68

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Emukit: A Python toolkit for decision making under
uncertainty

Andrei Paleyes**, Maren Mahsereci®, Neil D. Lawrence*

Abstract—Emukit is a highly flexible Python toolkit for enriching decision making
under uncertainty with statistical emulation. It is particularly pertinent to complex
processes and simulations where data are scarce or difficult to acquire. Emukit
provides a common framework for a range of iterative methods that propagate
well-calibrated uncertainty estimates within a design loop, such as Bayesian
optimisation, Bayesian quadrature and experimental design. It also provides
multi-fidelity modelling capabilities. We describe the software design of the
package, illustrate usage of the main APIls, and showcase the breadth of use
cases in which the library already has been used by the research community.

Index Terms—statistical emulation, software, Bayesian optimisation, Bayesian
quadrature, Bayesian experimental design, multi-fidelity, active learning

INTRODUCTION

Data selection is a major challenge in supervised machine learning
(ML). Quite often when data availability is not an issue, data
collection occurs prior to the training process and results in a
static dataset, meaning that the machine learning model has no
influence on the data collection process. However, if data points
are expensive and scarce the performance of a model trained
on a static dataset can be suboptimal or even poor. In those
cases, it is beneficial to carefully select the dataset such that,
for example, it is maximally informative under the ML model to
achieve the task at hand. This branch of ML is generally referred
to as active learning [1] and has attracted attention in various
sub-fields such as experimental design (the task of predicting
an unknown function value from its input), global optimisation
(guessing the global minimiser of a function) and integration
(guessing the integral of a function). The Emukit Python library,
at core, augments existing machine learning models with active
data selection functionality.

Tasks where data acquisition is hard usually involve a higher
degree of expert knowledge on the modeling side, because in-
corporating prior information, such as mechanical or physical
knowledge about the system under study, aims for more phys-
ically meaningful and accurate predictions on the task at hand.
Often these models are of probabilistic nature and can provide
a degree of uncertainty of their prediction to counteract the lack

Corresponding author: ap2169@ cam.ac.uk
Department of Computer Science and Technology, University of Cambridge
§ University of Tiibingen

Copyright © 2023 Andrei Paleyes et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

of data [2], [3], [4], [5]. Such a model is often referred to as
a statistical emulator', which is a machine learning model that
can replace an expensive computer simulation (a simulator) or
real world experiment, and is trained on input-output pairs of
the latter [6], [7], [8], [9]. Concretely, the simulator could be
an involved stochastic weather simulation, and the emulator a
predictive machine learning model trained on expensive input-
output pairs of the weather simulation. Alternatively, the emulator
may model a real world process. The emulator now may replace
the original data source to obtain fast predictions when needed, or
to compute auxiliary quantities that cannot be obtained from the
data source.

Once trained, the performance of the emulator (the ML
model), as mentioned, depends on the informativity of the data
(the simulation results), especially if it is expensive and scarce,
and hence active data selection is often desirable for such models.
A unique feature of Emukit is that it enables the user to wrap
custom emulator models into an interface provided by Emukit and,
by doing so, use them in Emukit’s decision loop. As such, Emukit
‘actifies’ (makes active) the data-acquisition of custom models
written in custom backends that only connect via an interface to
Emukit. This may i) save users time and money to write their own
active learning loop, ii) or to rewrite their custom model in existing
decision loop packages with a fixed backend, and iii) improve
performance of the model with more informative training data.

Hence, the most prominent features of Emukit can be summa-
rized as follows.

o Emukit augments existing models with active learning
capability, in particular models used in Bayesian optimisa-
tion, Bayesian quadrature and experimental design.

« Emukit can use existing, potentially specialized, custom
models provided by the user and wrap them into a provided
interface. As such Emukit is model backend agnostic.

o Emukit is highly abstracted and mimics the components
of an active decision loop. This composability allows
users to provide custom implementations of subroutines
and classes that seamlessly integrate with the rest of the
package. Hence Emukit is highly flexible and allows fast
and easy prototyping.

o In contrast to other packages, Emukit provides several
active learning methods via subpackages that share a core

1. The reader might be familiar with the term ‘emulator’ in computing
context, where it refers to a hardware or software that makes one system
behave like another. The ‘(statistical) emulator’ we use throughout this paper
is an unrelated, albeit similar, term from the machine learning literature.

mailto:ap2169@cam.ac.uk

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY

implementation of the active learning loop. This enables
the user to potentially use the same model backend and
even the same model instance across tasks. This increases
consistency between results, may reduce implementation
overhead and allow resource sharing between tasks.

« Emukit provides basic functionality for multi-fidelity mod-
eling which allows the user to incorporate data sources
of different fidelities. Further, Emukit contains a limited
number of model wrappers to illustrate their usage and
some example applications.

The remainder of the paper corroborates the points above
in greater detail. The following section briefly introduces the
supported machine learning methods before sketching Emukit’s
workflow and library structure. Throughout the text, we refer to
‘tasks’ in an abstract sense, without a specific application in mind.
In the remainder of text, we will use the terms ‘ML model’ and
‘emulator’ interchangeably. The ‘simulator’ or ‘data source’ will
later also be referred to as ‘user function’, ‘black-box function’ or
‘objective function’.

BACKGROUND ON PROBABILISTIC ACTIVE METHODS

This section gives an overview of the machine learning methods
provided by Emukit. Emukit mainly contains three high-level
methods: Bayesian optimisation (BO), Bayesian quadrature (BQ)
and experimental design (ED).

Bayesian optimisation [10], [11] is a numerical method that
aims to guess the global minimiser of a black-box function by
querying function values at nodes and returning the minimiser of
the collected set. Corresponding algorithms are inherently sequen-
tial and, at every iteration, decide on where to query the objective
function next. The decision solves the so called ‘exploration-
exploitation trade-off” between exploring unknown regions of the
function’s domain, or exploiting rather promising regions of a
potential minimiser. This trade-off is encoded in a heuristic called
‘acquisition function’ that quantifies the usefulness of evaluating
the function at a certain node. Hence, BO is generally sample-
efficient and thus especially useful when the function is expensive
to evaluate and the number of allowed evaluations is limited. There
exists a large range of heuristics and methods that all fall under the
umbrella of BO, out of which Emukit supports several. Bayesian
optimisation has been successfully applied in various fields [12],
[13], but most notably in the automation of hyperparameter tuning
tasks of neural networks [14], [15].

Bayesian quadrature [16], [17], [18] is a numerical method
that aims to infer the integral of a black-box function (called the
‘integrand’) given some integration measure and queries of the
integrand at nodes. In contrast to Monte Carlo (MC) methods, BQ
generally accept any kind of node design and is especially sample
efficient which makes it superior to MC in certain circumstances
[19]. A sub-group of BQ methods are active and follow a similar
decision loop as BO; the most notable difference being that
acquisition functions are specific to BQ and the class of models
is somewhat more restricted. Generally, active BQ methods are
algorithmically similar on a high level to BO methods and can use
similar models.

Experimental design [6], [7], [8], [9], also known as Bayesian
active learning, is a method that aims to collect data about a
black-box function such that the resulting probabilistic model
predicts unseen function values well. Unlike BO and BQ discussed
above, ED aims to learn the objective function as well as possible

69

across the entire input space. It traditionally has been applied to
statistical emulation of complex computer models but also has
found applications in healthcare [20], computational biology [21]
and engineering [22]. Some ED methods also obey the structure
of an active decision loop similar to BO and BQ.

Emukit embodies the realization that all three methods (BO,
BQ, ED), albeit having different numerical aims, share the same
algorithmic structure: a decision loop that computes the next node
based on the current model, evaluates the user function, and then
updates the model accordingly. This decision loop is contained in
Emukit’s core package and shared by all three high-level methods.
Furthermore, especially BO and ED may use similar models while
BQ is somewhat more restricted. Potential benefits of sharing
implementation, model and compute between tasks are discussed
in later sections.

Finally, Emukit provides basic support of multi-fidelity models
[23] which can combine query results of the black-box function
of different quality (from low fidelity to high fidelity). This yields
multi-fidelity BO, BQ and ED methods that may be made active
again with Emukit’s decision loop.

EMUKIT WORKFLOW

Decision making with statistical emulation consists of three parts.
All starts with a task, a high level goal that we are interested
in achieving. It usually involves a complex process that we aim
to study to answer a question. Some examples include finding
the best operation mode of a drone, measuring the quality of a
weather simulation, explaining behavior of a complex system. In
order to solve the task we choose a method, a relatively low-
level technique that guides our exploration of the target process
and provides the quantifiable way to answer the task’s question.
Examples include Bayesian optimisation, Bayesian quadrature and
experimental design. And finally there is a model, a probabilistic
data-driven representation of the process under study. Examples of
such models are a Gaussian process, a random forest or a Bayesian
network. Consequently, the typical workflow for users working
with Emukit consists of three steps (see Figure 1 for a graphical
description).

Build the model. Instead of constraining the user to certain
model classes, Emukit provides the flexibility of using user-
specified models. Generally speaking, Emukit does not provide
modeling capabilities. Instead users are expected to define their
own models. Because of the variety of modeling frameworks
available, Emukit does not mandate or make any assumptions
about a particular modeling technique or a library, and suggests
implementing a subset of defined model interfaces that are re-
quired to use a particular method.

Run the method. This is the main focus of Emukit. Emukit
defines a general structure of a decision making method and offers
implementations of several such methods: Bayesian optimisation,
Bayesian quadrature, experimental design. All methods are model-
agnostic and only rely on model interfaces.

Solve the task. For the end users, Emukit is a way to solve a
certain task, which may have research or business value. Emukit
provides a set of examples of how tasks such as hyperparameter
tuning, sensitivity analysis, multi-fidelity modeling or benchmark-
ing are accomplished using the library.

STRUCTURE OF THE LIBRARY

At a conceptual level the methods supported in Emukit — such as
Bayesian optimisation, experimental design and Bayesian quadra-

70

+ Bayesian optimization
« Experimental design
+ Bayesian Quadrature

Gaussian processes
Multi-fidelity
Bayesian NN
Random forest

* Hyper-parameter optimization
* Models benchmarking
= Data efficient learning

Fig. 1: Summary of workflow for the users of Emukit. The user chooses
a a modeling framework and defines a model. The model is wrapped
using a pre-defined interface and connected to the core components of
several methods such as Bayesian optimisation, experimental design
etc. Specific tasks are then solved using these methods.

ture — are all iterative decision making processes that follow a
similar pattern. Algorithmically they can be thought of as instances
of a common abstract loop, which we now describe (also see
Algorithm 1).

The common goal of all of these methods is to learn a behavior
of an objective function - a black-box expensive process that has
certain parameters. The knowledge about the objective function
(initially available as well as that collected during the learning
process) is represented with a probabilistic model. New data points
are proposed by optimising an acquisition function constructed
using the model. Finally, the decision making process is done in a
loop until a certain stopping condition is met.

Algorithm 1 Decision making loop in Emukit.

1: while stopping condition is not met do

2 collect next point(s) for evaluation

3: evaluate objective function

4 update model with new observation(s)
5: end while

The internal structure of Emukit reflects these abstractions to
enable swapping and replacement of fundamental components of
the decision making loop. While some of the basic components
in Emukit correspond to the parts of the decision making loop
exactly, others are more fine-grained to allow for greater flexi-
bility and plug-and-play experience for the researchers using the
package. We will now give an overview of these components.

Outer Loop. The OuterLoop class is the abstract loop
where the different components come together. Loops for specific
methods, such as Bayesian optimisation and experiment design,
should subclass it. The library provides several concrete imple-
mentations of the loop, and also contains examples how the users
may build their own.

Parameter space. Represents the parameter space of the
objective function, also referred to as input space. Emukit supports
continuous, categorical, discrete, and bandit parameters.

Model. All Emukit loops need a probabilistic model. Emukit
does not provide functionality to build models as there are al-
ready good modeling frameworks available in Python. Instead,
it provides a way of interfacing third-party modeling libraries.
The interfacing mechanism consists of two parts: interfaces and
wrappers. Interfaces define functionality required from a model.
Different models and modeling frameworks will provide different
functionality. For instance a Gaussian process will usually have
derivatives of the predictions available but random forests will
not. A model implements a set of interfaces that represent these

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

different functionalities. The basic interface that all models must
implement is IModel, which implements functionality to make
predictions and update the model but a model may implement
any number of other interfaces such as IDifferentiable
which indicates a model has prediction derivatives available. Other
components of the decision making loop may also be define
interfaces to indicate that they require a certain functionality from
the model. For example, ICalculateVarianceReduction
defines methods the user needs to implement with their model to
use it with the variance reduction technique. Model wrappers
adapt third-party models and implement one or more of the
interfaces using specific modeling framework. Emukit provides
a wrapper for using a model created with GPy [24].

Candidate Point Calculator. This entity drives the decision
on which point(s) to evaluate next. The simplest implementation
provided out of the box, SequentialPointCalculator,
collects one point at a time by finding where the acquisition
is at a maximum by applying the acquisition optimiser to the
acquisition function. More complex implementations are possible,
for example to enable batches of points to be collected so that the
user function may be evaluated in parallel.

Acquisition. The acquisition is a function defined on the
parameter space that produces continuous values. It represents a
heuristic quantification of how valuable collecting a future point
might be, and produces continuous values. It is used by the
candidate point calculator to decide which point(s) to collect next.
Acquisition functions balance exploration and exploitation of the
decision making process.

Acquisition Optimiser. The AcquisitionOptimizer
optimises the acquisition function to find the point at which the
acquisition is at a maximum. If available, the optimiser can use the
acquisition function gradients. Otherwise, it will either estimate
the gradients numerically or use a gradient free optimisation.

User Function. This is the component that represents the
objective function. It can be evaluated by the user or it can be
passed into the loop and evaluated by Emukit.

Model Updater. The ModelUpdater class updates the
model with new training data after a new point is observed and
optimises any hyperparameters of the model. It can decide whether
hyperparameters need updating based on some internal logic.

Stopping Condition. The StoppingCondition class
chooses when the decision making loop should stop collecting
points. The most commonly used approach is to stop when a set
number of iterations has been reached.

These are the core components Emukit defines. Specific
methods may also define additional concepts of their own, e.g.
integration measures or costs. Table 1 shows the mapping between
decision making abstractions and Emukit components.

USAGE OVERVIEW

This section describes Emukit’s high level APIs for all main func-
tions of the package: Bayesian optimisation, Bayesian quadrature,
experimental design and multi-fidelity emulation. Unless stated
otherwise, we assume that some initial data (an initial design
of reasonable size with corresponding evaluations of the user
function) are already defined and stored in the variables X (inputs)
and Y (values). We use GPy [24] in the code snippets below for
modeling, and exclude import lines for brevity.

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY

Decision making abstractions = Emukit components

Loop Outer loop

Parameters Parameter space

Probabilistic model Model interface

Model wrapper

Acquisition function Candidate point calculator
Acquisition

Acquisition optimiser

Objective function User function

Model updater

Stopping Condition Stopping condition

TABLE 1: The mapping between abstractions of the decision making
process and the components defined in Emukit.

Standard methods and model wrapping

Interfaces for Bayesian optimisation and experimental design are
the most straighforward ways to use the library. Both methods
require the user to define a model and wrap it in the Emukit’s
model wrapper. An input space also has to be defined using
Emukit’s classes. The choice of acquisition function is optional, as
reasonable defaults are provided. High level loop objects allow the
user to execute the decision making loop and access its properties.

model_gpy = GPy.models.GPRegression (X,Y)
model_emukit = GPyModelWrapper (model_gpy)

parameter_space = ParameterSpace ([
ContinuousParameter ('x1', -5, 10),
ContinuousParameter ('x2', 0, 15)

1)

expected_improvement_acquisition =
ExpectedImprovement (model = model_emukit)
bayesopt_loop = BayesianOptimizationLoop (
model = model_emukit,
space = parameter_space,
acquisition = expected_improvement_acquisition

)

model_variance_acquisition =
ModelVariance (model = model_emukit)
experimental_design_loop =
ExperimentalDesignLoop (
model = model_emukit,
space = parameter_space,
acquisition = model_variance_acquisition

)

Usage of Bayesian quadrature (BQ) API is more involved, as
even in its most basic form it requires more choices from the user.
First the objective function, also referred to as an integrand, is
modeled with a Gaussian process (GP). Since BQ integrates the
kernel function, the kernel is then wrapped in a separate Emukit
object. Bundled together, wrappers around the kernel and the
model itself represent a base model in the BQ package. This model
may be used with several BQ methods, the code below illustrates
vanilla Bayesian quadrature where the GP model is directly placed
over the integrand function and then integrated analytically.
1b = -3.0 # lower integral bound

ub = 3.0 # upper integral bound
gpy_model = GPy.models.GPRegression (X=X, Y=Y)

emukit_rbf = RBFGPy (gpy_model.kern)

71

emukit_measure = LebesgueMeasure.from_bounds (
bounds=[(1b, ub)]

)

emukit_grbf = QuadratureRBFLebesgueMeasure (
emukit_rbf, emukit_measure

)

gp_model = BaseGaussianProcessGPy (
kern=emukit_qgrbf, gpy_model=gpy_model

)

emukit_model = VanillaBayesianQuadrature (
base_gp=gp_model, X=X, Y=Y

)

bg_loop = VanillaBayesianQuadratureLoop (
model=emukit_model

)

Once the loop object is created, either for optimisation, quadra-
ture or experiment design, it may be evaluated in one of two
modes. If the user has access to the objective function via Python,
Emukit can manage the loop with the run_loop method that
accepts two arguments: the objective function and the stopping
criterion. If the objective has to be called externally (e.g. a lab ex-
periment has to be done), Emukit provides get_next_points
method that produces the next evaluation point(s) based on the
data observed so far. In that latter case user has to manage the
decision making loop themselves.

Interfaces for fast prototyping

Emukit gives researchers a lot of flexibility in swapping in-
dividual pieces in and out of the decision making loop. This
is made possible by clearly defined interfaces. We illustrate
how this is accomplished in the package with an example
of IntegratedHyperParameterAcquisition. This class
provides an ability to integrate any acquisition function over hy-
perparameters of the model. To do that, the model needs to support
two operations: generate hyperparameter samples and fix hyperpa-
rameters to a certain sample value. Consequently, Emukit defines
an interface IPriorHyperparameters that declares these op-
erations, and IntegratedHyperParameterAcquisition
requires input model to implement this interfaces, as is shown in
the following code snippet:

class IPriorHyperparameters:
def generate_hyperparameters_samples (...

def fix_model_hyperparameters(...

class IntegratedHyperParameterAcquisition (Acquisition):
def __init__ (
self,

model: Union[IModel, IPriorHyperparameters],

Model reuse across tasks

Emukit’s composability allows to reuse components between
methods. For example, we use the quadrature model defined above
to perform an optimisation loop, and then integrate it using the
quadrature API. The ability to reuse components in this way
lowers implementation overhead, optimises utilisation of compute
resources, and increases consistency.

see BQ snippet for complete

definition of the model

emukit_bg model = VanillaBayesianQuadrature (

base_gp=gp_model, X=X, Y=Y
)

72

bayesopt_loop = BayesianOptimizationLoop (
model = emukit_bg _model, space = parameter_space
)
n_iterations = 20
bayesopt_loop.run_loop (
user_function,
stopping_condition=n_iterations

)

emukit_bg model.integrate ()

Multi-fidelity emulation

To support research on multi-fidelity emulation methods, Emukit
implements both linear and non-linear multi-fidelity models. The
user needs to provide data for each of the fidelities and make
the choice of appropriate Gaussian process kernel. Emukit can
then be used to define a combined multi-fidelity model. In the
example below we define a linear multi-fidelity model, where the
relationship between fidelities is linear.

This utility method allows conversion
of data from different fidelities
to arrays where fidelity is represented
as an input variable
X, Y = convert_xy_lists_to_arrays(
[x_low, x_high],
l[y_low, y_high]
)
kernels = [

GPy.kern.RBF (dim=1),
GPy.kern.RBF (dim=1)
]
linear_mf_kernel =
LinearMultiFidelityKernel (kernels)
gpy_linear_mf_model =
GPyLinearMultiFidelityModel (

X, Y,
linear_mf_kernel,
n_fidelities = 2

Other methods and features

In addition to the APIs discussed above, Emukit also provides
basic support for sensitivity analysis and benchmarking. Fur-
ther information about Emukit’s functionality, including available
implementations of acquisition functions, multi-output models,
support for constraints and cost functions, and custom events in
the outer loop may be found in library’s website?, documentation’
and tutorial notebooks*.

EMUKIT IN ACTION

Since its announcement in 2019 [25], Emukit was used in a wide
range of research projects. In this section we review a selection of
these projects to showcase the breadth of situations in which the
library may be useful.

Methodological research

Because of its flexibility Emukit allows researchers to rapidly ex-
periment with decision making methods in its suite. In this section

2. https://emukit.github.io/

3. https://emukit.readthedocs.io/en/latest/

4. https://nbviewer.org/github/emukit/emukit/blob/main/notebooks/index.
ipynb

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

we discuss several research papers that leverage this advantage to
advance the field of decision making under uncertainty.

Optimisation of parameters in high dimensional structured
data spaces is an increasingly important and challenging task. A
common pattern is to use unsupervised learning methods to project
parameters into low dimensional continuous representations, also
known as latent spaces. There are multiple ways to approach
the design of the Bayesian optimisation procedure on such latent
spaces. Siivola et al. [26] studied the effects of various design
choices. Namely, the effects of the dimensionality of the latent
space, the optimisation bounds, and the choice of acquisition func-
tion were analysed. Emukit’s plug-and-play approach allowed the
researchers to facilitate measurement of these effects in isolation.

Emukit’s composability was also leveraged for the implemen-
tation of BOSH, a sampling approach for Bayesian optimisation of
functions with stochastic evaluations [27]. Authors used hierarchi-
cal Gaussian process as a surrogate and designed a novel BOSH
acquisition function using the information-theoretic framework,
incorporating both pieces in Emukit’s Bayesian optimisation loop.
Emukit was also used to assess BOSH performance against a
variety of baselines.

Naslidnyk et al. [28] implemented a custom Bayesian quadra-
ture model and used Emukit’s existing BQ wrapper and decision
loop in order to learn integrals of functions that are input invariant
under some transformations. They tested their method on a prob-
lem from Fourier optics where the integral over a point spread
functions of symmetric lenses was computed. Further, Gessner
et al. [29] applied Emukit in the context of active multi-source
Bayesian quadrature. The authors implemented a custom multi-
source BQ model, a corresponding wrapper and even a custom
multi-source acquisition function and point calculator which was
possible due to Emukit’s abstraction and plug-and-play capability.

Example applications

In this section we describe several cases where Emukit was used
to solve applied research problems.

Bell et al. used Emukit to show how to conduct multi-
verse analysis for machine learning experiments [30]. Multiverse
analysis was originally introduced in psychology, and allows
researchers to explore the robustness and generality of claims
by systematically examining the impact of different choices and
variations in the experimental setup. The authors argue that the
same concept can be applied to the machine learning: if a new
technique, e.g. batch normalization, is proposed for an ML model,
it should remain effective regardless of the model architecture,
optimisation method, dataset, evaluation metric, and so on. The
set of these variations comprises a multiverse, and needs to be
explored effectively. The authors use surrogate modeling and
Bayesian experimental design to systematically explore the effect
of each choice. Emukit was chosen as an implementation tool
because of the experimental design API it provides.

Uhrenholt and Jensen used Emukit’s Bayesian optimisation
module to solve the problem of finding settings of a musical
synthesizer to produce a given sound [31]. A musical synthesizer
produces sound by generating waveforms via oscillators. Created
audio streams are then routed through a pipeline that consists (not
necessary all) of mixing of separate streams, filtering, adding of
noise, and saturation. Musicians can control the output sound by
changing the configuration of the pipeline. In order to estimate
the discrepancy between the produced sound and the target, the

https://emukit.github.io/
https://emukit.readthedocs.io/en/latest/
https://nbviewer.org/github/emukit/emukit/blob/main/notebooks/index.ipynb
https://nbviewer.org/github/emukit/emukit/blob/main/notebooks/index.ipynb

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY

authors designed a novel modeling approach, in which Gaussian
process is used to model the distribution of the output’s L2 norm.
The flexibility of Emukit allowed to implement this customization
directly, without necessary effort duplication. Emukit’s API also
facilitated a fair comparison to the standard Bayesian optimisation
used as a baseline.

Liyanage et al. faced the problem of combining data from
multiple particle accelerators, including Large Hadron Collider
and Relativistic Heavy Ion Collider, to study the properties of
quark-gluon plasma [32]. Nuclear collision experiments generate
a large body of measurements with varying levels of uncertainty
that would be expensive to quantify with simulations. Instead the
authors proposed to use inexpensive statistical emulators and use
transfer learning to leverage similarities between different heavy
ion collisions systems. This new technique is based on multi-
fidelity emulation, making Emukit an obvious implementation
choice.

RELATED WORK

The Python ecosystem is rich with powerful scientific packages,
including those for decision making methods.

In particular, Bayesian optimisation enjoys a wide selection of
tools and frameworks. Spearmint [14] and GPyOpt [33] are among
the first Python packages for Bayesian optimisation, the latter
being an inspiration for the first release of Emukit. BoTorch [34]
is a popular library for Bayesian optimisation based on PyTorch.
Similarly, Trieste [35] also focuses on Bayesian optimisation but
uses Tensorflow as a backend. More options, such as pyGPGO
[36], scikit-optimize [37], RoBO [38], are also available.

For Bayesian quadrature and Bayesian experimental design
the choice of frameworks is more scarce. Namely, bayesquad [39]
appears to be another Python package for Bayesian quadrature.
The Python library ProbNum [40] supports a variety of Bayesian
quadrature methods, but it’s lack of hyperparameter tuning ca-
pability reduces its practical relevance significantly in its current
form. Optbayesexpt [41] and NEXTorch [42] provide Bayesian
experimental design functionality adopted for their respective
fields. Elements of experimental design can also be found in
Trieste [35].

The key difference between Emukit and the mentioned li-
braries is the fact that Emukit does not dictate a particular
modeling framework, allowing for flexibility in the choice of
computational backends. In addition, Emukit does not focus on
a single method and provides a common core set of abstractions
for optimisation, quadrature and experimental design. Emukit
provides a unique way of using the same model backend for all
tasks, which increases consistency, reduces implementation and
computing overheads.

Likewise, we were not able to locate a Python library other
than Emukit that provides multi-fidelity emulation functionality.
A notable package for research on multi-fidelity methods is
MF2 [43] that implements a variety of multi-fidelity benchmark
functions, but does not have modeling capabilities.

Looking at a wider family of optimisation libraries in Python,
Optuna [44] is a popular choice for hyperparameter optimisation.
Similarly to Emukit, Optuna is framework agnostic, however it
provides a different set of optimisation methods, focusing on evo-
lutionary, genetic and Monte Carlo based approaches. Finally, Ray
Tune [45] is a well known scalable platform in Python on which
other model optimisation frameworks can be executed. Emukit

73

can potentially be integrated with Ray Tune as an optimisation
library. This work was not carried out yet, and may be a future
development direction.

LIMITATIONS

The design choices made in Emukit have proven to be highly
beneficial for rapid prototyping and experimentation. However
they also led to some of the key limitations of the library.

Emukit does not provide modeling capabilities, and instead
requires users to provide their own surrogate models. This re-
quires certain level of proficiency with probabilistic modeling,
and can prevent some people from using the library. While we
aim to mitigate this with extensive collection of examples and
tutorials, and Emukit is successfully used in teaching university-
level courses and scientific summer schools, the library still cannot
be recommended for absolute beginners.

Emukit puts a strong emphasis on plug-and-play construction
of the decision making loop. All components interact via inter-
faces, and they require a common data format to communicate,
which in Emukit is a Numpy array. On one hand Numpy is a
defacto standard in scientific Python which means it is reasonable
to expect all Emukit users to be able to use Numpy. On the
other hand, linear algebra operations in Numpy cannot be GPU-
accelerated. This means that while individual components of the
outer loop (e.g. a model) can run on GPU, the entire end-to-
end process in Emukit is CPU-bound. This issue severely limits
Emukit’s performance comparing to the libraries that have chosen
to rely on a fixed computational backend (BoTorch/PyTorch or
Trieste/Tensorflow). This can be potentially mitigated by using
specialized libraries that allow Numpy to be run on GPU, such as
Numba [46] and CuPy [47].

CONCLUSIONS

Emukit is built on a realisation that common methods for deci-
sion making under uncertainty — such as Bayesian optimisation,
Bayesian quadrature and experimental design — follow the same
iterative pattern, and therefore can be seen as instances of a
unified high level framework. Emukit provides high level inter-
faces for these methods that are built on the core set of common
abstractions. To enable researchers and practitioners to iterate
and experiment quickly Emukit follows plug-and-play design,
allowing users to swap out a single part of the decision making
loop without affecting other components. Since its initial release
in 2019, Emukit has been successfully used in academic research,
industry, and teaching.

Emukit has multiple potential growth directions. Mitigation
of limitations discussed earlier may improve user experience
and overall quality of the library. Integration with other tools
in scientific Python ecosystem (e.g. Ray Tune) may increase
Emukit’s visibility within the community. New functionality, such
as multi-objective Bayesian optimisation, would expand library’s
capabilities and give users new ways to do research with Emukit.

Researchers and enthusiasts from any scientific or industrial
domain are welcome to explore the potential of using Emukit
for their applications, to contibute new functionality, and to
take part in the discussions around the library. The authors are
always open to feedback and comments about improvements
to the library. The Emukit repository is available on GitHub:
https://github.com/EmuKit/emukit.

https://github.com/EmuKit/emukit

74

ACKNOWLEDGMENTS

AP and NL acknowledge the support from the Engineering and
Physical Sciences Research Council (EPSRC) and the Alan Turing
Institute under grant EP/V030302/1. MM gratefully acknowledges
financial support by the European Research Council through ERC
StG Action 757275 / PANAMA; the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”, EXC 2064/1,
project number 390727645; the German Federal Ministry of Ed-
ucation and Research (BMBF) through the Tiibingen AI Center
(FKZ: 011IS18039A); and funds from the Ministry of Science,
Research and Arts of the State of Baden-Wiirttemberg.

We are thankful to every community member for discussions,

comments, bug reports, pull requests, as well as everyone who
used the library in their work, study or research. The full list of
people who contributed code to Emukit can be found at https:
//github.com/EmuKit/emukit/graphs/contributors.

REFERENCES

(1]
(2]

(3]

(4]
(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. Settles, “Active learning literature survey,” University of Wisconsin—
Madison, Computer Sciences Technical Report 1648, 2009.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning, ser. Adaptive Computation and Machine Learning. MIT Press,
2006.

T. K. Ho, “Random decision forests,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, 1995, pp.
278-282 vol.1, https://doi.org/10.1109/ICDAR.1995.598994.

D. J. C. MacKay, “A practical Bayesian framework for backprop net-
works,” Neural Computation, 1991.

A. O’Hagan, M. C. Kennedy, and J. E. Oakley, “Uncertainty analysis and
other inference tools for complex computer codes,” in Bayesian Statistics
6, 1998.

M. C. Kennedy and A. O’Hagan, “Predicting the output from a complex
computer code when fast approximations are available,” Biometrika,
vol. 87, no. 1, pp. 1-13, 2000, https://doi.org/10.1093/biomet/87.1.1.
——, “Bayesian calibration of computer models,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp.
425-464, 2001, https://doi.org/10.1111/1467-9868.00294.

S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan, “Gaussian process
emulation of dynamic computer codes,” Biometrika, vol. 96, no. 3, pp.
663-676, 06 2009, https://doi.org/10.1093/biomet/asp028.

S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” Journal of Statistical Planning and
Inference, vol. 140, no. 3, pp. 640-651, 2010, https://doi.org/10.1016/
j-jspi.2009.08.006.

J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian
methods for seeking the extremum,” Towards Global Optimization,
vol. 2, no. 117-129, p. 2, 1978.

R. Garnett, Bayesian Optimization.
to appear.

A. Baheri and C. Vermillion, “Altitude optimization of airborne wind
energy systems: A Bayesian optimization approach,” in 2017 American
Control Conference (ACC). 1EEE, 2017, pp. 1365-1370, https://doi.org/
10.23919/acc.2017.7963143.

D. E. Graff, E. 1. Shakhnovich, and C. W. Coley, “Accelerating
high-throughput virtual screening through molecular pool-based active
learning,” Chemical science, vol. 12, no. 22, pp. 7866-7881, 2021,
https://doi.org/10.1039/d0sc06805e.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

B. Avent, J. Gonzilez, T. Diethe, A. Paleyes, and B. Balle, “Automatic
discovery of privacy—utility Pareto fronts,” Proceedings on Privacy
Enhancing Technologies, vol. 4, pp. 5-23, 2020, https://doi.org/10.2478/
popets-2020-0060.

P. Diaconis, “Bayesian numerical analysis,” in Statistical decision theory
and related topics IV. Springer-Verlag New York, 1988, vol. 1, pp.
163-175.

A. O’Hagan, “Some Bayesian numerical analysis,” Bayesian Statistics,
vol. 4, pp. 345-363, 1992.

P. Hennig, M. A. Osborne, and H. P. Kersting, Probabilistic Numerics:
Computation as Machine Learning. Cambridge University Press, 2022,
https://doi.org/10.1017/9781316681411.

Cambridge University Press, 2023,

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

C. E. Rasmussen and Z. Ghahramani, “Bayesian Monte Carlo,” in
Advances in Neural Information Processing Systems, vol. 15, 2002, pp.
505-512.

A. Giovagnoli, “The Bayesian design of adaptive clinical trials,” Inter-
national Journal of Environmental Research and Public Health, vol. 18,
no. 2, 2021, https://doi.org/10.3390/ijerph18020530.

E. Pauwels, C. Lajaunie, and J.-P. Vert, “A Bayesian active learning strat-
egy for sequential experimental design in systems biology,” BMC Systems
Biology, vol. 8, no. 1, pp. 1-11, 2014, https://doi.org/10.1186/312918-
014-0102-6.

A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley, K. G. Reyes,
E. F. Morgan, and K. A. Brown, “A Bayesian experimental autonomous
researcher for mechanical design,” Science advances, vol. 6, no. 15, p.
eaaz1708, 2020, https://doi.org/10.1126/sciadv.aaz1708.

B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity
methods in uncertainty propagation, inference, and optimization,” SIAM
Review, vol. 60, no. 3, pp. 550-591, 2018, https://doi.org/10.1137/
16M1082469.

The GPy authors, “GPy: A Gaussian process framework in Python,” http:
//github.com/SheffieldML/GPy, 2012.

A. Paleyes, M. Pullin, M. Mahsereci, C. McCollum, N. D. Lawrence,
and J. Gonzdlez, “Emulation of physical processes with Emukit,” Second
workshop on machine learning and the physical sciences, NeurIPS, 2019.
E. Siivola, A. Paleyes, J. Gonzdlez, and A. Vehtari, “Good practices for
Bayesian optimization of high dimensional structured spaces,” Applied
AI Letters, vol. 2, no. 2, p. €24, 2021, https://doi.org/10.1002/ail2.24.

H. B. Moss, D. S. Leslie, and P. Rayson, “BOSH: Bayesian optimisation
by sampling hierarchically,” Workshop on Real World Experimental
Design and Active Learning, ICML, 2020.

M. Naslidnyk, J. Gonzalez, and M. Mahsereci, “Invariant priors for
Bayesian quadrature,” in Your Model is Wrong: Robustness and mis-
specification in probabilistic modeling Workshop, NeurIPS, 2021.

A. Gessner, J. Gonzalez, and M. Mahsereci, “Active multi-information
source Bayesian quadrature,” in Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, ser. Proceedings of Machine Learning
Research, R. P. Adams and V. Gogate, Eds., vol. 115. PMLR, 2020, pp.
712-721.

S. J. Bell, O. Kampman, J. Dodge, and N. Lawrence, “Modeling the ma-
chine learning multiverse,” Advances in Neural Information Processing
Systems, vol. 35, pp. 18416-18 429, 2022.

A. K. Uhrenholt and B. S. Jensen, “Efficient Bayesian optimization
for target vector estimation,” in The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR, 2019, pp. 2661-2670.

D. Liyanage, Y. Ji, D. Everett, M. Heffernan, U. Heinz, S. Mak,
and J.-F. Paquet, “Efficient emulation of relativistic heavy ion
collisions with transfer learning,” Phys. Rev. C, vol. 105, p. 034910,
Mar 2022, https://doi.org/10.1103/PhysRevC.105.034910. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevC.105.034910

The GPyOpt authors, “GPyOpt: A Bayesian optimization framework in
Python,” http://github.com/SheffieldML/GPyOpt, 2016.

M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wil-
son, and E. Bakshy, “BoTorch: A framework for efficient Monte-Carlo
Bayesian optimization,” Advances in neural information processing sys-
tems, vol. 33, pp. 21 524-21 538, 2020.

V. Picheny, J. Berkeley, H. B. Moss, H. Stojic, U. Granta, S. W. Ober,
A. Artemev, K. Ghani, A. Goodall, A. Paleyes et al., “Trieste: Efficiently
exploring the depths of black-box functions with Tensorflow,” arXiv
preprint arXiv:2302.08436, 2023.

J. Jiménez and J. Ginebra, “pyGPGO: Bayesian optimization for Python,”
Journal of Open Source Software, vol. 2, no. 19, p. 431, 2017, https:
//doi.org/10.21105/joss.00431.

G. Louppe, “Bayesian optimisation with scikit-optimize,” in PyData
Amsterdam, 2017.

A. Klein, S. Falkner, N. Mansur, and F. Hutter, “RoBO: A flexible
and robust Bayesian optimization framework in Python,” in NIPS 2017
Bayesian Optimization Workshop, 2017.

OxfordML, “bayesquad,” https://github.com/OxfordML/bayesquad,
2013.

J. Wenger, N. Kriamer, M. Pfortner, J. Schmidt, N. Bosch, N. Effenberger,
J. Zenn, A. Gessner, T. Karvonen, F.-X. Briol, M. Mabhsereci, and
P. Hennig, “ProbNum: Probabilistic numerics in Python,” 2021.

R. D. McMichael, S. M. Blakley, and S. Dushenko, “Optbayesexpt:
Sequential Bayesian experiment design for adaptive measurements,”
Journal of Research of the National Institute of Standards and Tech-
nology, vol. 126, pp. 1-5, 2021.

Y. Wang, T.-Y. Chen, and D. G. Vlachos, “NEXTorch: a design and
Bayesian optimization toolkit for chemical sciences and engineering,”

https://github.com/EmuKit/emukit/graphs/contributors
https://github.com/EmuKit/emukit/graphs/contributors
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1093/biomet/87.1.1
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1093/biomet/asp028
https://doi.org/10.1016/j.jspi.2009.08.006
https://doi.org/10.1016/j.jspi.2009.08.006
https://doi.org/10.23919/acc.2017.7963143
https://doi.org/10.23919/acc.2017.7963143
https://doi.org/10.1039/d0sc06805e
https://doi.org/10.2478/popets-2020-0060
https://doi.org/10.2478/popets-2020-0060
https://doi.org/10.1017/9781316681411
https://doi.org/10.3390/ijerph18020530
https://doi.org/10.1186/s12918-014-0102-6
https://doi.org/10.1186/s12918-014-0102-6
https://doi.org/10.1126/sciadv.aaz1708
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/16M1082469
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.1002/ail2.24
https://doi.org/10.1103/PhysRevC.105.034910
https://link.aps.org/doi/10.1103/PhysRevC.105.034910
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.21105/joss.00431
https://doi.org/10.21105/joss.00431
https://github.com/OxfordML/bayesquad

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY

[43]

[44]

[45]

[46]

[47]

Journal of Chemical Information and Modeling, vol. 61, no. 11, pp.
5312-5319, 2021, https://doi.org/10.1021/acs.jcim.1c00637.s001.

S. van Rijn and S. Schmitt, “MF2: A collection of multi-fidelity
benchmark functions in Python,” Journal of Open Source Software,
vol. 5, no. 52, p. 2049, 2020, https://doi.org/10.21105/joss.02049.
[Online]. Available: https://doi.org/10.21105/joss.02049

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2019, https://doi.org/10.1145/3292500.3330701.
R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1-6, https://doi.org/10.1145/
2833157.2833162.

R. Nishino and S. H. C. Loomis, “CuPy: A numpy-compatible library
for Nvidia GPU calculations,” 31st conference on neural information
processing systems, vol. 151, no. 7, 2017.

75

https://doi.org/10.1021/acs.jcim.1c00637.s001
https://doi.org/10.21105/joss.02049
https://doi.org/10.21105/joss.02049
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162

	Introduction
	Background on probabilistic active methods
	Emukit workflow
	Structure of the library
	Usage overview
	Standard methods and model wrapping
	Interfaces for fast prototyping
	Model reuse across tasks
	Multi-fidelity emulation
	Other methods and features

	Emukit in action
	Methodological research
	Example applications

	Related work
	Limitations
	Conclusions
	Acknowledgments
	References

