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EEG-to-fMRI Neuroimaging Cross Modal Synthesis in
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Abstract—Electroencepholography (EEG) and functional magnetic resonance
imaging (fMRI) are two ways of recording brain activity; the former provides
good time resolution but poor spatial resolution, while the converse is true for
the latter. Recently, deep neural network models have been developed that
can synthesize fMRI activity from EEG signals, and vice versa. Because these
generative models simulate data, they make it easier for neuroscientists to test
ideas about how EEG and fMRI signals relate to each other, and what both
signals tell us about how the brain controls behavior. To make it easier for
researchers to access these models, and to standardize how they are used,
we developed a Python package, EEG-to-fMRI, which provides cross modal
neuroimaging synthesis functionalities. This is the first open source software
enabling neuroimaging synthesis. Our main focus is for this package to help
neuroscience, machine learning, and health care communities. This study gives
an in-depth description of this package, along with the theoretical foundations
and respective results.

Index Terms—Electroencephalography, Functional Magnetic Resonance Imag-
ing, Synthesis, Deep Learning, Learning, Machine Learning, Computer Vision

Introduction

Neuronal activity, usually measured through electroencephalog-
raphy (EEG), is related to haemodynamical activity, measured
through functional magnetic resonance imaging (fMRI). The first
captures the dynamics of the electrical field, whose source is
located from the firing neurons’ action potentials. In its turn, the
second measures the blood supply dynamics. These two while
being studied simultaneously [1], [2], [3], [4], [5], [6], [7], [8]
differ in many aspects such as: temporal and spatial resolution,
brain functions captured, recording and hardware cost. Recently
we have seen several studies that use deep neural network models
[9] to learn a mapping from EEG data to and from fMRI data
[10], [11]. These are a type of generative models [12], that
sample/synthesize instances from a different data source (instead
of a distribution). Such a model could allow health care cost
reductions and discoveries of new neuroscience insights on the
relationship between these two modalities. Indeed, pathologies
that require MRI scans diagnostics benefit from a lower cost EEG
assessment, since availability of MRI hardware is very scarce [13].
As Python [14] becomes a hub for scientific development [15],
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[16], [17] we find the need to provide open source software that
provides solutions for EEG to fMRI synthesis, urgent, in order for
third party scientific contributions coming from other laboratories
to coexist and health care software integration to develop for
diagnostic settings. To that end, we provide a description of the
open source software EEG-to-fMRI, which originated from an
academic scientific project funded by Fundação para a Ciência
e Tecnologia, and make publicly available a github repository.

Methods

The mapping function provided in this software is the one
proposed by [11]. It consists on transforming the EEG from a
channel by time representation to a channel by time-frequency
one, achieved using the short time Fourier transform [18] by means
of the fast Fourier transform (scipy.fft.fft) available in the SciPy
package. The latter corresponds to the second step of the diagram
illustrated in Figure 1. In the second step, this representation is
then forward through a deep neural network (implemented as a
tf.keras.Model), with contributions ranging from Resnet blocks
[19], an automated machine learning framework [20] and Fourier
features [21]. Ultimately, this enables the prediction of an fMRI
volume associated with a 26 second segment of an EEG recording.

Description

The dependencies of each component are described in
an UML diagram. Overall to install the package, the
user is required to install the following dependencies:
tensorflow 2.9.0, matplotlib 3.5.3, mne
0.23.4, nilearn 0.7.0, tensorflow_probability
0.12.2, tensorflow_determinism 0.3.0, and
tensorflow_addons 0.19.0. As seen there is a high
dependency in tensorflow related packages. This is due to the
whole system provided being built in tensorflow, a library that
enables automatic differentiation and is widely used for deep
learning model development.

Package modules

This package, as it is provided, has eight main modules:

• models: here you will find the code that implements
the models for synthesis and classification. The synthe-
sis models are located in the synthesizers.py, where the
class EEG_to_fMRI is implemented. This class defines a
tf.keras.Model, composed of two encoders, one for
the EEG and another for the fMRI. Additionally, there is
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Fig. 1: The pipeline of the EEG to fMRI synthesis project consists of processing EEG recordings, that are sourced from a human subject that
goes through an EEG recording sesssion, then processing the channel by time signal and taking the short time Fourier transform. The latter,
gives us the time frequency representation of the EEG signal. The novelty of this software is that it provides a model that given as input the
EEG signal it predicts the corresponding fMRI volume associated with that segment. A video demonstration of the whole pipeline is available
on Youtube.

a decoder that maps the latent EEG representation, that is
the output of the EEG encoder, to the estimate of the fMRI
volume associated. The fMRI encoder is defined in the
fmri_ae.py file. The task would not be complete without
the extrapolation of the synthesis model to a classification
task. To that end, two linear classifiers are provided, the
ViewLatentContrastiveClassifier and the ViewLatentLike-
lihoodClassifier, corresponding to a contrastive latent loss
and a cross entropy error driven classification, respectively.
The extrapolation is made by taking the output of the
neural flow that comes from the EEG, that is the EEG
encoder and the decoder.

• layers: this module contains the layers which compose the
synthesizer models. It provides five main types of layers.
First, the TopographicalAttention computes a self attention
mechanism in the channels dimension of the EEG [11] that
allows the representation to be correctly processed by the
convolutional blocks. Second, the ResnetBlock [19] imple-
ments a residual block composed of convolutional layers.
This block allows efficient gradient propagation, by tack-
ling the vanishing gradient phenomena. Third, the Fourier-
Features layer projects cosines functions of different shifts
and biases to build a latent spectral basis for the prediction
of the fMRI volume. Fourth, the DenseVariational is
an implementation of the tf.keras.layers.Dense
layer for two-dimensional inputs, whose weights are drawn
from gaussian distributions. Last, but not least, we provide
the DCT based layers, which implement the discrete cosine
transform [22]. These layers are useful for alternative
ways of decoding the latent representation of the EEG to
produce the desired fMRI volume.

• regularizers: here the implementation of different regu-
larizers for the synthesizer model is provided. Most im-
portantly in the activity_regularizers.py file is found the
OrganizeChannels implementation which can be added in
the TopographicalAttention layer, so that the layer does not
surpress any channel;

• learning: here are implemented the routines for the opti-
mization of the models, namely the losses and the train
procedures. The train.py is a generalizable training routine
that fits any type of tf.keras.Model instance. Fol-
lowing, the losses.py contain a set of losses that are imple-
mented to train the models provided in the models module.

Most importantly, here you will find the mae_cosine for
the deterministic versions of the EEG_to_fMRI model,
the LaplacianLoss for variational versions, and the Con-
trastiveClassificationLoss which serves as the cost func-
tion for the ViewLatentContrastiveClassifier;

• explainability: this module contains explainability meth-
ods that were employed for the models developed. The
implementation for the layer wise relevance propagation
[23] can be found in lrp.py. In particular, since this type
of algorithm is not model agnostic, we have the imple-
mentation for all the permutations’ of operations that the
EEG_to_fMRI model can have;

• data: this is maybe the most important module for re-
searchers wanting to try out their collected data with this
software. Here all of the functions, that read data and
manipulate it as such to allow the efficient training, are
implemented. Starting with the eeg_utils.py, where the
get_eeg_instance_<DS> function is implemented for a
limited set of datasets that participated in the experiments
of the associated studies. The <DS> stands for the iden-
tifier of the dataset. Currently there are a set of functions
implemented for publicly available datasets. Please check
the description of the code in the github repository for
more details. In the fmri_utils.py file one finds functions of
the form get_individuals_paths_<DS>, that have the exact
same function as the functions to read EEG recordings,
but in this case they read nifti file format. These type
of files are the standard format for fMRI recordings.
Finally, the data_utils.py and preprocessed_data.py are
responsible for concatenating the EEG and fMRI instance
pairs, with all the alignments and event synchronization
events taken into account, as well as the processing to
build tf.data.Dataset classes.

• metrics: in this module are implemented the metrics usu-
ally used to evaluate synthesis of generated images, such as
the root mean squared error, mean absolute error, structural
similarity index measure [24], among others;

• utils: Last but not least, is the utilities module, which
provides the user with print functions, configuration of
the tensorflow environments and several visualizations
that were used in the original studies that developed the
package.

https://youtu.be/47uJbI0hU_I
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Fig. 2: The synthesized signal of fMRI. This is the output visualization when running the code for the classification notebook.

New data integration

In order to use the software provided for new data, we recommend
that the dataset is structured as shown in Figure 3. If the data is

Fig. 3: Recommended structure of the dataset directory.

provided as illustrated then the user only has to name the directory
of the data as 01. This should suffice for the correct loading of the
data. Any type of issue that is encountered for this package should
be published as an issue in the official github repository.

Building an EEG to fMRI model

For the user to build an EEG to fMRI model, they have to first
import the correct library module and tensorflow.

from tensorflow as tf
from eeg_to_fmri.models.synthesizers

import EEG_to_fMRI

from eeg_to_fmri.models.synthesizers
import parameters

from eeg_to_fmri.models.synthesizers
import na_specification_eeg

from eeg_to_fmri.models.fmri_ae
import na_specification_fmri

Let us define the size of the EEG representation x⃗ ∈R64×134×10×1,
the fMRI representation y⃗ ∈ R64×64×30×1, and the latent represen-
tation, for both the EEG and fMRI, that is z⃗x ,⃗zy ∈ R7×7×7.

fmri_dim=(64,134,10,1)
fmri_dim=(64,64,30,1)
latent_dim=(7,7,7)

Then, we have to define the parameters for the model, these are
provided as a variable in the synthesizers.py.

learning_rate,weight_decay,kernel_size,
stride_size,batch_size,latent_dimension,
n_channels,max_pool,batch_norm,
skip_connections,dropout,
n_stacks,outfilter,local=parameters

Some of these parameters will also be used to define the fMRI
encoder. Since the fMRI encoder is a different class, we need to
define the initialization parameters.

fmri_parameters=(parameters, latent_dim,
fmri_dim, kernel_size, stride_size,
n_channels, max_pool, batch_norm,
weight_decay, skip_connections,
n_stacks, True, False,
outfilter, dropout, None,
False, na_specification_fmri)

Next, we have all of the parameters necessary to build a simple
deterministic version of the EEG to fMRI model.

with tf.device('/CPU:0'):
model = EEG_to_fMRI(latent_dim, eeg_dim,

na_specification_eeg, n_channels,
weight_decay=weight_decay,
skip_connections=True, batch_norm=True,
fourier_features=True,
random_fourier=True,
topographical_attention=True,
conditional_attention_style=True,
conditional_attention_style_prior=False,
local=True, seed=None,
fmri_args = fmri_parameters)
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The model is built once it is specified the input dimension, this
is done through the tf.keras.Layer#build. This will initialize all of
the weights of the network.

model.build((None,)+eeg_dim, (None,)+fmri_dim)

Cost function and optimization

Regarding the cost function, which is provided in the learning
module at the losses.py file, we can specify different metrics
that are provided. Take, for instance, the example of using an
approximation of the mean absolute error at the output for the
fMRI volume prediction ˆ⃗y, and approximation of the latent repre-
sentations of the fMRI as proposed by [11]. This is reduced to the
mathematical formula

L (⃗x, y⃗,⃗zx ,⃗zy) = ||⃗y− ˆ⃗y||11 +1−
z⃗x ·⃗ zy

||⃗zx||22||⃗zy||22
. (1)

In terms of code, this is already implemented and can be loaded
directly.

from eeg_to_fmri.learning import losses
loss_fn=losses.mae_cosine

The optimizer is already provided in the tensorflow library
and its corresponding learning rate is given in the parameters
variable.

optimizer=
tf.keras.optimizers.Adam(learning_rate)

Training the model requires an input, the EEG x⃗, and an output,
the fMRI y⃗. The architecture processes both the EEG and fMRI,
producing the latent representation for both. Proceeding the latent
EEG representation, z⃗x, is fed to the decoder which estimates the
fMRI ˆ⃗y.

def apply_gradient(model, optimizer, loss_fn,
x, y, return_logits=False, call_fn=None):
with tf.GradientTape(persistent=True) as

tape:
logits=model(x, y, training=True)
regularization=0.
if(len(model.losses)):

regularization=
tf.math.add_n(model.losses)

loss=loss_fn(y, logits)+regularization
gradients=tape.gradient(loss,

model.trainable_variables)
optimizer.apply_gradients(zip(gradients,

model.trainable_variables))
return tf.reduce_mean(loss)

The training routine functions are found in the learning module.
The function apply_gradient computes the forward and back-
ward pass of the neural network. Note that the input of the
EEG_to_fMRI model is composed of two tensors, the EEG and
fMRI, which is the reason why one gives the model both x and y.
The loss computes both the estimation of the fMRI according to
the mean absolute error (MAE) and the cosine distance between
the latent representations. Regularization terms, such as weight
decay and other activity regularizers that may or may not partic-
ipate in the model, are also added to the loss. The loss function
used for the synthesis task, the one used in [11], is the MAE and
the cosine distance. This loss function is defined in the learning
module, found at the losses.py file. This loss receives a tf.Tensor
object, y_true, and a list of tf.Tensor. The list of tensors contains
the outputs of the neural network that should be approximate the
ground truth. The first element of the list is the estimated fMRI
volume and the second and third items are the latent EEG and
fMRI representations, respectively.

def mae_cosine(y_true, y_pred):
return tf.reduce_mean(

tf.math.abs(y_pred[0] - y_true),
axis=(1,2,3)) +
cosine(y_pred[1], y_pred[2])

At test time, the EEG_to_fMRI model can discard the fMRI input.
To that end, only the decoder attribute is called, which is composed
of the EEG encoder and the decoder.

def call(self, x1, x2):
if(self.training):

return [self.decoder(x1),
self.eeg_encoder(x1),
self.fmri_encoder(x2)]

return self.decoder(x1)

Note that, the pretrained_EEG_to_fMRI class processes a pre-
trained model of the type EEG_to_fMRI and builds a new model
that only processes EEG and outputs an fMRI prediction given the
representation learned. This class is built to be then appended with
a classifier, that can be either a ViewLatentContrastiveClassifier or
a ViewLatentLikelihoodClassifier.

Examples

In this section, we walk through the examples given in jupyter
notebooks.

Synthesis

We provide a compressed version of the dataset of [25]. Users
can directly execute the code and have both the python package,
as well as the dataset, setup in a google colab environment.
The flow of execution has been already described. In the end
a synthesized fMRI is shown, as illustrated in Figure 2. This
image is built using the viz_utils.py. The user can find metrics for
synthesis evaluation in eeg_to_fmri.metrics.quantitative_metrics.
We report results from the [11] study on the NODDI dataset [25].
An example with a reduced dataset is available in this synthesis
notebook. The best model, which used the configuration of the
eeg_to_fmri.models.synthesizers.EEG_to_fMRI achieved 0.3972
RMSE and 0.4613 SSIM. This constitutes the state-of-the-art for
this task and provides a view that can be applied in EEG only
datasets for classification task.

Classification

We also provide a compressed version of the dataset of [26]. This
example, available in this classification notebook, is based on a
publicly available dataset that contains individuals diagnosed with
schizophrenia and healthy controls. The whole goal of the project
is to be applied in an health care setting and to this end we employ
an end to end software solution. The whole software package is
able to synthesize fMRI and adapt to a classification setting, that
given EEG recordings outputs a set of probabilities for each group
of people considered in the dataset.

Collaboration

Ultimately, the goal of this package is to collect, in one package,
methods for EEG to fMRI synthesis. We welcome contributions
from authors of related work such as [10]. In the future, we plan
to add a module or example folder with implementations of these
approaches, so that other research groups can easily access them
and reproduce key results.

On a higher level, this software is encouraged for testing its ap-
plicability in health care settings. The impact, that such mappings
from EEG to fMRI, would have on society is enormous, given that

https://github.com/eeg-to-fmri/eeg-to-fmri/blob/main/examples/synthesis.ipynb
https://github.com/eeg-to-fmri/eeg-to-fmri/blob/main/examples/synthesis.ipynb
https://github.com/eeg-to-fmri/eeg-to-fmri/blob/main/examples/classification_contrastive.ipynb
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Fig. 4: Output of the predicted fMRI when given an EEG representation. Note that, due to the EEG encoder being optimized towards classifying
the data according to the groups of individuals defined, e.g. schizophrenic and healthy controls, the decoder (that has the parameters frozen)
gives a slightly altered representation. This change is seen in the produced fMRI, where activity beyond the limit of the human scalp is reported.
Please recall Figures 1 and 2 to directly compare with an fMRI representation without these flaws.

the diagnostic is faithful. Take for instance the example of the MRI
machine density across the African continent. In the worst case
scenario, Nigeria has a density of 0.33 MRI machines per million
people, according to [13]. To let that sink in, imagine having to
wait in a line of 3 million people to get a diagnostic exam. This
type of waiting bottleneck impacts greatly the development of
diseases for the worse. Countries in such conditions would greatly
benefit from contributions that further advance this scientific field.
Even fortunate countries, whose economy thrives, that are able
to provide their populations with a good ratio of MRI machines,
they still have small portions of the population who live in remote
areas. These people find it hard to get quality health care, without
having to travel significant distances.

Conclusion

This is the first package, to the best of our knowledge, that
provides a machine learning oriented synthesis between functional
neuroimaging modalities (EEG and fMRI). It is targeted to help
the neuroscience community, in tasks such as modality augmen-
tation, resolution enhancement, neuroimaging explainability tech-
niques, among others. We hope to motivate researchers, scientists,
and software developers to contribute to this package which we
have been so passionate about throughout the last years.
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