
PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 59

vak: a neural network framework for researchers
studying animal acoustic communication

David Nicholson‡∗, Yarden Cohen§

✦

Abstract—How is speech like birdsong? What do we mean when we say
an animal learns their vocalizations? Questions like these are answered by
studying how animals communicate with sound. As in many other fields, the
study of acoustic communication is being revolutionized by deep neural net-
work models. These models enable answering questions that were previously
impossible to address, in part because the models automate analysis of very
large datasets. Acoustic communication researchers have developed multiple
models for similar tasks, often implemented as research code with one of
several libraries, such as Keras and Pytorch. This situation has created a real
need for a framework that allows researchers to easily benchmark multiple
models, and test new models, with their own data. To address this need, we
developed vak (https://github.com/vocalpy/vak), a neural network framework
designed for acoustic communication researchers. ("vak" is pronounced like
"talk" or "squawk" and was chosen for its similarity to the Latin root voc, as in
"vocal".) Here we describe the design of the vak, and explain how the framework
makes it easy for researchers to apply neural network models to their own
data. We highlight enhancements made in version 1.0 that significantly improve
user experience with the library. To provide researchers without expertise in
deep learning access to these models, vak can be run via a command-line
interface that uses configuration files. Vak can also be used directly in scripts
by scientist-coders. To achieve this, vak adapts design patterns and an API
from other domain-specific PyTorch libraries such as torchvision, with modules
representing neural network operations, models, datasets, and transformations
for pre- and post-processing. vak also leverages the Lightning library as a
backend, so that vak developers and users can focus on the domain. We provide
proof-of-concept results showing how vak can be used to test new models and
compare existing models from multiple model families. In closing we discuss our
roadmap for development and vision for the community of users.

Index Terms—animal acoustic communication, bioacoustics, neural networks

Introduction

Are humans unique among animals? We seem to be the only
species that speaks languages [1], but is speech somehow like
other forms of acoustic communication in other animals, such
as birdsong [2]? How should we even understand the ability of
some animals to learn their vocalizations [3]? Questions like these
are answered by studying how animals communicate with sound
[4]. As others have argued, major advances in this research will
require cutting edge computational methods and big team science
across a wide range of disciplines, including ecology, ethology,

* Corresponding author: nicholdav@gmail.com
‡ Independent researcher, Baltimore, Maryland, USA
§ Weizmann Institute of Science, Rehovot, Israel

Copyright © 2023 David Nicholson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

bioacoustics, psychology, neuroscience, linguistics, and genomics
[5], [6], [3], [1].

Research on animal acoustic communication is being revolu-
tionized by deep learning algorithms [5], [6], [7]. Deep neural
network models enable answering questions that were previously
impossible to address, in part because these models automate
analysis of very large datasets. Within the study of animal acoustic
communication, multiple models have been proposed for similar
tasks--we review these briefly in the next section. These models
have been implemented using a range of frameworks for neural
networks, including PyTorch (as in [8] and [9]), Keras and Tensor-
flow (as in [10] and [11]), and even in programming environments
outside Python such as Matlab (as in [12]). Because of this, it
is difficult for researchers to directly compare models, and to
understand how each performs on their own data. Additionally,
many researchers will want to experiment with their own models
to better understand the fit between tasks defined by machine
learning researchers and their own question of interest. All of
these factors have created a real need for a framework that allows
researchers to easily benchmark models and apply trained models
to their own data.

To address this need, we developed vak [13] (https://github.
com/vocalpy/vak), a neural network framework designed for re-
searchers studying animal acoustic communication. vak is already
in use in at least 10-20 research groups to our knowledge, and
has already been used in several publications, including [8], [9],
[14], [15]. Here we describe the design of the vak framework,
and explain how vak makes it easy for acoustic communication
researchers to work with neural network models. We have also
recently published an alpha release of version 1.0 of the library,
and throughout this article we highlight enhancements made in this
version that we believe will significantly improve user experience.

Related work

First, we briefly review related literature, to further motivate the
need for a framework. A very common workflow in studies of
acoustic behavior is to take audio recordings of one individual
animal and segment them into a sequence of units, after which
further analyses can be done, as reviewed in [16]. Some analyses
require further annotation of the units to assign them to one of
some set of classes, e.g. the unique syllables within an individual
songbird’s song. An example of segmenting audio of Bengalese
finch song into syllables and annotating those syllables is shown
in Figure 1.

Several models have been developed to detect and classify a
large dataset of vocalizations from an individual animal. These are

https://github.com/vocalpy/vak
mailto:nicholdav@gmail.com
https://github.com/vocalpy/vak
https://github.com/vocalpy/vak


60 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Schematic of analyzing acoustic behavior as a sequence of
units. Top panel shows a spectrogram of an individual Bengalese
finch’s song, consisting of units, often called syllables, separated by
brief silent gaps. Bottom panel illustrates one method for segmenting
audio into syllables that are annotated: a threshold is set on the audio
amplitude to segment it into syllables (a continuous period above the
threshold), and then a human annotator labels each syllable (e.g.,
with a GUI application). Adapted from [8] under CC BY 4.0 license.

all essentially supervised machine learning tasks. Some of these
models seek to align a neural network task with the common
workflow just described [16], where audio is segmented into a
sequence of units with any of several methods [17], that are then
labeled by a human annotator. The first family of neural network
models reduces this workflow to a frame classification problem
[18], [19]. That is, these models classify a series of frames,
like the columns in a spectrogram. Sequences of units (e.g.,
syllables of speech or birdsong) are recovered from this series of
frame classifications with post-processing. Essentially, the post-
processing finds the start and stop times of each continuous run
of a single label. Multiple neural network models have been
developed for this frame classification approach, including [8] and
[20]. A separate approach from frame classification models has
been to formulate recognition of individual vocalizations as an
object detection problem. To our knowledge this has been mainly
applied to mouse ultrasonic vocalizations as in [12].

Another line of research has investigated the use of unsu-
pervised models to learn a latent space of vocalizations. This
includes the work of [11] and [9]. These unsupervised neural
network models allow for clustering vocalizations in the learned
latent space, e.g., to efficiently provide a human annotator with an
estimate of the number of classes of vocalizations in an animal’s
repertoire [11], and/or to measure similarity between vocalizations
of two different animals [9], [21]. It is apparent that unsupervised
approaches are complementary to supervised models that automate
labor-intensive human annotation. This is another reason that a
single framework should provide access to both supervised and
unsupervised models.

Methods

In this section we describe the design of vak: its application pro-
gramming interface (API) and its command-line interface (CLI).
We begin by introducing the design of vak at the highest level.

Design

vak relies on PyTorch [22] for neural networks, because PyTorch
accommodates Pythonic idioms and low-level control flow within
networks when needed. In version 1.0, we have additionally
adopted the Lightning library [23] as a backend, freeing us up
as developers to focus on the research domain while benefiting

from the Lightning team’s engineering expertise. Of course, vak
relies heavily on the core libraries of the scientific Python stack.
Many functions make use of numpy [24], [25], scipy [26], and
matplotlib [27], [28]. In particular, the built-in workflows for
preparing datasets make frequent use of pandas [29] to work with
tabular data formats, and dask [30] to enable scalable, distributed
processing of very large datasets with mixed file formats, which
are common in acoustic communication research. Functionality
for preparing datasets is specifically tailored to the needs of
acoustic communication researchers in other ways as well. For
example, to parse the wide range of annotation formats used by
acoustic communication researchers across disciplines, we use the
pyOpenSci package crowsetta [31].

In terms of its API, the design of vak is most similar to other
domain-specific libraries developed with torch, such as torchvision
[32], but here the domain is animal acoustic communication
research. (Perhaps surprisingly, many of the models proposed to
date in this area are essentially adopted from computer vision.)
Thus, similar to the torchvision API, vak provides modules for
neural network models, operations, transformations for loading
data, and datasets.

In addition to its torchvision-like API, vak provides a simple
command-line interface (CLI) that allows researchers to work with
neural network models without requiring significant expertise in
Python programming or deep learning. We first describe the API,
so that key concepts have been introduced when we explain the
usage of the CLI.

Models

As its name implies, the models module is where implementa-
tions of neural network models are found. Our design is focused
on a user who wants to benchmark different models within an
established task and data processing pipeline as defined by our
framework. In version 1.0 of vak, we have introduced abstractions
that make it easier for researchers to work with the built-in models
and with models they declare in code outside of the library, e.g., in
a script or notebook. At a high level, we achieved this by adopting
the Lightning library as a backend. By sub-classing the core
lightning.LightningModule class, we provide users with
per-model implementations of methods for training, validation,
and even for forwarding a single batch or sample through the
model. We briefly describe the abstractions we have developed to
make it easier to work with models.

Abstractions for declaring a model in vak

Our goal is to make it so that a scientist-coder is able to
use any of the built-in models, and experiment with their own
models, without needing to contribute code to vak or to use a
developer-focused mechanism like entry points. To achieve this,
we provide a decorator, vak.models.model, that is applied to
a model definition to produce a sub-class of a model family. The
vak.models.model decorator additionally adds any class it
decorates to a registry. In the rest of the section we explain these
abstractions and how they make it possible to easily test different
models.

A model definition takes the form of a class with four required
class variables: network, loss, optimizer, and metrics.
In other words, our abstraction asserts that the definition of a
neural network model consists of the neural network function,
the loss function used to optimize the network’s parameters, the
optimizer, and the metrics used to assess performance.

https://creativecommons.org/licenses/by/4.0/
https://packaging.python.org/en/latest/specifications/entry-points/


VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 61

To relate a model as declared with a definition to
the machine learning tasks that we implement within
the vak framework, we introduce the concept of model
families. A model family is represented by a sub-class
of the core lightning.LightningModule class.
Each class representing a family implements family-
specific methods: training_step, validation_step,
prediction_step, and forward. In this way, model
families are defined operationally: a model can belong to a family
if it accepts the inputs provided by logic within the training,
validation, and prediction steps, and the model also produces the
appropriate outputs needed within those same steps.

With these two abstractions in hand, we can add models to vak
as follows: we start by applying the model decorator to create a
new subclass of a model family. This new subclass has the same
name as the class that it decorates, which is the class representing
the model definition. The decorator then adds a single attribute to
this sub-class, the definition, that is used when initializing a
new instance of the specific model. After creating this sub-class
and adding this attribute, the model decorator finally registers
the model within the vak.models.registry module. This
allows other functions within vak to find the model by its name
in the registry. The registry is implemented with its own helper
functions and module-level dict variables that are updated by
those functions. We present a listing that demonstrates usage of
the abstractions just described.

from vak.models import (
model,
FrameClassificationModel

)
from vak.metrics import (

Accuracy,
Levenshtein,
SegmentErrorRate,

)

@model(family=FrameClassificationModel)
class TweetyNoLSTMNet:

"""TweetyNet model without LSTM layer"""
network = TweetyNetNoLSTM
loss = torch.nn.CrossEntropyLoss
optimizer = torch.optim.Adam
metrics = {

'acc': Accuracy,
'levenshtein': Levenshtein,
'segment_error_rate': SegmentErrorRate,
'loss': torch.nn.CrossEntropyLoss}

default_config = {
'optimizer':

{'lr': 0.003}
}

This example is used in an experiment accompanying this paper,
as described below in Results. That experiment demonstrates how
the decorator enables models to be declared and used in a script
outside of vak. Here we can notice that we apply the model
decorator to the class TweetyNoLSTMNet, which is the model
definition. Notice also that we pass in as an argument to the
decorator the name of the model family that we wish to sub-
class, FrameClassificationModel. When Python’s import
machinery parses the script, the model class will be created and
added to vak’s registry, so that it can be found by other functions
for training and evaluating models. The models that are built in to
vak use the exact same decorator.

Model families

Having introduced the abstraction needed to declare models within
the vak framework, we now describe the families we have imple-
mented to date.

Frame classification. As stated in the Related Work section,
one way to formulate the problem of segmenting audio into
sequences of units so that it can be solved by neural networks is to
classify each frame of audio, or a spectrogram produced from that
audio, and to then recover segments from this series of labeled
frames [18], [19].

This problem formulation works, but an issue arises from the
fact that audio signals used by acoustic communication researchers
very often vary in length. E.g., a bout of Bengalese finch birdsong
can vary from 1-10 seconds, and bouts of canary song can vary
roughly from 10 seconds to several minutes. In contrast, the vast
majority of neural network models assume a "rectangular" tensor
as input and output, in part because they were originally developed
for computer vision applications applied to batches. One way to
work around this issue is to convert inputs of varying lengths
into rectangular batches with a combination of windowing and
padding. E.g., pick a window size w, find the minimum number
of consecutive non-overlapping strides s of that window that will
cover an entire input x of length T , s ∗w ≥ T , and then pad x to
a new length Tpadded = s ∗w. This approach then requires a post-
processing step where the outputs are stitched back together into
a single continuous sequence xpadded . The padding is removed by
tracking which time bins are padded, e.g., with a separate vector
that acts as a "padded" flag for each time bin. Of course there are
other ways to address the issue of varying lengths, such as using
the torch.nn.utils.rnn API to pad and unpad tensors (or
using a different family of neural network models).

Because more than one model has been developed that uses
this post-processing approach to solve the problem of frame
classification, we define this as a family of models within vak, the
FrameClassification model. Both the TweetyNet model
from [8] and the Deep Audio Segmenter (DAS) from [10] are
examples of such models. We provide an implementation of
TweetyNet now built directly into vak in version 1.0. We also pro-
vide a PyTorch implementation of the Encoder Decoder-Temporal
Convolutional (ED-TCN) Network, that was previously applied
to frames of video features for an action segmentation task [33].
Below in Results we show how vak can be used to benchmark and
compare both models on the same dataset.

Parametric UMAP. To minimally demonstrate that our frame-
work is capable of providing researchers with access to multiple
families of models, we have added an initial implementation
of a Parametric UMAP model family. The original algorithm
for UMAP (Uniform Manifold Approximation and Projection)
consists of two steps: computing a graph on a dataset, and then
optimizing an embedding of that graph in a lower dimensional
space that preserves local relationships between points [34]. The
parametrized version of UMAP replaces the second step with
optimization of a neural network architecture [35]. Because the
parametrized version can be used with a wide variety of neural
network functions, we declare this as a family. We provide an
implementation of a single model, an encoder with a convolu-
tional front-end that can map spectrograms of units extracted
from audio to a latent space. Our implementation is adapted
from https://github.com/elyxlz/umap_pytorch and https://github.
com/lmcinnes/umap/issues/580#issuecomment-1368649550.

https://github.com/elyxlz/umap_pytorch
https://github.com/lmcinnes/umap/issues/580#issuecomment-1368649550
https://github.com/lmcinnes/umap/issues/580#issuecomment-1368649550


62 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Neural network layers and operations

Like PyTorch, vak provides a module for neural network op-
erations and layers named nn. This module contains layers
used by more than one network. For example, it includes a 2-
D convolutional layer with the 'SAME' padding provided by
Tensorflow, that is used both by the TweetyNet model [8] and
by our implementation of the ED-TCN model [33]. (PyTorch has
added this padding from version 1.10 on, but we maintain our
original implementation for purposes of replicability.) Another
example of an operation in vak.nn is a PyTorch implementation
of the normalized ReLu activation used by [33] with their ED-
TCN model.

Transformations

Like torchvision, vak provides a module for transformations of
data that will become input to a neural network model or will be
applied to the outputs of model, i.e., pre- and post-processing.

Standardization of spectrograms. A key transform that we
provide for use during training is the StandardizeSpect
class, that standardizes spectrograms so they are all on the same
scale, by subtracting off a mean and dividing by a standard
deviation (often called "normalization"). This transform is distinct
from the normalization done by computer vision frameworks like
torchvision, because it normalizes separately for each frequency
bin in the spectrogram, doing so across all time bins. Using a
scikit-learn-like API, this StandardizeSpect is fit to a set of
spectrograms, such as the training set. The fit transform is saved
during training as part of the results and then loaded automatically
by vak for evaluation or when generating predictions for new data.

Transforms for frame labels. Many of the transforms we
provide relate to what we call frame labels, that is, vectors where
each element represents a label for a time bin from a spectrogram
or a sample in an audio signal. These vectors of class labels are
used as targets when training models in a supervised setting to
perform frame classification.

The from_segments transform is used when loading anno-
tations to produce a vector of labeled timebins from the segmented
units, which are specified in terms of their onset and offset times
along with their label.

Conversely, the to_segments takes a vector of labeled
timebins and returns segments, by finding each continuous run
of labels and then converting the onset and offsets from indices
in the timebins vector to times in seconds. This post-processing
transformation can be configured to perform additional clean-up
steps: removing all segments shorter than a minimum duration,
and taking a "majority vote" within each series of labels that are
bordered by a "background" or "unlabeled" class.

In version 1.0, we have added the ability to evaluate models
with and without the clean-up steps of the to_segments trans-
form applied, so that a user can easily understand how the model is
performing before and after these steps. This enhancement allows
users to replicate a finding from [8], which showed, while the
TweetyNet model achieved quite low segment error rates without
post-processing, these simple clean-up steps allowed for signifi-
cant further reduction of error. This finding was originally shown
with an ad hoc analysis done with a script, but is now available
directly through vak. This makes it easier for users to compare
their model to a sort of empirical upper bound on performance,
a strong baseline that indicates the "room for improvement" any
given model has.

One more transformation worth highlighting here is the
to_labels transformation, that converts a vector of labeled
timebins directly to labels without recovering the onset or offset
times. Essentially this transform consists of a numpy.diff
operation, that we use to find the start of each run of continuous
labels, and we then take the label at the start of each run. This
transformation can be efficient when evaluating models where
we want to measure just the segment error rate. (Of course we
preclude the use of other metrics related to onset and offset times
when throwing away that information, but for some research
questions the main goal is to simply have the correct labels for
each segment.)

Metrics

Vak additionally declares a metrics module for evaluation
metrics that are specific to acoustic communication models. The
main metric we have found it necessary to implement at this
time is the (Levenshtein) string edit distance, and its normalized
form, known in speech recognition as the word error rate. Our
results have shown that edit distances such as this are crucial for
evaluating frame classification models. We provide a well-tested
implementation tailored for use with neural network models. In
version 1.0 of vak, we have additionally adopted as a dependency
the torchmetrics library, that makes it easier to compute a
wide array of metrics for models.

Datasets

Lastly, vak provides a dataset module, again similar in spirit
to the module of the same name in torchvision. Each family of
models has its own dataset class or classes. We introduce these
below, but first we describe our standardized dataset format.

Dataset directory format. In version 1.0 of vak we have
adopted a standard for datasets that includes a directory structure
and associated metadata. This addressed several limitations from
version 0.x: datasets were not portable because of absolute paths,
and certain expensive computations were done by other commands
that should really have been done when preparing the dataset,
such as validating the timebin size in spectrograms or generating
multiple random subsets from a training set for learning curves.
A listing that demonstrates the directory structure and some key
contents is shown below.
dataset/

train/
song1.wav.npz
song1.csv
song2.wav.npz
song2.csv

val/
song3.wav.npz
song3.csv

dataset.csv
config.toml # config used to generate dataset
prep.log # log from run of prep
metadata.json # any metadata

We can observe from the listing that, after collating files and
separating them into splits as just described, the files are either
moved (if we generated them) or copied (if a user supplied them)
to directories corresponding to each split. For annotation formats
where there is a one-to-one mapping from annotation file to the
file that it annotates, we copy the annotation files to the split
subdirectories as well. For annotation formats that place all anno-
tations in a single file, we place this file in the root of the dataset
directory. After moving these files, we change the paths in the



VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 63

pandas dataframe representing the entire dataset so that they are
written relative to the root of the directory. This makes the dataset
portable. In addition to these split sub-directories containing the
data itself, we note a few other files. These include a csv file
containing the dataset files and the splits they belong to, whose
format we describe next. They also include the metadata.json
file that captures important parameters that do not fit well in the
tabular data format of the csv file. For example, the metadata
file for a frame classification dataset contains the duration of the
timebin in every spectrogram. Finally, we note two other files
in a dataset as shown above. The first is the configuration file
used to generate it, copied into the dataset as another form of
metadata. The second is a log file that captures any other data
about choices made during dataset preparation, e.g., what files
were omitted because they contained labels that were not specified
in the labelset option of the configuration file.

Dataset csv file format. Next we outline the format of the
csv file that represents a dataset. This csv (and the dataframe
loaded from it) has four essential columns: 'audio_path',
'spect_path', 'annot_path', and 'split'. These
columns serve as provenance for the prepared dataset. Each row
represents one sample in the dataset, where the meaning of sample
may vary depending on the model family. For example, a sample
for a frame classification model is typically an entire bout of
vocalizations, whereas a sample for a Parametric UMAP model
is typically a single unit from the bout. The csv format allows
for tracing the provenance of each sample back to the source files
used to generate the dataset. Each row must minimally contain
either an audio_path or a spectrogram_path; if a user
provides pre-computed spectrograms, the audio_path column
is left empty. For models that use these files directly, the files will
be copied into a sub-directory for each split, and the paths are
written relative to the dataset root. The 'annot_path' column
points to annotation files. These again may be in the split sub-
directories with the file that each annotates, or in the case of a
single file will be in the root of the dataset directory, meaning that
this single path will be repeated for every row in the csv. Logic in
vak uses this fact to determine whether annotations can be loaded
from a single file or must be loaded separately for each file when
working with models.

Frame classification datasets

There are two generalized dataset classes for frame classification
models in vak. Both these classes can operate on a single dataset
prepared by the vak prep command; one class is used for
training and the other for evaluation. We describe the workflow
for preparing this dataset so that the difference between classes is
clearer. The initial step is to pair data that will be the source of
inputs x to a neural network model with the annotations that will
be the source of training targets y for that model. This is done by
collecting audio files or array files containing spectrograms from
a "data directory", and then optionally pairing these files with
annotation files. For models that take spectrograms as input, vak
can use audio files to generate spectrograms that are then saved
in array files and paired with any annotations. Alternatively a user
can provide pre-computed spectrograms. This dataset can also be
prepared without the targets y, for the case where a model is used
to predict annotations for previously unseen data.

WindowDataset. This dataset class represents all possible
time windows of a fixed width from a set of audio recordings or
spectrograms. It is used for training frame classification models.

Each call to WindowDataset.__getitem__ with an index
returns one window x from an audio signal or a spectrogram
loaded into a tensor, along with the annotations that will be the
target for the model y. Because this is a frame classification
dataset, the annotations are converted during dataset preparation to
vectors of frame labels, and y will be the window from this vector
that corresponds to the window x. This is achieved by using a set
of vectors to represent indices of valid windows from the total
dataset, as described in detail in the docstring for the class. This
use of a set of vectors to represent valid windows also enables
training on a dataset of a specified duration without modifying the
underlying data.

FramesDataset. As with the WindowDataset, every call to
FramesDataset.__getitem__ returns a single sample from
the dataset. Here though, instead of a window, the sample will
be the entire audio signal or spectrogram x and a corresponding
vector of frame labels y. The default transforms used with this
dataset apply additional pre-processing to the sample that facilitate
evaluation. Specifically, the frames x and the frame labels y in
a single sample are transformed to a batch of consecutive, non-
overlapping windows. This is done by padding both x and y so
their length is an integer multiple w of the window size used
when training the model, and then returning a view of the sample
as a stack of those w windows. Post-processing the output batch
allows us to compute metrics on a per-sample basis, to answer
questions such as "what is the average segment error rate per bout
of vocalizations?".

Parametric UMAP datasets

For the parametric UMAP model, we provide a single dataset
class, ParametricUMAPDataset. The underlying dataset
consists of single units extracted from audio with a segmenting
algorithm. The parameters of the dataset class configure the first
step in the UMAP algorithm, that of building a graph on the dataset
before embedding.

Command-line interface and configuration file

Having described the API, we now walk through vak’s CLI.
An example screenshot of a training run started from the
command line is shown in Figure 2. A key design choice
is to avoid any sub-commands or even options for the CLI,
and instead move all such logic to a configuration file.
Thus, commands through the CLI all take the form of vak
command configuration-file.toml, e.g., vak train
gy6or6_train.toml. This avoids the need for users to under-
stand options and sub-commands, and minimizes the likelihood
that important metadata about experiments will be lost because
they were specified as options. The configuration file follows the
TOML format (Tom’s Obvious Minimal Language) that has been
adopted by the Python and Rust communities among others.

The few commands available through the CLI correspond
to built-in, model-specific workflows. There are five commands:
prep, train, eval, predict, and learncurve. These
commands are shown in 3 as part of a chart illustrating the built-
in workflows, using as an example a frame classification model
as we define them below. As their names suggest, the commands
train, eval, and predict are used to train a model, evaluate
it, and generate predictions with it once trained. The prep and
learncurve commands require more explanation. A user makes
a separate configuration file for each of the other four commands,
but prep can be used with any configuration file. As can be seen

https://toml.io/en/


64 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 2: Screenshots of vak, demonstrating the command-line interface
and logging. In top panel (a), an example is shown of using the
command-line interface to train a model with a configuration file.
In the bottom panel (b) an example is shown of how vak logs progress
and reports metrics during training

in the figure, the typical workflow starts with a call to vak prep,
which prepares a canonicalized form of a dataset for the specific
machine learning task associated with a model, and then adds
the path to that dataset to the configuration file. Thus, there is
a prep_frame_classification_dataset function that
will be called for the example model in the figure. If a dataset has
already been prepared and is being re-used for another experiment,
this step would not be necessary. Once any needed dataset is
prepared, the user can run the command related to the model,
using the same configuration file.

The learncurve command is used to generate results for
a learning curve, that plots model performance as a function of
training set size in seconds. Although technically a learning curve,
its use is distinct from common uses in machine learning, e.g.,
looking for evidence of high bias or high variance models. Instead,
the learning curve functionality allows vak users to answer impor-
tant practical questions for their research. Most importantly, what
is the optimal performance that can be achieved with the minimum
amount of labor-intensive, hand-annotated training data?

Results

In this section we present proof-of-concept results demonstrat-
ing the utility of our framework. The project that produced
these results can be found at: https://github.com/vocalpy/scipy-
proceedings-2023-vak

Ablation experiment

We first show how vak allows researchers to experiment with a
model not built into the library. For this purpose, we carry out an
"ablation experiment" as the term is used in the artificial neural
network literature, where an operation is removed from a neural
network function to show that operation plays an important role in
the model’s performance. Using a script, we define a version of the
TweetyNet model in [8] without the recurrent Long Short Term

Fig. 3: A chart showing workflows in vak, using an example a frame
classification model as defined below. See text for description of
workflows.

Memory (LSTM) layer (thus "ablating" it). This model without
the LSTM makes a prediction for each frame using the output
of the convolutional layers, instead of using the hidden state of
the recurrent layer at each time step. If the hidden state contains
features that are useful for predicting across time steps, we would
expect that "ablating" (removing) it would impair performance.
To show that removing the LSTM layer impairs performance, we
compare with the full TweetyNet model (now built into vak). For
all experiments, we prepared a single dataset and then trained both
models on that same dataset. We specifically ran learning curves as
described above, but here we consider only the performance using
10 minutes of data for training, because as we previously reported
[8] this was the minimum amount of training data required to
achieve the lowest error rates. As shown in the top row of Figure
4, ablating the recurrent layer increased the frame error rate (left
column, right group of bars), and this produced an inflated syllable
error rate (right column, right group of bars).

This first result is the average across models trained on
datasets prepared from individual birds in the Bengalese finch song
repository dataset [36], as we did previously in [8]. (There are four
birds, and five training replicates per bird, where each replicate is
trained on different subsets from a larger pool of training data.)
Other studies using the same benchmark data repository have
trained models on datasets prepared from all four birds [10] (so
that the model predicts 37 classes, the syllables from all four birds,
instead of 5-10 per bird). We provide this result for the TweetyNet
model with and without LSTM in the bottom row of Figure 4. It

https://github.com/vocalpy/scipy-proceedings-2023-vak
https://github.com/vocalpy/scipy-proceedings-2023-vak


VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 65

Fig. 4: Ablation experiment carried out by declaring a model in a
script using the vak framework. Bar plots show frame error (left col-
umn) and syllable error rate (right column), without post-processing
clean-up (blue bars) and with (orange bars). Within each axes, the
grouped bars on the left indicate results from the TweetyNet model
built into the vak library, and the grouped bars on the right indicate
results from a model declared in a script where the recurrent LSTM
layer has been removed ("ablated") from the TweetyNet architecture.
In the top row, values are the average across models trained on data
from four different Bengalese finches, with five training replicates per
bird (see text for detail). In the bottom row, single models were trained
to classify syllables from all four birds.

can be seen that asking the models to predict a greater number of
classes further magnified the difference between them (as would
be expected). TweetyNet without the LSTM layer has a syllable
error rate greater than 230%. (Because the syllable error rate is an
edit distance, it can be greater than 1.0. It is typically written as a
percentage for readability of smaller values.)

Comparison of TweetyNet and ED-TCN

We next show how vak allows researchers to compare models.
For this we compare the TweetyNet model in [8] with the ED-
TCN model of [33]. As for the ablation experiment, we ran full
learning curves, but here just focus on the performance of models
trained on 10 minutes of data. Likewise, the grouped box plots are
as in Figure 4, with performance of TweetyNet again on the left
and in this case the ED-TCN model on the right. Here we only
show performance of models trained on data from all four birds
(the same dataset we prepared for the ablation experiment above).
We observed that on this dataset the ED-TCN had a higher frame
error and syllable error rate, as shown in Figure 5. However, there
was no clear difference when training models on individual birds
(results not shown because of limited space). Our goal here is not
to make any strong claim about either model, but simply to show
that our framework makes it possible to more easily compare two
models on the exact same dataset.

Applying Parametric UMAP to Bengalese finch syllables with a
convolutional encoder

Finally we provide a result demonstrating that a researcher can ap-
ply multiple families of models to their data with our framework.
As stated above, the vak framework includes an implementation
of a Parametric UMAP family, and one model in this family, a
simple encoder network with convolutional layers on the front
end. To demonstrate this model, we train it on the song of an
individual bird from the Bengalese finch song repository. We use

Fig. 5: Comparison of TweetyNet model [8] with ED-TCN model.
Plots are as in 4. Each axes shows results for one individual bird
from the Bengalese finch song repository dataset [36]. Bar plots
show frame error (left column) and syllable error rate (right column),
without post-processing clean-up (blue bars) and with (orange bars).

Fig. 6: Scatter plot showing syllables from the song of one Bengalese
finch, embeeded in a 2-D space using a convolutional encoder trained
using the Parametric UMAP algorithm. Each marker is a point
produced from a spectrograms of a single syllable rendition, mapped
down to the 2-D space, from 40 seconds of training data. Colors
indicate the label applied to each syllable by an expert human when
annotating the spectrograms with a GUI.

a training set with a duration of 40 seconds total, containing clips
of all syllable classes from the bird’s song, taken from songs that
were drawn at random from a larger data pool by the vak dataset
preparation function. We then embed a separate test set. It can be
seen in Figure 6 that points that are close to each other are almost
always the same color, indicating that syllables that were given the
same label by a human annotator are also nearer to each other after
mapping to 2-D space with the trained parametric UMAP model.

Discussion

Researchers studying acoustic behavior need to benchmark mul-
tiple neural network models on their data, evaluate training per-
formance for different training set sizes, and use trained models
to make predictions on newly acquired data. Here we presented
vak, a neural network framework developed to meet these needs.
In the Methods we described its design and development. Then
in the Results we provide proof-of-concept results demonstrating
how researchers can easily use our framework.

Finally, we summarize the roadmap for further development
of version 1.0 of vak. In the spirit of taking an open approach,
we are tracking issues related to this roadmap on GitHub:
https://github.com/vocalpy/vak/issues/614. A key goal will be to
add benchmark datasets, generated by running the vak prep
command, that a user can download and use to benchmark models

https://github.com/vocalpy/vak/issues/614


66 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

with publicly shared configuration files. Another key goal will be
to add models that are pre-trained on these benchmark datasets.
Additionally we plan to refactor the prep module to make use
of the vocalpy package [37], developed to make acoustic com-
munication research code in Python more concise and readable.
Another key step will be inclusion of additional models like
those reviewed in the Related Work. Along with this expansion of
existing functionality, the final release of version 1.0 will include
several quality-of-life improvements, including a revised schema
for the configuration file format that better leverages the strengths
of TOML, and dataclasses that represent outputs of vak, such
as dataset directories and results directories, to make it easier
to work with outputs programmatically. It is our hope that these
conveniences plus the expanded models and datasets will provide
a framework that can be developed collaboratively by the entire
research community studying acoustic communication in animals.

REFERENCES

[1] M. D. Hauser, N. Chomsky, and W. T. Fitch, “The Faculty of Language:
What Is It, Who Has It, and How Did It Evolve?” Science, vol. 298,
no. 5598, pp. 1569–1579, Nov. 2002, https://doi.org/10.1126/science.
298.5598.1569.

[2] A. J. Doupe and P. K. Kuhl, “BIRDSONG AND HUMAN SPEECH:
Common Themes and Mechanisms,” Annual Review of Neuroscience,
vol. 22, no. 1, pp. 567–631, Mar. 1999, https://doi.org/10.1146/annurev.
neuro.22.1.567.

[3] M. Wirthlin, E. F. Chang, M. Knörnschild, L. A. Krubitzer, C. V. Mello,
C. T. Miller, A. R. Pfenning, S. C. Vernes, O. Tchernichovski, and M. M.
Yartsev, “A Modular Approach to Vocal Learning: Disentangling the
Diversity of a Complex Behavioral Trait,” Neuron, vol. 104, no. 1, pp.
87–99, Oct. 2019, https://doi.org/10.1016/j.neuron.2019.09.036.

[4] S. L. Hopp, M. J. Owren, and C. S. Evans, Animal Acoustic Commu-
nication: Sound Analysis and Research Methods. Springer Science &
Business Media, 2012.

[5] T. Sainburg and T. Q. Gentner, “Toward a Computational Neuroethol-
ogy of Vocal Communication: From Bioacoustics to Neurophysiology,
Emerging Tools and Future Directions,” Frontiers in Behavioral Neu-
roscience, vol. 15, p. 811737, Dec. 2021, https://doi.org/10.3389/fnbeh.
2021.811737.

[6] D. Stowell, “Computational bioacoustics with deep learning: A review
and roadmap,” p. 46, 2022.

[7] Y. Cohen, T. A. Engel, C. Langdon, G. W. Lindsay, T. Ott, M. A.
Peters, J. M. Shine, V. Breton-Provencher, and S. Ramaswamy, “Recent
advances at the interface of neuroscience and artificial neural networks,”
Journal of Neuroscience, vol. 42, no. 45, pp. 8514–8523, 2022.

[8] Y. Cohen, D. A. Nicholson, A. Sanchioni, E. K. Mallaber, V. Skidanova,
and T. J. Gardner, “Automated annotation of birdsong with a neural
network that segments spectrograms,” Elife, vol. 11, p. e63853, 2022.

[9] J. Goffinet, S. Brudner, R. Mooney, and J. Pearson, “Low-dimensional
learned feature spaces quantify individual and group differences in vocal
repertoires,” eLife, vol. 10, p. e67855, May 2021, https://doi.org/10.7554/
eLife.67855.

[10] E. Steinfath, A. Palacios-Muñoz, J. R. Rottschäfer, D. Yuezak, and
J. Clemens, “Fast and accurate annotation of acoustic signals with
deep neural networks,” eLife, vol. 10, p. e68837, Nov. 2021, https:
//doi.org/10.7554/eLife.68837.

[11] T. Sainburg, M. Thielk, and T. Q. Gentner, “Finding, visualizing, and
quantifying latent structure across diverse animal vocal repertoires,”
PLOS Computational Biology, vol. 16, no. 10, p. e1008228, Oct. 2020,
https://doi.org/10.1371/journal.pcbi.1008228.

[12] K. R. Coffey, R. E. Marx, and J. F. Neumaier, “DeepSqueak: A deep
learning-based system for detection and analysis of ultrasonic vocal-
izations,” Neuropsychopharmacology, vol. 44, no. 5, pp. 859–868, Apr.
2019, https://doi.org/10.1038/s41386-018-0303-6.

[13] D. Nicholson and Y. Cohen, “Vak,” Zenodo, Mar. 2022, https://doi.org/
10.5281/zenodo.6808839.

[14] J. N. McGregor, A. L. Grassler, P. I. Jaffe, A. L. Jacob, M. S. Brainard,
and S. J. Sober, “Shared mechanisms of auditory and non-auditory vocal
learning in the songbird brain,” eLife, vol. 11, p. e75691, Sep. 2022,
https://doi.org/10.7554/eLife.75691.

[15] K. L. Provost, J. Yang, and B. C. Carstens, “The impacts of fine-tuning,
phylogenetic distance, and sample size on big-data bioacoustics,” PLOS
ONE, vol. 17, no. 12, p. e0278522, Dec. 2022, https://doi.org/10.1371/
journal.pone.0278522.

[16] A. Kershenbaum, D. T. Blumstein, M. A. Roch, Ç. Akçay, G. Backus,
M. A. Bee, K. Bohn, Y. Cao, G. Carter, C. Cäsar, M. Coen, S. L.
DeRuiter, L. Doyle, S. Edelman, R. Ferrer-i-Cancho, T. M. Freeberg,
E. C. Garland, M. Gustison, H. E. Harley, C. Huetz, M. Hughes,
J. Hyland Bruno, A. Ilany, D. Z. Jin, M. Johnson, C. Ju, J. Karnowski,
B. Lohr, M. B. Manser, B. McCowan, E. Mercado, P. M. Narins, A. Piel,
M. Rice, R. Salmi, K. Sasahara, L. Sayigh, Y. Shiu, C. Taylor, E. E.
Vallejo, S. Waller, and V. Zamora-Gutierrez, “Acoustic sequences in non-
human animals: A tutorial review and prospectus: Acoustic sequences
in animals,” Biological Reviews, vol. 91, no. 1, pp. 13–52, Feb. 2016,
https://doi.org/10.1111/brv.12160.

[17] Y. Fukuzawa, “Computational methods for a generalised acoustics analy-
sis workflow: A thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science at Massey Uni-
versity, Auckland, New Zealand,” Ph.D. dissertation, Massey University,
2022.

[18] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602–610, 2005, https://doi.org/10.1016/
j.neunet.2005.06.042.

[19] A. Graves, “Supervised sequence labelling,” in Supervised Sequence
Labelling with Recurrent Neural Networks. Springer, 2012, pp. 5–13,
https://doi.org/10.1007/978-3-642-24797-2_2.

[20] E. Steinfath, A. Palacios, J. Rottschäfer, D. Yuezak, and J. Clemens, “Fast
and accurate annotation of acoustic signals with deep neural networks,”
p. 30.

[21] L. Zandberg, V. Morfi, J. George, D. F. Clayton, D. Stowell, and R. F.
Lachlan, “Bird song comparison using deep learning trained from avian
perceptual judgments,” Animal Behavior and Cognition, Preprint, Dec.
2022, https://doi.org/10.1101/2022.12.23.521425.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” Oct. 2017.

[23] W. Falcon and T. P. L. team, “PyTorch Lightning,” Zenodo, Apr. 2023,
https://doi.org/10.5281/zenodo.7859091.

[24] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science
Engineering, vol. 13, no. 2, pp. 22–30, Mar. 2011, https://doi.org/10.
1109/MCSE.2011.37.

[25] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[26] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and S. . . Contributors, “SciPy 1.0–Fundamen-
tal Algorithms for Scientific Computing in Python,” arXiv:1907.10121
[physics], Jul. 2019.

[27] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007, https://doi.org/10.
1109/MCSE.2007.55.

[28] T. A. Caswell, M. Droettboom, A. Lee, J. Hunter, E. S. de Andrade,
E. Firing, T. Hoffmann, J. Klymak, D. Stansby, N. Varoquaux, J. H.
Nielsen, B. Root, R. May, P. Elson, J. K. Seppänen, D. Dale, J.-J.
Lee, D. McDougall, A. Straw, P. Hobson, C. Gohlke, T. S. Yu, E. Ma,
A. F. Vincent, S. Silvester, C. Moad, N. Kniazev, hannah, E. Ernest,
and P. Ivanov, “Matplotlib/matplotlib: REL: V3.3.2,” Zenodo, Sep. 2020,
https://doi.org/10.5281/zenodo.4030140.

[29] T. pandas development team, “Pandas-dev/pandas: Pandas,” Feb. 2020,
https://doi.org/10.5281/zenodo.3509134.

[30] Dask Development Team, Dask: Library for Dynamic Task Scheduling,
2016.

[31] D. Nicholson, “Crowsetta: A python tool to work with any format for
annotating animal vocalizations and bioacoustics data.” Journal of Open
Source Software, vol. 8, no. 84, p. 5338, 2023, https://doi.org/10.21105/
joss.05338.

[32] T. maintainers and contributors, “TorchVision: PyTorch’s computer vi-
sion library,” GitHub, 2016.

https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1146/annurev.neuro.22.1.567
https://doi.org/10.1146/annurev.neuro.22.1.567
https://doi.org/10.1016/j.neuron.2019.09.036
https://doi.org/10.3389/fnbeh.2021.811737
https://doi.org/10.3389/fnbeh.2021.811737
https://doi.org/10.7554/eLife.67855
https://doi.org/10.7554/eLife.67855
https://doi.org/10.7554/eLife.68837
https://doi.org/10.7554/eLife.68837
https://doi.org/10.1371/journal.pcbi.1008228
https://doi.org/10.1038/s41386-018-0303-6
https://doi.org/10.5281/zenodo.6808839
https://doi.org/10.5281/zenodo.6808839
https://doi.org/10.7554/eLife.75691
https://doi.org/10.1371/journal.pone.0278522
https://doi.org/10.1371/journal.pone.0278522
https://doi.org/10.1111/brv.12160
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1101/2022.12.23.521425
https://doi.org/10.5281/zenodo.7859091
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.4030140
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.05338
https://doi.org/10.21105/joss.05338


VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 67

[33] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Tempo-
ral convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156–165, https://doi.org/10.1109/cvpr.2017.113.

[34] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[35] T. Sainburg, L. McInnes, and T. Q. Gentner, “Parametric umap embed-
dings for representation and semisupervised learning,” Neural Computa-
tion, vol. 33, no. 11, pp. 2881–2907, 2021, https://doi.org/10.1162/neco_
a_01434.

[36] D. Nicholson, J. E. Queen, and S. J. Sober, “Bengalese Finch song
repository,” Oct. 2017, https://doi.org/10.6084/m9.figshare.4805749.v5.

[37] D. Nicholson, “vocalpy/vocalpy: 0.3.0,” May 2023, https://doi.org/10.
5281/zenodo.7925888. [Online]. Available: https://zenodo.org/record/
7925888

https://doi.org/10.1109/cvpr.2017.113
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.1162/neco_a_01434
https://doi.org/10.6084/m9.figshare.4805749.v5
https://doi.org/10.5281/zenodo.7925888
https://doi.org/10.5281/zenodo.7925888
https://zenodo.org/record/7925888
https://zenodo.org/record/7925888

	Introduction
	Related work

	Methods
	Design
	Models
	Abstractions for declaring a model in vak
	Model families
	Neural network layers and operations
	Transformations
	Metrics
	Datasets
	Frame classification datasets
	Parametric UMAP datasets
	Command-line interface and configuration file

	Results
	Ablation experiment
	Comparison of TweetyNet and ED-TCN
	Applying Parametric UMAP to Bengalese finch syllables with a convolutional encoder

	Discussion
	References

