
40 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Bayesian Statistics with Python, No Resampling
Necessary

Charles Lindsey‡∗

✦

Abstract—TensorFlow Probability is a powerful library for statistical analysis in
Python. Using TensorFlow Probability’s implementation of Bayesian methods,
modelers can incorporate prior information and obtain parameter estimates and
a quantified degree of belief in the results. Resampling methods like Markov
Chain Monte Carlo can also be used to perform Bayesian analysis. As an
alternative, we show how to use numerical optimization to estimate model
parameters, and then show how numerical differentiation can be used to get
a quantified degree of belief. How to perform simulation in Python to corroborate
our results is also demonstrated.

Index Terms—Bayesian statistics, resampling, maximum likelihood, numerical
differentiation

Introduction

Some machine learning algorithms output only a single number or
decision. It can be useful to have a measure of confidence in the
output of the algorithm, a quantified degree of belief. Bayesian
statistical methods can be used to provide both estimates and
confidence for users.

A model with parameters θθθ governs the process we are
investigating. We begin with a prior belief about the probability
distribution of θθθ , the density π(θθθ).

Then the data we observed gives us a refined belief about the
distribution θθθ . We obtain the posterior density π(θθθ |x).

We can estimate values of θθθ with the posterior mode of
π(θθθ |x), θ̂θθ .

Then we can estimate the posterior variance of θθθ , and with
some knowledge of π(θθθ |x) obtain confidence in our estimate θ̂θθ .

Normal Approximation to the Posterior

We will use numerical optimization to obtain the posterior mode
θ̂θθ , maximizing the posterior π(θθθ |x).

The posterior is proportional (where the scaling does not
depend on θθθ) to the prior and likelihood (or density of the data).

π(θθθ |x) ∝ L(θθθ |x)π(θθθ)

As in maximum likelihood, we directly maximize the log-
posterior, logπ(θθθ |x) because it is more numerically stable.

* Corresponding author: charles.lindsey@revionics.com
‡ Revionics, an Aptos Company

Copyright © 2023 Charles Lindsey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Now, as described in section 4.1 of [1] , we can approximate
lnπ(θθθ |x) using a second order Taylor Expansion around θ̂θθ .

logπ(θθθ |x) ≈ logπ(θ̂θθ |x)+(θθθ − θ̂θθ)T S(θθθ)|
θθθ=θ̂θθ

+
1
2
(θθθ − θ̂θθ)T H(θ̂θθ)(θθθ − θ̂θθ)

Where S(θθθ) is the score function

S(θθθ) =
δ

δθθθ
logπ(θθθ |x)

and H(θθθ) is the Hessian function.

H(θθθ) =
δ

δθθθ
T S(θθθ)

We assume that θ̂θθ is in the interior of the parameter space (or
support) of θθθ . Also, π(θθθ |x) is a continuous function of θθθ .

Finally the Hessian matrix, H(θθθ) is negative definite, so
−H(θθθ) is positive definite. This means that we can invert −H(θθθ)
and get a matrix that is a valid covariance.

With these assumptions, as the sample size n → ∞ the
quadratic approximation for logπ(θθθ |x) becomes more accurate.
At the posterior mode θθθ = θ̂θθ , logπ(θθθ |x) is maximized and
0 = S(θθθ)|

θθθ=θ̂θθ
.

Given this, we can exponentiate the approximation to get

π(θθθ |x)≈ π(θ̂θθ |x)exp(
1
2
(θθθ − θ̂θθ)T H(θ̂θθ)(θθθ − θ̂θθ))

So for large n, the posterior distribution of θθθ is approximately
proportional to a multivariate normal density with mean θ̂θθ and
covariance −H(θ̂θθ)−1.

θθθ |x ≈D N(θ̂θθ ,−H(θ̂θθ)−1)

Another caveat for this result is that the prior should be proper,
or at least lead to a proper posterior. By proper we mean that
the function corresponds to a probability density function. Our
asymptotic results are depending on probabilities integrating to 1.

We could get a quantified degree of beief by using resampling
methods like Markov chain Monte Carlo (MCMC) [1] directly.
We would have to use fewer assumptions. However, resampling
can be computationally intensive.

Parameter Constraints and Transformations

Optimization can be easier if the parameters are defined over the
entire real line. Parameters that do not follow this rule are plentiful.
Variances are only positive. Probabilities are in [0,1].

mailto:charles.lindsey@revionics.com

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 41

We can perform optimization over the real line by creating
unconstrained parameters from the original parameters of interest.
These are continuous functions of the constrained parameters,
which may be defined on intervals of the real line.

For example, the unconstrained version of a standard deviation
parameter σ is ψ = logσ . The parameter ψ is defined over the
entire real line.

It will be useful for us to consider the constrained param-
eters as being functions of the unconstrained parameters. So
σ = exp(ψ) is our constrained parameter of ψ .

So the posterior mode of the constrained parameters θθθ ccc is
θ̂θθ ccc = g(θ̂θθ). We will call g the constraint function.

Then we can use the delta method [2] on g to get the posterior
distribution of the constrained parameters.

A first-order Taylor approximation of g(θθθ) at θ̂θθ yields

g(θθθ)≈ g(θ̂θθ)+
{

δ

δ θ̂θθ
g(θ̂θθ)

}
(θθθ − θ̂θθ)

Remembering that the posterior of θθθ is approximately normal, the
rules about linear transformations for multivariate normal random
vectors tell us that

θθθ ccc|x = g(θθθ)|x ≈D

N

[
g(θ̂θθ),

{
δ

δ θ̂θθ
g(θ̂θθ)

}T {
−H(θ̂θθ)−1

}{
δ

δ θ̂θθ
g(θ̂θθ)

}]

We could use Numpy’s matmul function to multiply the com-
ponent matrices together. The inv function in the lingalg library
could be used to invert the Hessian. So referring the to the gradient
of g as dg, the following python code could be used to compute
the constrained covariance.

np.matmul(
np.matmul(dg,

np.linalg.inv(hessian)),
np.transpose(dg))

This involved a first-order approximation of g. Earlier we used
a second order approximation for taking the numeric derivative.
Why would we just do a first-order here? Traditionally the delta-
method is taught and used as only a first-order method. Usually
the functions used in the delta method are not incredibly complex.
It is good enough to to use the first-order approximation.

Hessian and Delta Approximation

To be able to use the normal approximation, we need θ̂θθ , H(θ̂θθ)−1,
and δ

δ θ̂θθ
g(θ̂θθ). As mentioned before, we use numerical optimization

to get θ̂θθ . Ideally, we would have analytic expressions for H and
the derivatives of g.

This can be accomplished with automatic differentiation [3],
which will calculate the derivatives analytically. We can also
perform numerical differentiation to get the Hessian and the
gradient of the constraint function g. This will be less accurate than
an analytic expression, but may be less computationally intensive
in large models.

But once you learn how to take one numeric derivative, you
can take the numeric derivative of anything. So using numerical
differentiation is a very flexible technique that we can easily apply
to all the models we would use.

Numerical Differentiation

So numeric derivatives can be very pragmatic, and flexible. How
do you compute them? Are they accurate? We use section 5.7 of
[4] as a guide.

The derivative of the function f with respect to x is

f ′(x) = lim
h→0

f (x+h)− f (x)
h

To approximate f ′(x) numerically, couldn’t we just plugin a small
value for h and compute the scaled difference? Yes. And that is
basically what happens. We do a little more work to choose h and
use a second-order approximation instead of a first-order.

We can see that the scaled difference is a first-order approxi-
mation by looking at the Taylor series expansion around x.

Taylor’s theorem with remainder gives

f (x+h) = f (x)+((x+h)− x) f ′(x)+ .5((x+h)− x)2 f ′′(ε)

= f (x)+−h f ′(x)+ .5h2 f ′′(ε)

where ε is between x and x+h.
Now we can rearrange to get

f (x+h)− f (x)
h

− f ′(x) = .5h f ′′(ε)

The right hand side is the truncation error, εt since it’s linear in h,
the bandwidth we call the this approximation a first order method.

We can do second-order approximations for f (x+h) and f (x−
h) and get a more accurate second order method of approximation
for f ′(x).

f (x+h) = f (x)+((x+h)− x) f ′(x)

+
((x+h)− x)2 f ′′(x)

2!
+

((x+h)− x)3 f ′′′(ε1)

3!
f (x−h) = f (x)+((x−h)− x) f ′(x)

+
((x−h)− x)2 f ′′(x)

2!
+

((x−h)− x)3 f ′′′(ε2)

3!
were ε1 is between x and x+h and ε2 is between x−h and x.

Then we have
f (x+h)− f (x−h)

2h
− f ′(x) = h2 f ′′′(ε1)+ f ′′′(ε2)

12
This is quadratic in h. The first term takes equal input from both
sides of x, so we call it a centered derivative.

So we choose a small value of h and plug it into f (x+h)− f (x−h)
2h

to approximate f ′(x).
Our derivation used a single input function f . The idea applies

to partial derivatives of multi-input functions as well. The inputs
that you aren’t taking the derivative with respect to are treated as
fixed parts of the function.

Choosing a Bandwidth

In practice, second order approximation actually involves two
sources of error. Roundoff error, εr arises from being unable
to represent x and h or functions of them with exact binary
represetation.

εr ≈ ε f
| f (x) |

h
where ε f is the fractional accuracy with which f is computed.
This is generally machine accuracy. If we are using NumPy [5]
this would be

ε f = np.finfo(float).eps

42 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Minimizing the roundoff error and truncation error, we obtain

h ∼ ε
1/3
f

(
f

f ′′′

)1/3

where (f/ f ′′′)1/3 is shorthand for the ratio of f (x) and the sum of
f ′′′(ε1)+ f ′′′(ε2).

We use shorthand here because because we are not going to
approximate f ′′′ (we are already approximating f ′), so there is no
point in writing it out.

Call this shorthand (
f

f ′′′

)1/3

= xc

the curvature scale, or characteristic scale of the function f .
There are several algorithms for choosing an optimal scale.

The better the scale chosen, the more accurate the approximation
is. A good rule of thumb, which is computationally quick, is to
just use the absolute value of x.

xc =| x |

Then we would use
h = ε

1/3
f | x |

But what if x is 0? This is simple to handle, we just add ε
1/3
f to

xc =| x |
h = ε

1/3
f (| x |+ε

1/3
f)

Now, [4] also suggests performing a final sequence of assignment
operations that ensures x and x + h differ by an exactly repre-
sentable number. You assign x+ h to a temporary variable temp.
Then h is assigned the value of temp−h.

In Python, the code would simply be
temp = x + h
h = temp - x

Estimating Confidence Intervals after Optimization

With the posterior mode, variance, and normal approximation to
the posterior. It is simple to create confidence (credible) intervals
for the parameters.

Let’s talk a little bit about what these intervals are. For the
parameter γ we want a (1 − α) interval (u, l) (defined on the
observed data generated by a realization of γ) to be defined such
that

Pr(γ ∈ (u, l)) = 1−α

The frequentist confidence interval does not meet this criteria. γ

is just one fixed value, so it is either in the interval, or it isn’t!
The probability is 0 or 1. A credible interval (Bayesian confidence
interval) can meet this criteria.

Suppose that we are able to use the normal approximation for
γ|x

γ|x ≈D N(γ̂, σ̂2
γ)

Then we have

1−α = Pr(l ≤ γ ≤ u|x)
= Pr(l − γ̂ ≤ γ − γ̂ ≤ u− γ̂|x)

= Pr
(

l − γ̂

σ̂γ

≤ γ − γ̂

σ̂γ

≤ u− γ̂

σ̂γ

|x
)

Now, (γ − γ̂)/σ̂2
γ is N(0,1), standard normal. So we can use the

standard normal quantiles in solving for l and u.

The upper α/2 quantile of the standard normal distribution,
zα/2 satisfies

Pr(Z ≥ zα/2) = α/2

for standard normal Z.
Noting that the standard normal is symmetric, if we can find l

and u to satisfy

l − γ̂

σ̂γ

= −zα/2

u− γ̂

σ̂γ

= zα/2

then we have a valid Bayesian confidence interval.
Simple calculation shows that the solutions are

l = −zα/2σ̂γ + γ̂

u = zα/2σ̂γ + γ̂

The zα/2 quantile can be easily generated using scipy.stats from
SciPy [6]. We would use the norm.ppf function.

In Python, we would have
z_alpha_2 = scipy.stats.norm.ppf(1-alpha/2)
l = -z_alpha_2*se_gamma_hat + gamma_hat
u = z_alpha_2*nsd_gamma_hat + gamma_hat

We can also adjust the intervals for inference on many parameters
by using Bonferroni correction [7].

Now we know how to estimate the posterior mode. We also
know how to estimate the posterior variance after computing the
posterior mode. And we have seen how confidence intervals are
made based on this posterior variance, mode, and the normal
approximation to the posterior. Let’s discuss some tools that will
enable us to perform these operations.

TensorFlow Probability

Now we will introduce TensorFlow Probability, a Python library
that we can use to perform the methods we have been discussing.
TensorFlow Probability is library built using TensorFlow, a leading
software library for machine learning and artificial intelligence [8].

TensorFlow Probability is a probabilistic programming lan-
guage. This lets us build powerful models in a modular way
and estimate them automatically. At the heart of TensorFlow
Probability is the Distribution class. In theory, a probability
distribution is the set of rules that govern the likelihood of how a
random variable (vector, or even general tensor) takes its values.

In TensorFlow Probability, distribution rules for scalars and
vectors are parametrized, and these are expanded for higher
dimensions as independent samples. A distribution object corre-
sponds to a random variable or vector. The parts of a Bayesian
model can be represented using different distribution objects for
the parameters and observed data.

Example Distribution

As an example, let’s examine a linear regression with a χ2 prior
for the intercept a and a normal prior for the slope β . Our observed
outcome variable is y with a normal distribution and the predictor
is x.

yi ∼ Normal(xiβ +α,1)

We can store the distribution objects in a dictionary for clear
organization. The prior distribution of β is Normal with mean 1

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 43

and variance 1, N(1,1). We use the Normal distribution subclass
to encode its information in our dictionary.
tfd = tfp.distributions
dist_dict = {}
dist_dict['beta'] = tfd.Normal(1,1)

The β parameter can range over the real line, but the intercept, α

should be nonnegative. The Chi2 distribution sublcass has support
on only the nonegative reals. However, if we are performing
optimization on the α parameter, we may take a step where it
became negative. We can avoid any complications like this if
we use a TransformedDistribution. Transformed distributions
can be used together with a Bijector object that represents the
transforming function.

For α , we will model an unconstrained parameter, αu = logα .
The natural logarithm can take values over the real line.
tfb = tfp.bijectors
dist_dict['unconstrained_alpha'] = \
tfd.TransformedDistribution(tfd.Chi2(4),tfb.Log())

We can use the sample method on the distribution objects we
created to see random realizations. Before we do that we should
set the seed, so that we can replicate our work.
tf.random.set_seed(132)
sample_ex=dist_dict['unconstrained_alpha'].sample(10)
sample_ex

<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([2.050956 , 0.56120026, 1.8559402,

-0.05669071, ...], dtype=float32)>

We see that the results are stored in a tf.Tensor object. This has
an easy interface with NumPy, as you can see by the numpy
component. We see that the unconstrained α , αu takes positive
and negative values.

We can evaluate the density, or it’s natural logarithm using
class methods as well. Here is the log density for the sample we
just drew.

dist_dict['unconstrained_alpha'].log_prob(sample_ex)

<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([-1.1720479 , -1.1402813 , -0.8732692 ,

-1.9721189 , ...], dtype=float32)>

Now we can get α from αu by using a callable and the Determin-
istic distribution.

dist_dict['alpha'] = \
lambda unconstrained_alpha: \

tfd.Deterministic(\
loc= tfb.Log().inverse(\

unconstrained_alpha))

Now we’ve added all of the parameters to dist_dict. We just need
to handle the observed variables y and x. In this example x is
exogenous, which means it can be treated as fixed and nonrandom
in estimating α and β in the model for y. y is endogenous, which
means it is a response variable in the model, the outcome we are
trying to estimate.

We will define x separately from our dictionary of distribu-
tions. For the example we have to generate values of x, but once
this is done we will treat it as fixed and exogenous

The observed variable x will have a standard normal distribu-
tion. We will start by giving it a sample size of 100.

n = 100
x_dist = tfd.Normal(tf.zeros(n),1)
x = x_dist.sample()

The distribution of y, which would give us the likelihood, can be
formulated using a callable function of the parameters and the
fixed value of x we just obtained.

dist_dict['y'] = \
lambda alpha, beta: \

tfd.Normal(loc = alpha + beta*x,scale=1)

With a dictionary of distributions and callables indicating their
dependencies, we can work with the joint density. This will
correspond to the posterior distribution of the model, augmenting
the priors with the likelihood.

The JointDistributionNamed class takes a dictionary as input
and behaves similarly to a regular univariate distribution object.
We can take samples, which are returned as dictionaries keyed by
the parameter and observed variable names. We can also compute
log probabilities, which gives us the posterior density.

posterior = tfd.JointDistributionNamed(dist_dict)

Now we have a feel for how TensorFlow Probability can be used to
store a Bayesian model. We have what we need to start performing
optimization and variance estimation.

Maximum A Posteriori (MAP) with SciPy

We can use SciPy’s implementation of the Limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [9] algorithm to
estimate the posterior mode. This is a Quasi-Newton optimization
method that does not need to store the entire Hessian matrix
during the algorithm, so it can be very fast. If the Hessian was
fully stored we could just use it directly in variance estimation,
but it would be slower. We do to take advantage of automatic
differentiation to calculate the score function, the first derivative
of the posterior. TensorFlow Probability provides this through the
value_and_gradient function of its math library.

We will use minimize from the optimize SciPy library, which
operates on a loss function that takes a vector of parameters as
input. We will optimize on unconstrained_alpha and beta, the
unconstrained space parameters of the model. In the joint distribu-
tion representation, they are separate tensors. But in optimization,
we will need to evaluate a single tensor.

We will use the first utility function from the bayes_mapvar
library, which will be available with this paper, to accomplish
this. The par_vec_from_dict function unpacks the tensors in a
dictionary into a vector.

Within our loss function, we must move the vector of input pa-
rameters back to a dictionary of tensors to be evaluated by Tensor-
Flow probability. The par_dict_from_vec function moves the un-
constrained parameters back into a dictionary, and the constrained
parameters are generated by the get_constrained function. Then
the posterior density is evaluated by augmenting this dictionary of
constrained parameters with the observed endogenoous variables.
The get_constrained function is also used to get the final posterior
model estimates from the SciPy optimization.

Variance Estimation with SciPy

Once the posterior mode is estimated we can estimate the variance.
The first step is calculating the bandwidths. The get_bandwidths
function handles this.

def get_bandwidths(unconstrained_par_vec):
abspars = abs(unconstrained_par_vec)
epsdouble = np.finfo(float).eps

44 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Statistic Mean S.D.

αMAP mean 4.141 2.475
αMCMC mean 3.989 2.765
αMAP S.E. 0.037 0.004
αMCMC S.E. 0.041 0.001
α A.D. Reject 0.042 0.201
βMAP mode 1.013 0.504
βMCMC mean 1.022 1.003
βMAP S.E. 0.029 0.001
βMCMC S.E. 0.041 0.002
β A.D. Reject 0.045 0.207

TABLE 1
Simulation Results, npre = 1000, npost = 600, nMCMC = 500.

epsdouble = epsdouble**(1 / 3)
scale = epsdouble * (abspars + epsdouble)
scaleparmstable = scale + abspars
return scaleparmstable - abspars

With the bandwidths calculated, we step through the parameters
and create the Hessian and Delta matrices that we need for vari-
ance estimation. The get_hessian_delta_variance function use
numeric differentation to calculate the Hessian, based on numeric
derivaties of the automatic derivatives computed by TensorFlow
probability for the score function. The Delta matrix is calculated
using numeric differentation of the constrained parameter func-
tions.

Simulation

We evaluated our methodology with a simulation based on the α

and β parameter setting discussed earlier. This was an investiga-
tion into how well we estimated the posterior mode, variance, and
distribution using the methods of TensorFlow Probability, SciPy,
and bayes_mapvar.

To evaluate the posterior distributions of the parameters we
used the MCMC capabilities of TensorFlow Probability. Partic-
ulary the the No-U-Turn Sampler [10]. We were careful to thin
the sample based on effective sample size so that autocorrelation
would not be a problem. This was accomplished using Tensor-
Flow Probability’s effective_sample_size function from its mcmc
library.

We drew npre = 1000 observations from the unconstrained
prior parameter distribution for αi and βi. For each of these
prior draws, we drew a posterior sample of yi and xi. yi and xi
were npost = 600 samples based on each \alpha_i and βi. The
posterior mode and variance were estimated, and nMCMC = 500
posterior draws from MCMC were made. The mean was used in
the MCMC draws since it sould coincide with the mode if our
assumptions are correct.

To check the distributional results, we used the Anderson-
Darling test [11]. This is given by anderson in scipy.stats. We
stored a record of whether the test rejects normality at the .05
significance level for each of the npre draws. This test actually
checks the mean and variance assumptions as well, since it
compares to a standard normal and we are standardizing based
on the MAP and get_hessian_delta_variance estimates.

The results of the simulation are shown in 1.We use Standard
Error (S.E.) to refer to the 1000 estimates of posterior standard
deviations from get_hessian_delta_variance and the MCMC

Statistics Lower Upper

α AD Reject 0.030 0.056
β A.D. Reject 0.033 0.060

TABLE 2
A.D. Confidence Intervals, npre = 1000, npost = 600, nMCMC = 500.

sample standard deviations. The Standard Deviation (S.D.) column
represents the statistics calculated over the 1000 estimates. The
standard errors are not far from each other, and neither are the
modes and means. The rejection rates for the Anderson Darling
test are not far from .05 either.

We can perform a hypothesis test of whether the rejection
rate is .05 by checking whether .05 is in the confidence interval
for the proportion. We will use the proportion_confint function
from statsmodels [12]. In 2, we see that .05 is comfortably
within intervals for both parameters. Our simulation successfully
corroborated our assumptions about the model and the consistency
of our method for estimating the posterior mode, variance, and
distribution.

Conclusion

We have explored how Bayesian analysis can be performed
without resampling and still obtain full inference. With adequate
amounts of the data, the posterior mode can be estimated with
numeric optimization and the posterior variance can be estimated
with numeric or automatic differentation. The asymptotic nor-
mality of the posterior distribution enables simple calculation of
posterior probabilities and confidence (credible) intervals as well.

Bayesian methods let us use data from past experience, subject
matter expertise, and different levels of certainty to solve data
sparsity problems and provide a probabilistic basis for inference.
Retail Price Optimization benefits from historical data and dif-
ferent granularities of information. Other fields may also take
advantage of access to large amounts of data and be able to use
these approximation techniques. These techniques and the tools
implementing them can be used by practicioners to make their
analysis more efficient and less intimidating.

REFERENCES

[1] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis, 2013. [Online]. Available:
https://books.google.com/books?id=ZXL6AQAAQBAJ

[2] G. W. Oehlert, “A note on the delta method,” The American Statistician,
vol. 46, no. 1, pp. 27–29, 1992, https://doi.org/10.1080/00031305.1992.
10475842. [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/00031305.1992.10475842

[3] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” 2018.

[4] W. Press and S. Teukolsky, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, ser. Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press, 2007. [Online]. Available:
https://books.google.com/books?id=1aAOdzK3FegC

[5] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” vol. 585,
no. 7825, pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

https://books.google.com/books?id=ZXL6AQAAQBAJ
https://doi.org/10.1080/00031305.1992.10475842
https://doi.org/10.1080/00031305.1992.10475842
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475842
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475842
https://books.google.com/books?id=1aAOdzK3FegC
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 45

[6] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020, https://doi.org/10.1038/s41592-019-0686-2.

[7] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,”
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Com-
mericiali di Firenze, vol. 8, pp. 3–62, 1936.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[9] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York, NY,
USA: John Wiley & Sons, 1987, https://doi.org/10.1002/9781118723203.

[10] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo,” 2011.

[11] M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” Journal of the American Statistical Association, vol. 69, no. 347,
pp. 730–737, Sep. 1974, https://doi.org/10.2307/2286009.

[12] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010,
https://doi.org/10.25080/majora-92bf1922-011.

https://doi.org/10.1038/s41592-019-0686-2
https://www.tensorflow.org/
https://doi.org/10.1002/9781118723203
https://doi.org/10.2307/2286009
https://doi.org/10.25080/majora-92bf1922-011

	Introduction
	Normal Approximation to the Posterior
	Parameter Constraints and Transformations
	Hessian and Delta Approximation
	Numerical Differentiation
	Choosing a Bandwidth
	Estimating Confidence Intervals after Optimization
	TensorFlow Probability
	Example Distribution
	Maximum A Posteriori (MAP) with SciPy
	Variance Estimation with SciPy
	Simulation
	Conclusion
	References

