
46 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Using Numba for GPU acceleration of Neutron
Beamline Digital Twins

Coleman J. Kendrick‡∗, Jiao Y. Y. Lin‡, Garrett E. Granroth‡

✦

Abstract—Digital twins of neutron instruments using Monte Carlo ray tracing
have proven to be useful in neutron data analysis and verifying instrument and
sample designs. However, these simulations can become quite complex and
computationally demanding with tens of billions of neutrons. In this paper, we
present a GPU accelerated version of MCViNE using Python and Numba to
balance user extensibility with performance. Numba is an open-source just-in-
time (JIT) compiler for Python using LLVM to generate efficient machine code
for CPUs and GPUs with NVIDIA CUDA. The JIT nature of Numba allowed
complex instrument kernels to be generated easily. Initial simulations have
shown a speedup between 200-1000x over the original CPU implementation.
The performance gain with Numba enables more sophisticated data analysis
and impacts neutron scattering science and instrument design.

Index Terms—Monte Carlo, numba, digital twin, Python, neutron, GPU, ray
tracing, CUDA

INTRODUCTION

MCViNE [1], [2] is a software package for creating digital
twins of neutron scattering experiments using a Monte Carlo ray-
tracing approach. In this method, randomly generated probability
packets (representing neutrons) are propagated through a series
of components. Each component changes the probability packets
according to the physics of the component. As an example of
a component, consider a neutron mirror with less than perfect
reflectivity. The interaction between the probability packet and
the mirror would cause the velocity component perpendicular to
the mirror to reverse and would reduce the probability of the
packet to take into account that there is a finite probability that
the neutron would not be reflected. The physics of each MCViNE
component is documented in the code. An extensive description of
components for a similar package, McStas is provided at [3]. There
is no correlation between packets, so the system is embarrassingly
parallel. These simulations are useful in performing advanced
neutron data analysis [4], [5], [6], [7], [8], [9] as well as in
designing novel neutron instruments [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20] and sample environments [21],
[22]. Specifically, it has been used in the initial designs for
instruments in the Second Target Station at the Spallation Neutron
Source (SNS) [23] at Oak Ridge National Laboratory. Currently,

* Corresponding author: kendrickcj@ornl.gov
‡ Oak Ridge National Laboratory

Copyright © 2023 Coleman J. Kendrick et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

MCViNE only runs on CPUs which is a bottleneck in large
simulations with tens of billions of neutrons, and in modelling
complex multiple scattering, with some simulations taking months
to complete. Due to the massively parallel nature of Monte
Carlo methods, bringing GPU acceleration to these simulations
would offer superior performance and scalability. MCViNE was
originally implemented in C++ and parallelized using MPI, with
bindings to Python for user interaction. However, extensibility for
the end user can be very difficult.

To further improve performance and to create an easily ex-
tensible code base, Python and Numba [24] were chosen to
create a new package of MCViNE providing GPU acceleration,
mcvine.acc [25]. Numba is an open-source JIT (just-in-time)
compiler for Python using LLVM to generate efficient machine
code and supports GPUs using NVIDIA CUDA. Numba is de-
signed for scientific computing and can support NumPy arrays
and functions. Currently, we are only using Numba for its GPU
capabilities as the original version of MCViNE is used to run
on CPUs. This accelerated MCViNE package is compatible with
existing MCViNE scripts, and using a mixture of CPU and GPU
components is supported.

This paper will first describe how MCViNE works at a high-
level, how components and instruments are created using Numba
to generate CUDA kernels, and how Numba is also used to gen-
erate kernels for complex sample geometries and scatterers. Next,
we will compare performance of the CPU version of MCViNE
to the Numba GPU version. After that we will describe how the
MCViNE GPU acceleration will be used in the larger context of a
workflow for data analysis. Finally, we will discuss our experience
using Numba for this application.

METHOD

MCViNE Overview

MCViNE simulations are run from a script that defines an instru-
ment, where an instrument is composed of multiple components.
A simple 4 component instrument is shown in Figure 1. Full in-
struments may have several hundred components. Each instrument
script is run with a specified number of probability packets, where
each packet has several state variables: position, velocity, spin,
probability, and time.

At a high-level, a component takes a neutron as input and
performs some action on the neutron. Components can be attached
to the instrument at a specified position and orientation. Some of
the main component types are sources, guides, monitors, samples,

mailto:kendrickcj@ornl.gov

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 47

and detectors. In a full instrument simulation, neutrons are gener-
ated from a source component and are propagated through each
component in the instrument. Sample components are a special
type of component with additional input files to specify geometry
and material composition.

Source Guide Sample Detector

Components

Fig. 1: Example instrument with four components: a source, guide,
sample, and detector.

Component Hierarchy

One of the major benefits of using Python for this application is
the ease of utilizing an object-oriented design and polymorphism.
Each component inherits from a base AbstractComponent
class. This AbstractComponent class requires a “propagate”
method to be defined which takes in a neutron for the first
parameter. The “propagate” method is responsible for defining
the action of the component and is decorated with @cudajit to
indicate that it is a CUDA kernel. An example of creating a simple
component can be seen below. Additional parameters can be spec-
ified, but must also be defined in the propagate_params list.
There are several major types of components that have their own
subclasses: SampleBase, SourceBase, and MonitorBase.

from mcvine.acc.ComponentBase import ComponentBase
class Arm(ComponentBase):

def __init__(self, name, **kwargs):
self.name = name
self.propagate_params = ()

Aim a neutron at this arm to
cause JIT compilation.
import mcni
neutrons = mcni.neutron_buffer(1)
neutrons[0] = \

mcni.neutron(r=(0, 0, -1),
v=(0, 0, 1),
prob=1, time=0)

self.process(neutrons)

@cuda.jit(void(NB_FLOAT[:]),
device=True)

def propagate(in_neutron):
pass

CUDA Kernel Generation for an Instrument

In order to run a simulation from an input instrument script,
mcvine.acc first generates a GPU kernel from the instrument
specification. The input script will be parsed and then “compiled”
to generate a Python script representing an instrument kernel.
This compiled version is then imported and executed to run the
simulation. An example of a simple MCViNE instrument script
containing a source, guide, and monitor can be seen below.

def instrument():
instrument = mcvine.instrument()
source = Source_simple(

'src',
radius = 0., width = 0.03,
height = 0.03, dist = 1.,
xw = 0.035, yh = 0.035

)
instrument.append(source,

position=(0,0,0.))

guide1 = Guide(
'guide',
w1=0.035, h1=0.035,
w2=0.035, h2=0.035,
l=10

)
instrument.append(guide1,

position=(0,0,1.))

mon = PosDiv_monitor(
'mon', xwidth=0.08, yheight=0.08,
maxdiv=2.,
npos=250, ndiv=251,

)
instrument.append(mon,

position=(0,0,12.))
return instrument

When mcvine.acc is called on the above instrument script,
a new Python file is generated which contains a Numba CUDA
kernel for the entire instrument. Each of the instrument compo-
nents’ process kernels are collected and inserted to form a
generic kernel in this process. This generated kernel effectively
models a neutron travelling through the entire instrument.

Depending on the kernel launch configuration, each GPU
thread might be responsible for more than one neutron. An
example of a compiled instrument script can be seen in the code
listing below. As seen in the script, a CUDA kernel is defined
using Numba. Inside the kernel, each GPU thread will loop
over the number of neutrons it is processing. Each propagate
function has a number appended to it. These propagate functions
correspond to the Component’s propagate method. For this case,
propagate0 matches the Source component propagate kernel,
propagate1 matches the Guide component propagate kernel,
and so on. The applyTransformation function is inserted in-
between instrument components and is responsible for translating
the position/velocity of a neutron in the current component’s
coordinate system to that of the next component by applying a
transformation matrix.
@cuda.jit
def process_kernel_no_buffer(

rng_states, N, n_neutrons_per_thread,
args

):
args0, args1, args2, offsets, rotmats, neutron_counter = args
thread_index = cuda.grid(1)
start_index = thread_index*n_neutrons_per_thread
end_index = min(start_index+n_neutrons_per_thread, N)
neutron = cuda.local.array(shape=10, dtype=NB_FLOAT)
r = cuda.local.array(3, dtype=NB_FLOAT)
v = cuda.local.array(3, dtype=NB_FLOAT)
for neutron_index in range(start_index, end_index):

cuda.atomic.add(neutron_counter, 0, 1)
propagate0(thread_index, rng_states, neutron, *args0)
applyTransformation(neutron[:3], neutron[3:6],

rotmats[0], offsets[0], r, v)
propagate1(neutron, *args1)
applyTransformation(neutron[:3], neutron[3:6],

rotmats[1], offsets[1], r, v)
propagate2(neutron, *args2)

from mcvine.acc.components.sources.SourceBase import SourceBase
class _Base(SourceBase): # has to be named Base in definition

def __init__(self, instrument):
offsets, rotmats = calcTransformations(instrument)
self.neutron_counter = neutron_counter = np.zeros(1, dtype=int)
self.propagate_params = tuple(

c.propagate_params for c in instrument.components)
self.propagate_params += (offsets, rotmats, neutron_counter)

48 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

return
def propagate(self): return

InstrumentWrapper = _Base
InstrumentWrapper.process_kernel_no_buffer = process_kernel_no_buffer

def run(ncount, ntotalthreads=None, threads_per_block=None, **kwds):
instrument = loadInstrument(script, **kwds)
iw = InstrumentWrapper(instrument)
iw.process_no_buffer(ncount, ntotalthreads=ntotalthreads,

threads_per_block=threads_per_block)
processed = iw.neutron_counter[0]
saveMonitorOutputs(instrument, scale_factor=1.0/ncount)

Sample Kernels and CSG

One unique feature of MCViNE is its sample component, which
allows for simulation of complex sample/sample environment and
detector systems with flexible, sophisticated geometry and scat-
tering physics. This feature has enabled simulations that produce
virtual experiment data that closely resemble real experimental
data and make MCViNE a useful tool for both instrument design
and advanced data analysis.

A Sample is made up of a Sample Assembly which has
Shape and Phase tags. The Shape tag contains the geometry
specification. The Phase tag, together with additional XML
file(s) named {name}-scatterer.xml, contain the scattering
physics specification where {name} is the name of a scatterer in-
cluded in the sample assembly. A simple example for an aluminum
(Al) sphere is shown below. Such an Al sphere is an idealized
sample, where the sphere matches the scattering condition and
Al is the material most transparent to neutron and is used for
mounts and sample containers. Therefore it is well studied and
well understood.
<?xml version="1.0"?>

<!DOCTYPE SampleAssembly>

<SampleAssembly name="isotropic_sphere">
<PowderSample name="sample" type="sample">
<Shape>
<sphere radius="1*cm" />

</Shape>
<Phase type="crystal">
<ChemicalFormula>Al</ChemicalFormula>
<xyzfile>Al.xyz</xyzfile>

</Phase>
</PowderSample>
<LocalGeometer registry-coordinate-system="InstrumentScientist">
<Register name="sample" position="(0,0,0)" orientation="(0,0,0)"/>

</LocalGeometer>
</SampleAssembly>

Simple shapes can be created easily, but more complex shapes
can be created too. To create the sample geometry, MCViNE uses
Constructive Solid Geometry (CSG). CSG can create complex
geometries from operations such as intersection and union, on
primitive shapes, such as cubes, spheres, and cylinders. For exam-
ple, Figure 2 shows how CSG is used to create an annular sample
can from cylindrical primitives. This can is similar to those used
in experiment design [26]. First a ring for the outside of the can is
made from two cylinders by subtraction, then a ring for the inside
of the can is also made from two cylinders. These two rings are
then combined in union with another cylinder that is the bottom
of the can.

Ray tracing routines are implemented as CUDA kernels for
these primitive shapes and operations. To support complex geome-
tries that might involve many operations and shapes, the visitor
pattern is used which constructs a single CUDA kernel to handle
the ray intersection of that shape. This highlights one of the major
advantages of using Python and Numba, as the ability to generate
a CUDA kernel dynamically at run-time would be much more
difficult to implement in other languages.

The specification of the scattering physics of a particular
neutron scatterer is described in a dedicated “scatterer” XML file,

Fig. 2: An example of an annular sample can created using CSG
(right) and how the primitives and operations are specified in XML as
input to MCViNE.

where one or more sample kernels can be specified. An example
of a scatterer XML file for specifying scattering physics can be
seen below.
<?xml version="1.0"?>

<!DOCTYPE scatterer>

<!-- weights: absorption, scattering, transmission -->
<homogeneous_scatterer mcweights="0, 1, 0">
<IsotropicKernel absorption_coefficient="10./m" scattering_coefficient="10./m">
</IsotropicKernel>

</homogeneous_scatterer>

Note the format is extensible enough to allow a composite
scatterer with multiple scatters, though at the time of writing
this paper the Numba version of this functionality is still under
development.

RESULTS

Two types of comparisons were performed to show the usefulness
of mcvine.acc. First, simulations comparing the CPU and
GPU shows a significant performance gain by using a GPU (Fig-
ures 3 – 5). Second, simulations from a more complete instrument
solution showing equivalent outcomes from a CPU and GPU
simulation were performed (Figure 6 and 7).

For the first study, we focus on the performance gain achieved
by the GPU accelerated version of MCViNE. We used a simple
instrument consisting of a source, sample, and detector to focus
on the sample assembly component. We performed tests with two
different samples: a simple spherical sample with an isotropic
scattering kernel, and a second with a more complex Uranium
Nitride (UN) sample. The UN sample was chosen as it has been
experimentally studied and is well modeled by single and multiple
scattering of a Quantum Harmonic oscillator model [27], [9]. The
UN sample is treated as a 1 cm polycrystalline cube to match
the experimental configuration [27]. The UN structure is the same
as rock salt structure with the light N atoms located between the
much heavier U atoms. The N vibrates as a harmonic oscillator
which provides equally spaced lines in energy transfer E. The
lines are modeled in MCViNE with a sample scattering kernel
containing a composite of E(Q) kernels with constant E values of
a 50 meV spacing from 0 to 350 meV.

Figure 3 shows the performance of the isotropic sphere sample
for the CPU version of MCViNE with one and 16 cores (blue and

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 49

103 104 105 106 107 108 109 1010 1011 1012

Neutron Count

100

101

102

103

104

105

106

107
Ti

m
e

(s
)

HSS Isotropic Sphere Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 3: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) for a
simple instrument using a homogeneous single scatterer (HSS) with a
aluminum sphere sample.

green curves) compared to the GPU version of MCViNE (orange
curve). At 1012 neutrons, mcvine.acc achieves a speedup of
1725x over a single core and 133x over 16 cores.

Two versions of this simulation were run for the UN sample:
the first with only single scattering events (Figure 4), and the sec-
ond with single and multiple scattering events (Figure 5). Single
scattering was implemented first to verify the overall workflow and
kernel generation of mcvine.acc. Multiple scattering was then
added to fully capture the realistic scattering physics. Multiple
scattering is much more computationally intensive since each
neutron can scatter more than once.

103 104 105 106 107 108 109 1010 1011

Neutron Count

100

101

102

103

104

105

106

Ti
m

e
(s

)

UN Single Scatterer Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 4: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) and GPU
(orange line) for the UN instrument with single scattering.

For the UN single scattering case, Figure 4 shows that for
1011 neutrons, the GPU version obtained a speedup of 383x over a
single core, and 33x over 16 cores. For the UN multiple scattering
case, Figure 5 shows that for 1010 neutrons, the GPU version
obtained a speedup of 137x over a single core, and 10x over 16
cores. Comparing the speedup achieved for the simple isotropic

103 104 105 106 107 108 109 1010

Neutron Count

100

101

102

103

104

105

Ti
m

e
(s

)

UN Multiple Scatterer Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 5: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) for the
UN instrument with multiple scattering.

Simulation Type Speedup over 1 Core Speedup over 16 Cores
HSS Isotropic Sphere 1725 133
UN Single Scatterer 383 33

UN Multiple Scatterer 137 10

TABLE 1: Speedup achieved by mcvine.acc over the CPU with
one core and 16 cores for each type of simulation.

sphere to the UN with single and multiple scattering shows the
additional complexity required for the UN sample. A speedup of
10x over 16-core CPU for the UN multiple scattering case is still
significant as some simulations can take on the order of days to
months to complete.

While the speedup over the CPU version of MCViNE is signif-
icant, further optimization is possible. Currently, each GPU thread
executes a single large kernel that models the instrument. For large
instruments that contain many components, the instrument kernel
can use too many registers which limits device occupancy. Addi-
tionally, a lot of components involve many conditional statements
which do not perform well on the GPU. This can be seen by
comparing the performance of complex sample components, such
as the UN sample, to the simple isotropic sphere.

Next we run a more complete test with the Uranium Nitride
sample to verify the same result between the CPU and GPU. A
study on UN was the first time the multiple-scattering as well as
the multiple-scattering physics in the CPU version of MCViNE
was used to explain experimental results [9]. Specifically, one of
the puzzles from the measured data was that the equally spaced
lines extend over all Q. It was determined that this was due
to multiple scattering. To more conclusively check this, a CPU
simulation using MCViNE was performed [9]. At the time this
CPU simulation was run, it took days to do such calculations.
Therefore, this is a good test case to check the speed increase
gained from using GPUs with mcvine.acc.

In this case, the incident beamline simulation (the simulation
up to the sample containing the SNS source, guide choppers and
slits) for the Wide Angular-Range Chopper Spectrometer (ARCS)
instrument [28], [29] was run using McStas [30], [31] inside a
workflow tool [32]. To configure the incident beam simulation in
this workflow a user simply provides an existing experimental data

50 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

0 5 10 15 20 25 30
Q (Å 1)

100

0

100

200

300

400
E

(m
eV

)

Fig. 6: The results from the UN simulation on ARCS with multiple
scattering turned on. Color indicates the scattering intensity where
brighter regions represent higher intensity. Note that the equally
spaced lines are visible even at low Q.

file that provides the necessary parameters. Specifically, an ARCS
data file with an Ei = 500 meV was fed into the workflow which
then generates an mcpl [33] file [34] for use in MCViNE. The
rest of the virtual instrument uses mcvine.acc to leverage the
GPU acceleration. It consists of a source component that reads the
mcpl file to generate neutrons for the neutron source component,
a sample assembly component, and a powder S(Q,E) monitor
component for direct-geometry inelastic neutron spectrometers.
The results are shown in Figure 6 and 7.

First, note the equally spaced lines in E shown in Figure 6.
This the expected quantum oscillator behavior. Furthermore, Fig-
ure 7 shows the Q dependence of the scattering intensity along
each of the E lines in Figure 6. The expected functional depen-
dence for each successive transition and the overall increase in
background expected from multiple scattering are both observed.

As this paper focuses on the GPU implementation, Figure 6
and 7 also show the agreement between the CPU and GPU
versions of MCViNE. The majority of the speed increase for
this particular simulation is in the incident beam line simulation
leveraging the McStas GPU implementation, and is now under an
hour rather than days. The MCViNE part of the simulation has
a speed up similar to the simpler test from ∼ 103s to ∼ 102s.
For a virtual neutron experiment the incident beam simulation can
often be reused in a series of source-sample-detector simulations
with various sample and detector configurations. For example, a
researcher may run the case with and without multiple scattering
or a series of related samples. Thus fast sample simulations
are critical to the overall speed of experimental analysis which
highlights the need for using mcvine.acc.

CONCLUSIONS

Python and Numba were used successfully to create
mcvine.acc, a new GPU accelerated version of MCViNE,
which has so far achieved significant performance gains over the
original CPU implementation. Using Python for this application
has helped increase the usability, extensibility, and maintainability

0 5 10 15 20 25 30
Q (Å 1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
te

ns
ity

 (a
rb

. u
ni

t)

40 < E < 60
90 < E < 110
140 < E < 160
190 < E < 210
240 < E < 260
290 < E < 310
340 < E < 360

Fig. 7: Constant-E cuts around the individual energy levels in the
I(Q,E) displayed in Figure 6. Note the functional dependence of each
level and the background increase are consistent with the physics and
the multiple scattering. The comparisons between the CPU and GPU
calculations are shown with the solid line and circles respectively.

of the codebase, while gaining performance benefits of GPUs by
using Numba. Additionally, the JIT nature of Numba allowed com-
plex combinations of CUDA kernels to be generated at runtime,
which would have been significantly harder to implement in other
languages.

The performance gains from using Numba have shown to
be beneficial. For a simple isotropic sphere sample, a speedup
of 133x was achieved over a 16-core CPU using a consumer-
grade GPU. For the more complex UN sample with multiple
scattering, a speedup of 10x was achieved over a 16-core CPU.
These performance gains are crucial for current simulations that
take on the order of days to weeks to complete. However, there are
still opportunities to further optimize these simulations to better
leverage the full capability of the GPU.

Using Numba for GPU acceleration has enabled more sophis-
ticated data analysis for neutron scattering and instrument design,
while overall lowering the development cost needed to obtain
significant performance improvements. The techniques used in
this project could also be applied to other scientific computing
applications.

ACKNOWLEDGEMENTS

For initial Framework development and instrument component de-
velopment, this research used resources of the Spallation Neutron
Source Second Target Station Project at Oak Ridge National Lab-
oratory (ORNL). Sample development was sponsored by ORNL’s
Laboratory Director’s Research and Development Fund. ORNL is
managed by UT-Battelle LLC for DOE’s Office of Science, under
Contract No. DE-AC05-00OR22725.

The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 51

REFERENCES

[1] J. Y. Y. Lin, H. L. Smith, G. E. Granroth, D. L. Abernathy, M. D.
Lumsden, B. Winn, A. A. Aczel, M. Aivazis, and B. Fultz, “MCViNE–
an object oriented monte carlo neutron ray tracing simulation package,”
Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, vol. 810,
pp. 86–99, 2016, https://doi.org/10.1016/j.nima.2015.11.118.

[2] J. Y. Y. Lin, F. Islam, G. Sala, I. Lumsden, H. Smith, M. Doucet, M. B.
Stone, D. L. Abernathy, G. Ehlers, J. F. Ankner, and G. E. Granroth,
“Recent developments of MCViNE and its applications at SNS,”
Journal of Physics Communications, vol. 3, no. 8, p. 085005, Aug.
2019, https://doi.org/10.1088/2399-6528/ab3622. [Online]. Available:
https://doi.org/10.1088%2F2399-6528%2Fab3622

[3] P. Willendrup, E. Farhi, E. Knudsen, U. Filges, and K. Lefmann, Com-
ponent Manual for the Neutron Ray-Tracing Package McStas. Danish
Techincal University, 2022.

[4] J. Y. Y. Lin, G. Sala, and M. B. Stone, “A super-resolution technique to
analyze single-crystal inelastic neutron scattering measurements using
direct-geometry chopper spectrometers,” Review of Scientific Instru-
ments, vol. 93, no. 2, p. 025101, 2022, https://doi.org/10.1063/5.0079031.

[5] F. Islam, J. Y. Y. Lin, R. Archibald, D. L. Abernathy, I. Al-Qasir, A. A.
Campbell, M. B. Stone, and G. E. Granroth, “Super-resolution energy
spectra from neutron direct-geometry spectrometers,” Review of Scientific
Instruments, vol. 90, no. 10, p. 105109, 2019, https://doi.org/10.1063/1.
5116147.

[6] G. Sala, J. Y. Y. Lin, A. M. Samarakoon, D. S. Parker, A. F.
May, and M. B. Stone, “Ferrimagnetic spin waves in honeycomb and
triangular layers of Mn3Si2Te6,” Phys. Rev. B, vol. 105, p. 214405,
Jun 2022, https://doi.org/10.1103/PhysRevB.105.214405. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.105.214405

[7] S.-H. Do, K. Kaneko, R. Kajimoto, K. Kamazawa, M. B. Stone, J. Y. Y.
Lin, S. Itoh, T. Masuda, G. D. Samolyuk, E. Dagotto et al., “Damped
dirac magnon in the metallic kagome antiferromagnet FeSn,” Physical
Review B, vol. 105, no. 18, p. L180403, 2022, https://doi.org/10.1103/
physrevb.105.l180403.

[8] J. C. Leiner, H. O. Jeschke, R. Valentí, S. Zhang, A. T. Savici,
J. Y. Y. Lin, M. B. Stone, M. D. Lumsden, J. Hong, O. Delaire,
W. Bao, and C. L. Broholm, “Frustrated magnetism in mott
insulating (v1−xcrx)2o3,” Phys. Rev. X, vol. 9, p. 011035, Feb
2019, https://doi.org/10.1103/PhysRevX.9.011035. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.9.011035

[9] J. Y. Y. Lin, A. A. Aczel, D. L. Abernathy, S. E. Nagler, W. Buyers,
and G. E. Granroth, “Using monte carlo ray tracing simulations to model
the quantum harmonic oscillator modes observed in uranium nitride,”
Physical Review B, vol. 89, no. 14, p. 144302, 2014, https://doi.org/10.
1103/physrevb.89.144302.

[10] E. Mamontov, C. Boone, M. Frost, K. Herwig, T. Huegle, J. Y. Y. Lin,
B. McCormick, W. McHargue, A. Stoica, P. Torres et al., “A concept of a
broadband inverted geometry spectrometer for the Second Target Station
at the Spallation Neutron Source,” Review of Scientific Instruments,
vol. 93, no. 4, p. 045101, 2022, https://doi.org/10.1063/5.0086451.

[11] K. An, A. D. Stoica, T. Huegle, J. Y. Y. Lin, and V. Graves,
“MENUS—materials engineering by neutron scattering,” Review of Sci-
entific Instruments, vol. 93, no. 5, p. 053911, 2022, https://doi.org/10.
1063/5.0089783.

[12] G. Sala, M. Mourigal, C. Boone, N. P. Butch, A. Christianson, O. Delaire,
A. DeSantis, C. Hart, R. P. Hermann, T. Huegle et al., “CHESS: The
future direct geometry spectrometer at the Second Target Station,” Review
of Scientific Instruments, vol. 93, no. 6, p. 065109, 2022, https://doi.org/
10.1063/5.0089740.

[13] V. O. Garlea, S. Calder, T. Huegle, J. Y. Y. Lin, F. Islam, A. Stoica, V. B.
Graves, B. Frandsen, and S. D. Wilson, “VERDI: Versatile diffractometer
with wide-angle polarization analysis for magnetic structure studies in
powders and single crystals,” Review of Scientific Instruments, vol. 93,
no. 6, p. 065103, 2022, https://doi.org/10.1063/5.0090919.

[14] G. E. Borgstahl, W. B. O’Dell, M. Egli, J. F. Kern, A. Kovalevsky, J. Y. Y.
Lin, D. Myles, M. A. Wilson, W. Zhang, P. Zwart et al., “EWALD: A
macromolecular diffractometer for the Second Target Station,” Review of
Scientific Instruments, vol. 93, no. 6, p. 064103, 2022, https://doi.org/10.
1063/5.0090810.

[15] Y. Liu, H. Cao, S. Rosenkranz, M. Frost, T. Huegle, J. Y. Y. Lin, P. Torres,
A. Stoica, and B. C. Chakoumakos, “PIONEER, a high-resolution single-
crystal polarized neutron diffractometer,” Review of Scientific Instru-
ments, vol. 93, no. 7, p. 073901, 2022, https://doi.org/10.1063/5.0089524.

[16] S. Qian, W. Heller, W.-R. Chen, A. Christianson, C. Do, Y. Wang, J. Y. Y.
Lin, T. Huegle, C. Jiang, C. Boone et al., “CENTAUR—the small-and
wide-angle neutron scattering diffractometer/spectrometer for the Second

Target Station of the Spallation Neutron Source,” Review of Scientific
Instruments, vol. 93, no. 7, p. 075104, 2022, https://doi.org/10.1063/5.
0090527.

[17] C. Do, R. Ashkar, C. Boone, W.-R. Chen, G. Ehlers, P. Falus, A. Faraone,
J. S. Gardner, V. Graves, T. Huegle et al., “EXPANSE: A time-of-flight
expanded angle neutron spin echo spectrometer at the Second Target Sta-
tion of the Spallation Neutron Source,” Review of Scientific Instruments,
vol. 93, no. 7, p. 075107, 2022, https://doi.org/10.1063/5.0089349.

[18] J. Ankner, R. Ashkar, J. Browning, T. Charlton, M. Doucet, C. Halbert,
F. Islam, A. Karim, E. Kharlampieva, S. Kilbey et al., “Cinematic
reflectometry using QIKR, the quite intense kinetics reflectometer,”
Review of Scientific Instruments, vol. 94, no. 1, p. 013302, 2023,
https://doi.org/10.1063/5.0122279.

[19] A. Brugger, H. Z. Bilheux, J. Y. Y. Lin et al., “The Complex, Unique,
and Powerful Imaging instrument for Dynamics (CUPI2D) at the
Spallation Neutron Source,” Review of Scientific Instruments, vol. 94,
no. 5, p. 051301, 2023, https://doi.org/10.1063/5.0131778. [Online].
Available: https://doi.org/10.1063/5.0131778

[20] J. Y. Y. Lin, T. Huegle, L. Coates, and A. D. Stoica, “A realistic
guide misalignment model for the Second Target Station instruments
at the Spallation Neutron Source,” Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 1047, p. 167881, 2023, https://doi.org/10.
1016/j.nima.2022.167881.

[21] M. B. Stone, G. Sala, and J. Y. Y. Lin, “Design of a radial collimator
for the SEQUOIA direct geometry chopper spectrometer,” Physica B:
Condensed Matter, vol. 564, pp. 17–21, 2019, https://doi.org/10.1016/j.
physb.2018.11.042.

[22] J. L. Niedziela, R. Mills, M. J. Loguillo, H. D. Skorpenske, D. Armitage,
H. L. Smith, J. Y. Y. Lin, M. S. Lucas, M. B. Stone, and D. L. Abernathy,
“Design and operating characteristic of a vacuum furnace for time-of-
flight inelastic neutron scattering measurements,” Review of Scientific
Instruments, vol. 88, no. 10, p. 105116, 2017, https://doi.org/10.1063/1.
5007089.

[23] T. E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami, G. Ehlers,
A. Ekkebus, G. Granroth, M. Hagen, K. Herwig, J. Hodges, C. Hoffmann,
C. Horak, L. Horton, F. Klose, J. Larese, A. Mesecar, D. Myles,
J. Neuefeind, M. Ohl, C. Tulk, X.-L. Wang, and J. Zhao, “The Spal-
lation Neutron Source in Oak Ridge: A powerful tool for materials
research,” Physica B: Condensed Matter, vol. 385, pp. 955–960, 2006,
https://doi.org/10.1016/j.physb.2006.05.281.

[24] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6, https://doi.org/10.1145/
2833157.2833162.

[25] J. Lin and C. Kendrick, “mcvine.acc,” https://github.com/mcvine/acc.
[Online]. Available: https://github.com/mcvine/acc

[26] T. R. Prisk, R. T. Azuah, D. L. Abernathy, G. E. Granroth, T. E.
Sherline, P. E. Sokol, J. Hu, and M. Boninsegni, “Zero-point motion
of liquid and solid hydrogen,” Phys. Rev. B, vol. 107, p. 094511,
Mar 2023, https://doi.org/10.1103/PhysRevB.107.094511. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.107.094511

[27] A. A. Aczel, G. E. Granroth, G. J. MacDougall, W. Buyers, D. L.
Abernathy, G. D. Samolyuk, G. M. Stocks, and S. E. Nagler, “Quantum
oscillations of nitrogen atoms in uranium nitride,” Nature Communica-
tions, vol. 3, p. 1124, 2012, https://doi.org/10.1038/ncomms2117.

[28] D. L. Abernathy, M. B. Stone, M. J. Loguillo, M. S. Lucas, O. De-
laire, X. Tang, J. Y. Y. Lin, and B. Fultz, “Design and operation of
the wide angular-range chopper spectrometer ARCS at the Spallation
Neutron Source,” Review of Scientific Instruments, vol. 83, no. 1, 2012,
https://doi.org/10.1063/1.3680104.

[29] M. B. Stone, J. L. Niedziela, D. L. Abernathy, L. DeBeer-Schmitt,
G. Ehlers, O. Garlea, G. E. Granroth, M. Graves-Brook, A. I. Kolesnikov,
A. Podlesnyak, and B. Winn, “A comparison of four direct geom-
etry time-of-flight spectrometers at the Spallation Neutron Source,”
Review of Scientific Instruments, vol. 85, no. 4, p. 045113, 2014,
https://doi.org/10.1063/1.4870050.

[30] P. K. Willendrup and K. Lefmann, “McStas (i): Introduction, use, and ba-
sic principles for ray-tracing simulations,” Journal of Neutron Research,
vol. 22, no. 1, pp. 1–16, 2020, https://doi.org/10.3233/JNR-190108.

[31] ——, “McStas (ii): An overview of components, their use, and advice
for user contributions,” Journal of Neutron Research, vol. 23, no. 1, pp.
7–27, 2021, https://doi.org/10.3233/JNR-200186.

[32] G. R. Watson, G. Cage, J. Fortney, G. E. Granroth, H. Hughes, T. Maier,
M. McDonnell, A. Ramirez-Cuesta, R. Smith, S. Yakubov, and W. Zhou,
“Calvera: A platform for the interpretation and analysis of neutron
scattering data,” in Accelerating Science and Engineering Discoveries

https://doi.org/10.1016/j.nima.2015.11.118
https://doi.org/10.1088/2399-6528/ab3622
https://doi.org/10.1088%2F2399-6528%2Fab3622
https://doi.org/10.1063/5.0079031
https://doi.org/10.1063/1.5116147
https://doi.org/10.1063/1.5116147
https://doi.org/10.1103/PhysRevB.105.214405
https://link.aps.org/doi/10.1103/PhysRevB.105.214405
https://doi.org/10.1103/physrevb.105.l180403
https://doi.org/10.1103/physrevb.105.l180403
https://doi.org/10.1103/PhysRevX.9.011035
https://link.aps.org/doi/10.1103/PhysRevX.9.011035
https://doi.org/10.1103/physrevb.89.144302
https://doi.org/10.1103/physrevb.89.144302
https://doi.org/10.1063/5.0086451
https://doi.org/10.1063/5.0089783
https://doi.org/10.1063/5.0089783
https://doi.org/10.1063/5.0089740
https://doi.org/10.1063/5.0089740
https://doi.org/10.1063/5.0090919
https://doi.org/10.1063/5.0090810
https://doi.org/10.1063/5.0090810
https://doi.org/10.1063/5.0089524
https://doi.org/10.1063/5.0090527
https://doi.org/10.1063/5.0090527
https://doi.org/10.1063/5.0089349
https://doi.org/10.1063/5.0122279
https://doi.org/10.1063/5.0131778
https://doi.org/10.1063/5.0131778
https://doi.org/10.1016/j.nima.2022.167881
https://doi.org/10.1016/j.nima.2022.167881
https://doi.org/10.1016/j.physb.2018.11.042
https://doi.org/10.1016/j.physb.2018.11.042
https://doi.org/10.1063/1.5007089
https://doi.org/10.1063/1.5007089
https://doi.org/10.1016/j.physb.2006.05.281
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://github.com/mcvine/acc
https://github.com/mcvine/acc
https://doi.org/10.1103/PhysRevB.107.094511
https://link.aps.org/doi/10.1103/PhysRevB.107.094511
https://doi.org/10.1038/ncomms2117
https://doi.org/10.1063/1.3680104
https://doi.org/10.1063/1.4870050
https://doi.org/10.3233/JNR-190108
https://doi.org/10.3233/JNR-200186

52 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Through Integrated Research Infrastructure for Experiment, Big Data,
Modeling and Simulation, K. Doug, G. Al, S. Pophale, H. Liu, and
S. Parete-Koon, Eds. Cham: Springer Nature Switzerland, 2022, pp.
137–154.

[33] T. Kittelmann, E. Klinkby, E. Knudsen, P. Willendrup, X. Cai, and
K. Kanaki, “Monte Carlo Particle Lists: MCPL,” Computer Physics
Communications, vol. 218, pp. 17–42, 2017, https://doi.org/10.1016/
j.cpc.2017.04.012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465517301261

[34] G. Granroth, D. L. Abernathy, J. Lin, W. Zhou, and P. K. Wilendrup,
“Incident beamline simulation for ei= 510 mev on the ARCS
spectrometer at the Spallation Neutron Source,” https://doi.org/10.13139/
ORNLNCCS/1975747, 6 2023, https://doi.org/10.13139/ORNLNCCS/
1975747. [Online]. Available: https://doi.ccs.ornl.gov/ui/doi/438

https://doi.org/10.1016/j.cpc.2017.04.012
https://doi.org/10.1016/j.cpc.2017.04.012
https://www.sciencedirect.com/science/article/pii/S0010465517301261
https://www.sciencedirect.com/science/article/pii/S0010465517301261
https://doi.org/10.13139/ORNLNCCS/1975747
https://doi.org/10.13139/ORNLNCCS/1975747
https://doi.org/10.13139/ORNLNCCS/1975747
https://doi.org/10.13139/ORNLNCCS/1975747
https://doi.ccs.ornl.gov/ui/doi/438

	Introduction
	Method
	MCViNE Overview
	Component Hierarchy
	CUDA Kernel Generation for an Instrument
	Sample Kernels and CSG

	Results
	Conclusions
	Acknowledgements
	References

