned that domain-specific snippet
libraries with long code fragments are a great coding tool that
should be brought to the aid of the tens of thousands of workers
in biological crystallography.

The other area where domain-specific snippets have been
provided is in molecular graphics. A pioneering scripting wizard
provided templates for use in the early molecular graphics pro-
gram RasMol [21]. In addition, the conscript program provided a
converter from RasMol to PyMOL [22]. We also provided snippets
for PyMOL, which has about 100,000 users, for use in text editors
[23] and Jupyter notebooks [24]. The former supports tab triggers
and tab stops; the latter does not.

Opportunities for interoperability

The code template libraries can encourage synergistic inter-
operability between software packages. That is, the develop-
ment of notebooks that use two or more software packages
and even two or more programming languages. More general
and well-known examples of interoperability include the Cython
module in Python that enables the running of C++ code in-
side Python [25], the reticulate library that enables the run-
ning of Python code in R [26], and the PyCall package in
Julia that enables the running of the Python packages in Julia
(https://github.com/JuliaPy/PyCall.jl). The lat-
ter package is widely used to run matplotlib in Julia. Interoper-
ability already occurs in computational crystallography between
CCP4 [27], clipper [28], GEMMI [13], reciprocalspaceship [12],

38 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Careless [29], and cctbx and to a limited extent between cctbx
and PyMOL. The snippet libraries reported here can promote
taking advantage of this interoperability in Jupyter and Colab
notebooks. We hope that our effort will help raise awareness of
interoperability issues among the community.

Snippets in the age of AI-assisted autocompletion

Snippet libraries of domain specific software may not be as
redundant as they first appear in the age of chatbots. The code
fragments of domain-specific libraries have a limited presence
on GitHub, so they may be underrepresented in large language
models. In addition, chatbots are designed to return text rather
than code. However, copilot and tabnine were designed for code
completion and are good at autosuggesting code fragments. Via
GhostText, it is possible to run copilot or tabnine in a text editor
while editing Jupyter notebook cells.

Conclusions

Our explorations suggest that code snippets for domain-specific
software libraries have several roles to play in supporting the
use of such libraries. First, the snippets illustrate possible uses
of the library, thereby, playing educational and inspirational roles.
Second, the snippets can speed up the assembly of scripts while
reducing the time spent on debugging, thereby, playing a produc-
tivity enhancement role. We hope that the cctbxnsips library will
inspire the creation of similar libraries in other domains.

Acknowledgments

This work was supported in part by the following grants: Ok-
lahoma Center for the Advancement of Science and Technology
HR20-002, National Institutes of Health grants R01 CA242845,
P30 CA225520, and P30 AG050911-07S1. In addition, we thank
the Biomolecular Structure Core of the NIH supported Oklahoma
COBRE in Structural Biology (PI: Ann West, P20 GM103640 and
P30 GM145423).

REFERENCES

[1] W. Kühlbrandt, “The resolution revolution,” Science, vol. 343, no. 6178,
pp. 1443–1444, 2014, https://doi.org/10.1126/science.1251652.

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly ac-
curate protein structure prediction with alphafold,” Nature, vol. 596, no.
7873, pp. 583–589, 2021, https://doi.org/10.1038/s41586-021-03819-2.

[3] M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, and
M. Steinegger, “Colabfold: making protein folding accessible to all,”
Nature Methods, vol. 19, pp. 1–4, 2022, https://doi.org/10.1038/s41592-
022-01488-1.

[4] R. Chowdhury, N. Bouatta, S. Biswas, C. Floristean, A. Kharkar, K. Roy,
C. Rochereau, G. Ahdritz, J. Zhang, G. M. Church et al., “Single-
sequence protein structure prediction using a language model and deep
learning,” Nature Biotechnology, vol. 40, no. 11, pp. 1617–1623, 2022.

[5] A. Foerster and C. Schulze-Briese, “A shared vision for macromolecular
crystallography over the next five years,” Structural Dynamics, vol. 6,
no. 6, p. 064302, 2019, https://doi.org/10.1063/1.5131017.

[6] D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczi, V. B.
Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy
et al., “Macromolecular structure determination using x-rays, neutrons
and electrons: recent developments in phenix,” Acta Crystallographica
Section D: Structural Biology, vol. 75, no. 10, pp. 861–877, 2019,
https://doi.org/10.1107/S2059798319011471.

[7] N. Echols, R. W. Grosse-Kunstleve, P. V. Afonine, G. Bunkóczi, V. B.
Chen, J. J. Headd, A. J. McCoy, N. W. Moriarty, R. J. Read, D. C.
Richardson et al., “Graphical tools for macromolecular crystallography
in phenix,” Journal of Applied Crystallography, vol. 45, no. 3, pp. 581–
586, 2012, https://doi.org/10.1107/S0021889812017293.

[8] R. W. Grosse-Kunstleve, N. K. Sauter, N. W. Moriatry, and P. D.
Adams, “The computational crystallography toolbox: crystallographic
algorithms in a reusable software framework,” Journal Application Crys-
tallography, vol. 35, no. 1, pp. 126–136, 2002, https://doi.org/10.1107/
S0021889801017824.

[9] E. De Zitter, N. Coquelle, P. Oeser, T. R. Barends, and J.-P. Colletier,
“Xtrapol8 enables automatic elucidation of low-occupancy intermediate-
states in crystallographic studies,” Communications Biology, vol. 5, no. 1,
p. 640, 2022, https://doi.org/10.1038/s42003-022-03575-7.

[10] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. Howard, and
H. Puschmann, “The anatomy of a comprehensive constrained, re-
strained refinement program for the modern computing environment–
olex2 dissected,” Acta Crystallographica Section A: Foundations and
Advances, vol. 71, no. 1, pp. 59–75, 2015, https://doi.org/10.1107/
S2053273314022207.

[11] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems
with boost.python,” C/C++ Users Journal, vol. 21, no. 7, 2003.
[Online]. Available: https://www.osti.gov/biblio/815409

[12] J. B. Greisman, K. M. Dalton, and D. R. Hekstra, “Reciprocalspaceship:
A python library for crystallographic data analysis,” Journal of Applied
Crystallography, vol. 54, no. 5, 2021, https://doi.org/10.1101/2021.02.
03.429617.

[13] M. Wojdyr, “Gemmi: A library for structural biology,” Journal of Open
Source Software, vol. 7, no. 73, p. 4200, 2022, https://doi.org/10.21105/
joss.04200.

[14] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, C. Willing, and J. development team, “Jupyter notebooks
- a publishing format for reproducible computational workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and
Agendas, F. Loizides and B. Scmidt, Eds. IOS Press, pp. 87–90,
https://doi.org/10.3233/978-1-61499-649-1-87.

[15] wwPDB consortium, “Protein Data Bank: the single global archive for
3D macromolecular structure data,” Nucleic Acids Research, vol. 47,
no. D1, pp. D520–D528, 10 2018, https://doi.org/10.1093/nar/gky949.

[16] J. D. Hunter, “Matplotlib: A 2d graphics environment,” vol. 9, no. 3, pp.
90–95, https://doi.org/10.1109/MCSE.2007.55.

[17] F. Yabukarski, T. Doukov, D. A. Mokhtari, S. Du, and D. Herschlag,
“Evaluating the impact of x-ray damage on conformational heterogeneity
in room-temperature (277 k) and cryo-cooled protein crystals,” Acta
Crystallographica Section D: Structural Biology, vol. 78, no. 8, 2022,
https://doi.org/10.1107/S2059798322005939.

[18] J. B. Greisman, K. M. Dalton, C. J. Sheehan, M. A. Klureza, I. Kurinov,
and D. R. Hekstra, “Native sad phasing at room temperature,” Acta
Crystallographica Section D: Structural Biology, vol. 78, no. 8, pp. 986–
996, 2022, https://doi.org/10.1107/s2059798322006799.

[19] J. D. Westbrook, J. Y. Young, C. Shao, Z. Feng, V. Guranovic, C. L.
Lawson, B. Vallat, P. D. Adams, J. M. Berrisford, G. Bricogne et al.,
“Pdbx/mmcif ecosystem: foundational semantic tools for structural biol-
ogy,” Journal of Molecular Biology, vol. 434, no. 11, p. 167599, 2022,
https://doi.org/10.1016/j.jmb.2022.167599.

[20] E. Schulte, D. Davison, T. Dye, C. Dominik et al., “A multi-language
computing environment for literate programming and reproducible
research,” Journal of Statistical Software, vol. 46, no. 3, pp.
1–24, 1 2012, https://doi.org/10.18637/jss.v046.i03. [Online]. Available:
http://www.jstatsoft.org/v46/i03

[21] R. M. Horton, “Scripting wizards for chime and rasmol,” Biotechniques,
vol. 26, no. 5, pp. 874–6, 1999, https://doi.org/10.2144/99265ir01.

[22] S. E. Mottarella, M. Rosa, A. Bangura, H. J. Bernstein, and P. A. Craig,
“Conscript: Rasmol to pymol script converter,” Biochem Mol Biol Educ,
vol. 38, no. 6, pp. 419–22, 2010, https://doi.org/10.1002/bmb.20450.

[23] B. H. Mooers and M. E. Brown, “Templates for writing pymol scripts,”
Protein Science, vol. 30, no. 1, pp. 262–269, 2021, https://doi.org/10.
1002/pro.3997.

[24] B. H. Mooers, “A pymol snippet library for jupyter to boost researcher
productivity,” Computing in Science and Engineering, vol. 23, no. 2, pp.
47–53, 2021, https://doi.org/10.1109/MCSE.2021.3059536.

[25] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011, https://doi.org/10.1109/
mcse.2010.118.

[26] K. Ushey, J. Allaire, and Y. Tang, reticulate: Interface to
’Python’, 2023, r package version 1.28. [Online]. Available:
https://CRAN.R-project.org/package=reticulate

[27] J. Agirre, M. Atanasova, H. Bagdonas, C. Ballard, A. Baslé, J. Beilsten-
Edmands, R. Borges, D. Brown, J. Burgos-Mármol, J. Berrisford et al.,
“The ccp4 suite: integrative software for macromolecular crystallogra-

https://doi.org/10.1126/science.1251652
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41592-022-01488-1
https://doi.org/10.1038/s41592-022-01488-1
https://doi.org/10.1063/1.5131017
https://doi.org/10.1107/S2059798319011471
https://doi.org/10.1107/S0021889812017293
https://doi.org/10.1107/S0021889801017824
https://doi.org/10.1107/S0021889801017824
https://doi.org/10.1038/s42003-022-03575-7
https://doi.org/10.1107/S2053273314022207
https://doi.org/10.1107/S2053273314022207
https://www.osti.gov/biblio/815409
https://doi.org/10.1101/2021.02.03.429617
https://doi.org/10.1101/2021.02.03.429617
https://doi.org/10.21105/joss.04200
https://doi.org/10.21105/joss.04200
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1107/S2059798322005939
https://doi.org/10.1107/s2059798322006799
https://doi.org/10.1016/j.jmb.2022.167599
https://doi.org/10.18637/jss.v046.i03
http://www.jstatsoft.org/v46/i03
https://doi.org/10.2144/99265ir01
https://doi.org/10.1002/bmb.20450
https://doi.org/10.1002/pro.3997
https://doi.org/10.1002/pro.3997
https://doi.org/10.1109/MCSE.2021.3059536
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1109/mcse.2010.118
https://CRAN.R-project.org/package=reticulate

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 39

phy,” Acta Crystallographica Section D: Structural Biology, vol. 79,
no. 6, pp. 449–461, 2023, https://doi.org/10.1107/S2059798323003595.

[28] S. McNicholas, T. Croll, T. Burnley, C. M. Palmer, S. W. Hoh, H. T.
Jenkins, E. Dodson, K. Cowtan, and J. Agirre, “Automating tasks in
protein structure determination with the clipper python module,” Protein
Science, vol. 27, no. 1, pp. 207–216, 2018, https://doi.org/10.1002/pro.
3299.

[29] K. M. Dalton, J. B. Greisman, and D. R. Hekstra, “A unifying bayesian
framework for merging x-ray diffraction data,” Nature Communications,
vol. 13, no. 1, p. 7764, 2022, https://doi.org/10.1038/s41467-022-35280-
8.

https://doi.org/10.1107/S2059798323003595
https://doi.org/10.1002/pro.3299
https://doi.org/10.1002/pro.3299
https://doi.org/10.1038/s41467-022-35280-8
https://doi.org/10.1038/s41467-022-35280-8

	Introduction
	Results
	jupyterlabcctbxsnips
	taggedcctbxsnips
	colabcctbxsnips
	Snippets for OnDemand Notebooks at HPCs
	cctbxsnips for leading text editors
	Using GhostText to edit Jupyter cells from a favorite text editor

	Discussion
	What is new
	Relation to other work with snippet libraries
	Opportunities for interoperability
	Snippets in the age of AI-assisted autocompletion

	Conclusions
	Acknowledgments
	References

