
76 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

MDAKits: A Framework for FAIR-Compliant Molecular
Simulation Analysis

Irfan Alibay‡†∗, Lily Wang‡†, Fiona Naughton§†, Ian Kenney¶†, Jonathan Barnoud∥, Richard J Gowers‡, Oliver
Beckstein¶

✦

Abstract—The reproducibility and transparency of scientific findings are widely
recognized as crucial for promoting scientific progress. However, when it comes
to scientific software, researchers face many barriers and few incentives to
ensure that their software is open to the community, thoroughly tested, and
easily accessible. To address this issue, the MDAKits framework has been
developed, which simplifies the process of creating toolkits for the MDAnalysis
simulation analysis package (https://www.mdanalysis.org/) that follow the ba-
sic principles of FAIR (findability, accessibility, interoperability, and reusability).
The MDAKit framework provides a cookiecutter template, best practices docu-
mentation, and a continually validated registry. Registered kits are continually
tested against the latest release and development version of the MDAnalysis
library and their code health is indicated with badges. Users can browse the
registry frontend (https://mdakits.mdanalysis.org/) to find new packages, learn
about associated publications, and assess the package health in order to make
informed decisions about using a MDAKit in their own research. The criteria
for registering an MDAKit (open source, version control, documentation, tests)
are similar to the criteria required for publishing a paper in a software journal,
so we encourage and support publication in, e.g., the Journal of Open Source
Software, creating further academic incentive for researchers to publish code.
Through the MDAKits framework, we aim to foster the creation of a diverse
ecosystem of sustainable community-driven downstream tools for MDAnalysis
and hope to provide a blueprint for a model for growing communities around
other scientific packages.

Index Terms—Molecular Dynamics Simulations, Python, MDAnalysis, eco-
system

Introduction

Software has become increasingly essential to research. In many
areas, it underlies fundamental tasks such as generating, process-
ing, analyzing, storing, visualizing, and communicating the key
results and insights ultimately published.

Scientific code frequently fails to meet FAIR tenets, impeding scien-
tific progress

Despite the importance of software, it is typically not central
to the publication peer review process in many scientific fields.

† These authors contributed equally.
* Corresponding author: ialibay@mdanalysis.org
‡ Open Molecular Software Foundation, Irvine, CA, USA
§ Cardiovascular Research Institute, University of California, San Francisco,
San Francisco, CA, USA
¶ Arizona State University, Tempe, AZ, USA
|| Centro Singular de Investigación en Tecnoloxías Intelixentes, Santiago de
Compostela, Spain

Copyright © 2023 Irfan Alibay et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Consequently, scientific code frequently fails to meet the basic
tenets of FAIR: findability, accessibility, interoperability, and
reusability [1], [2]. With the publication of “The FAIR Guiding
Principles for scientific data management and stewardship” in
2016 and the follow-up "FAIR Principles for Research Software
(FAIR4RS Principles)" in 2022, it has become increasingly ac-
knowledged that abiding by the principles of FAIR is crucial to
promoting robust, reproducible, and efficient scientific discovery
and innovation [1], [2]. We believe that extending FAIR principles
to include open-source software not only significantly advances
that goal, but furthermore is necessary for transparent research.
Open sharing of code brings a number of substantial benefits to
the scientific community. For example, scientists can accurately
replicate a given methodology or re-use previous code, reducing
duplication of effort and reducing the risk of implementation
errors. Indeed, the molecular simulation community in particular
has made a concerted effort over recent years to encourage the
open sharing of scientific codes [3]. For example, as of July 2022,
over 4700 GitHub repositories containing Python code that makes
use of MDAnalysis [4], [5] have been made publicly available1.

However, simply sharing code is not sufficient to fulfill FAIR
guidelines. In fact, making software FAIR compliant requires
significant investment and often expert knowledge on the part of
the developers, especially if the code was written specifically for a
particular research project. For example, the Python ecosystem
is so dynamic that it is common for research code to rapidly
become obsolete or unusable if a new version of a key library
is released. To fulfill the Reusability tenet of FAIR alone, code
should include documentation, version control, and dependency
management. Ideally, it would also include unit tests, examples,
and packaging. Even when code is released in reference to a
publication, it often falls short of ideal FAIR standards. A short
survey of publications in Scopus [6] and the Journal of Open
Source Software [7] over 2017—2021 identified that out of a
total 720 papers citing MDAnalysis [4], [5], only 43 linked to
code available on a version control platform such as GitHub,
GitLab, or Bitbucket. Of these, only 18 met the requirements
of best practices: they implemented unit tests, comprehensive
documentation, and some means of installation.

Two major factors contribute to the lack of open-source FAIR
compliant code. Firstly, code is typically written by scientists
with no formal training or support in programming, for whom
implementing FAIR principles can pose an intimidating and te-
dious barrier. Secondly, despite the substantial investment of effort
and time required to implement best practices, publishing FAIR

https://www.mdanalysis.org/
https://mdakits.mdanalysis.org/
mailto:ialibay@mdanalysis.org


MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 77

software is not typically appreciated with academic recognition or
reward. Fostering a culture of open-source FAIR software requires
addressing both.

Centralized open-source packages such as MDAnalysis offer a
limited solution

One solution is to consolidate scientific code around a small
number of large, central packages. MDAnalysis [4], [5] is a
widely-used open-source Python library for molecular simulation
data. With over 18 years of development by more than 180 de-
velopers, MDAnalysis has refined its code base to offer a mature,
robust, flexible API that offers a range of high-performance tools
to extract, manipulate, and analyze data from the majority of
common simulation formats. MDAnalysis tools have been used for
a variety of scientific applications ranging from exploring protein-
ligand interactions [8], [9], [10], to understanding lipid behavior
[11], [12], to assessing the behavior of novel materials [13], [14].

Initially, MDAnalysis focused on growing the developer and
user community by encouraging users to contribute their code di-
rectly to the MDAnalysis library. Notable examples of this include
the waterdynamics [15] and ENCORE [16] analysis modules.
This approach of encouraging code to be contributed to a central
package has also been successfully taken by packages such as
cpptraj [17] and the GROMACS tools [18]. It has a number of key
advantages for users and the original developers:

• MDAnalysis can ensure that the code follows best prac-
tices (including documentation and tests).

• Code is promoted and made freely accessible to all MD-
Analysis users.

• Maintenance, support, and potential updates are performed
by the experienced MDAnalysis developer team, ensuring
that the contributed code remains functional even while the
other parts of the library change. The original developers
can thus focus on other work.

However, the many costs of this approach can, under some
conditions, result in unsustainable, untenable disadvantages:

• Ensuring that the code follows best practices often requires
long review periods and strict code-style adherence, thus
slowing down the availability of the new code in a released
version of the package.

• The necessity of keeping the API stable between major
releases precludes quick releases of breaking changes. In
general, a mature package such as MDAnalysis has a
slow release cycle, so new features and bug fixes can take
months to become available in new releases.

• As MDAnalysis implicitly agrees to maintain any code that
we release, a certain level of understanding and expertise is
required from the maintainers. If the core developer team
lacks expertise in a specific discipline or subdiscipline,
adding new code in these areas introduces a substantial
maintenance burden should the original code contributors
not be available to help with maintenance. Consequently, it
is impractical to include recently released or cutting-edge
techniques in the core library.

• Introducing new package dependencies incurs software
stack maintenance costs for many users who may not
require this additional code.

1. Based on a search for repositories containing import MDAnalysis.

• Code contributors lose complete control of their code.

The many disadvantages listed above can severely limit the
usefulness of centralizing code around one monolithic package.
Indeed, encountering these issues when attempting to expand the
core MDAnalysis library attests that this approach is not the most
suited for the MDAnalysis community.

Implementing an ecosystem of downstream packages for more
sustainable progress

We believe that a sustainable alternative solution is for com-
munities such as MDAnalysis to encourage, educate, and foster
researchers in their efforts towards developing individual software.
We have developed a program of structured technical assistance
to help researchers implement best practices and publish their
code within a growing ecosystem of toolkits that we have called
MDAKits (MDAnalysis Toolkits). We have also developed a plat-
form called the "MDAKit registry" (https://mdakits.mdanalysis.
org/mdakits.html) where packages that meet certain standards are
advertised to the community. The MDAKit ecosystem builds on
the success of other community packages such as PLUMED’s
PLUMED-NEST [19], AiiDA’s plugin registry [20], or the napari-
hub [21] of plugins for the napari image viewer [22], all of which
list available tools that are known to work in their respective user
communities.

Our technical assistance begins with cookiecutter templates
and example repositories. Here we model best practices, promote
the use of helpful tools, e.g., for checking code coverage, and
reduce the work required to set up processes such as continuous
integration, versioned documentation, packaging and deployment.
Developers can also reach out to the MDAnalysis community for
feedback, technical assistance, or even make connections with new
co-developers and potential users. Decoupled from MDAnalysis’s
release cycle, developers are able to introduce new changes as
required, keeping complete control over their code-base. Join-
ing an MDAnalysis registry allows for frequent and streamlined
communication between MDAnalysis and downstream developers,
allowing developers to be efficiently forewarned about potential
breaking changes.

Although establishing such an ecosystem of MDAnalysis-
supported packages requires substantial investment from MDAnal-
ysis developers, this approach is nonetheless likely to be far more
sustainable than centralizing around a super-package. Offering
technical assistance to individual developers in implementing best
practices constitutes a large part of the effort; however, this level
has thus far proven much lower than the effort associated with
adding additional functionality to the core MDAnalysis library,
and we believe that it will continue to remain so. Furthermore,
as the ecosystem grows, we hope that an increasing portion of
the community will participate in taking care of the packages
and registry, and that the culture of following best practices and
publishing code will gain momentum in itself.

In part, we hope that this momentum will be driven by users
and user expectations. Users of the MDAnalysis ecosystem gain
huge benefit from the MDAKit registry. They are able to see new
software as it gets added, rather than having to comb through
literature or rely on developers advertising the code themselves.
They are also able to easily verify the current development status
of a package and whether it is being actively maintained and
passing tests with both released and in-development versions of
MDAnalysis. In the future, the registry could contain informa-
tion about the health of a given codebase, such as its activity

https://mdakits.mdanalysis.org/mdakits.html
https://mdakits.mdanalysis.org/mdakits.html


78 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Workflow diagram of the MDAKit framework. Starting from the
creation of an MDAKit package, with the help of documentation and
the MDAKit cookiecutter, the package then goes through the process of
being added to the MDAKit registry, undergoing continuous validation
and review and eventually reaching the stage of publication.

status and if it optimally leverages high performance MDAnalysis
components (e.g. highly optimised PBC-aware distance routines).
Packages on the registry also come with easy-to-find instructions
on how to easily install and run a given package, significantly
lowering the technical barrier to use and experimentation. As
the maintenance remains the burden of the package owners,
unfortunately the risk remains that packages on the registry may
eventually become out-of-date, which is indeed one of the major
disadvantages of this approach. However, the registry significantly
increases the likelihood that packages will reach users who will
become sufficiently motivated to contribute or take over their
maintenance and development.

In the rest of this document we outline our expectations for
MDAKits in terms of best practices and how we implement their
registration and continuous validation.

The MDAKit framework

The MDAKit framework (Fig. 1) is designed to be a complete
workflow to help and incentivize developers to go from the initial
stages of package development all the way through to the long-
term maintenance of a mature codebase, while adhering to best
practices.

Main goals

As such, the main goals of the proposed MDAKit framework are:

1) To help as many packages as possible implement best
practices and develop user communities.

2) To ensure that members of the MDAnalysis community
can easily identify new packages of interest and know to
what extent they are suitable for production use.

3) To improve contacts between MDAnalysis core library
developers and those developing packages using MD-
Analysis.

4) To encourage participation from the community at all
steps of the process.

We wish to state three main points that the framework is not
designed for:

1) The MDAKit framework is not intended to restrict the
packages which can participate. It is our view that all
packages at any stage of their development are of value
to the community. As such, we aim for framework com-
ponents to be as non-blocking as possible.

2) It is not the intention of any parts of this framework to
take control or ownership of the packages that participate
within it. The original code developers retain full own-
ership, control, and responsibility for their packages and
may optionally participate in any part of this framework.

3) We also do not want to block future contributions to the
core library. If new code in MDAKits prove particularly
popular, and the MDAKit developers are amenable to
contributing these back into the core library, the MD-
Analysis team will work with them to integrate additional
functionality into MDAnalysis itself.

Overview of the framework

The MDAKit framework (Fig. 1) is a multi-step process. In the
first step of the MDAKit framework, developers create an initial
package which is intended to achieve a set purpose of their choice.
To help with this process, MDAnalysis provides a cookiecutter
template specifically for MDAKits [23], alongside documentation
on best practices and how to optimally use the MDAnalysis API.
An overview of what we consider to be best practices for the
contents of MDAKit packages is included in Section Defining
MDAKits: best practice package features. We note that at this
point MDAKits are not expected to fully adhere to best practices,
but should at least meet the minimum requirements defined in
Section Defining MDAKits: best practice package features before
moving to the next step along this process.

Once a package is suitably developed, code owners are en-
couraged to add the details of their code to the “MDAKit registry”
which advertises their package to the MDAnalysis community and
offers continual validation and review tools to help with pack-
age maintenance. Section The MDAKit registry contains more
information about the MDAKit registry, including the registration
process (Section Registering MDAKits). Briefly, the registration
process involves submitting a metadata file to the registry that
contains essential information about the MDAKit, such as where
the source code is provided, who the code authors are, and how to
install the MDAKit. The contents of this metadata file is reviewed
both by automatic code checks and the MDAnalysis developer
team before being added to the registry. We want to highlight that
this process does not include checks on scientific validity or code
health. In fact, none of the processes in this framework account
for the scientific validity of the MDAKits. While members of the



MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 79

community are free to offer help, scientific or technical validity is
beyond the scope of what is feasible with the MDAnalysis registry.

Upon registration, the MDAKit is automatically advertised to
the MDAnalysis community (see Section Advertising MDAKits).
In the first instance this amounts to a set of auto-generated
pages that expose the details in the metadata file provided in the
registration step. Additional tags and badges are also included
that reflect the current status and health of the package. Examples
include:

• whether or not it is compatible with the latest versions of
MDAnalysis

• what percentage of the codebase is covered by unit tests
• what type or extent of documentation is provided
• what Python versions are currently supported.

This status information is provided as part of checks done
during the continual validation and review steps (see Sections
Continual validation and Continual review) of the framework.
These steps involve a mix of regularly scheduled automatic (e.g.,
linters and unit test execution) checks and more infrequent manual
(e.g., code reviews) processes. It is our intention that code health
analysis will help developers maintain and improve their codes,
as well as suitably warn potential users about issues they may
encounter when using a given codebase.

Where possible, the framework encourages a code review
process to be carried out by members of the MDAnalysis com-
munity. The aim here is to work with developers in identifying
potential areas of improvements for both MDAKits and the core
MDAnalysis library (see Sections Continual review and Feeding
back into the MDAnalysis library). We aim to tie this process
closely to the review processes of journals such as the Journal of
Open Source Software [7], which would help lower the barrier
towards and encourage an eventual publication (Section Towards
publication).

Defining MDAKits: best practice package features

Here we list requirements that we believe MDAKits should strive
to fulfill in order to meet best practices in Python package
usability and maintenance. To help with implementing these, a
cookiecutter is provided which offers a template for potential
MDAKits to follow [23]. We want to emphasize again that the aim
of the MDAKit project is to encourage best practices whilst also
minimizing barriers to sharing code where possible. Therefore,
only a minimal set of requirements listed here as required are
necessary for MDAKits to be included in the MDAKit registry.
Similarly, we do not mean to enforce the label of MDAKit on any
package; the process is fully optional and the code owners may
choose whether to associate themselves with it.

All MDAKits must implement the features on the list of
required features in order to become registered:

• Code in the package uses MDAnalysis (Code using MD-
Analysis (required)).

• Open source code is published under an OSI approved
license (Open source code under an OSI approved license
(required)).

• Code is versioned and provided in an accessible version-
controlled repository (Versioning and provision under an
accessible version-controlled repository (required)).

• Code authors and maintainers are clearly designated
(Designated code authors and maintainers (required)).

• Documentation is provided (Documentation (required)).
• Tests and continuous integration are present (Tests and

continuous integration (required)).

The following are highly recommended features:

• Code is installable as a standard package (Packaging).
• Information on bug reporting, user discussions, and com-

munity guidelines is made available (Bug reporting, user
discussions, and community guidelines).

Code using MDAnalysis (required): This is the base re-
quirement of all MDAKits. The intent of the MDAKit framework
is to support packages existing downstream from the MDAnalysis
core library. MDAKits should therefore contain code using MD-
Analysis components which are intended by the package authors
to address the MDAKit’s given purpose.

Open source code under an OSI approved license (re-
quired): The core aim of MDAKits is to encourage the open
sharing of codes to potential users within the MDAnalysis com-
munity and beyond. To achieve this, we require that codes under
this framework be released as open source. Here we define open
source as being under an Open Source Initiative (OSI) approved
license [24].

As of writing, the MDAnalysis library is currently licensed
under GPLv2+ [25]. Due to limitations with this license type, we
cannot currently recommend other licenses than GPLv2+ for codes
importing MDAnalysis. However, we hope to relicense to a less
restrictive license. In this event, MDAKits will be able to adopt a
wider range of OSI approved licenses.

Versioning and provision under an accessible version-
controlled repository (required): The ability to clearly identify
changes in a codebase is crucial to enabling reproducible science.
By referencing a specific release version, it is possible to trace
back any bug fixes or major changes which could lead to a differ-
ence in results obtained with a later version of the same codebase.
Whilst we encourage the use of Semantic Versioning ("semver")
[26], any PEP440 [27] compliant versioning specification would
be suitable for MDAKits.

Beyond versioning releases, it is also crucial to be able to
develop code in a sustainable and collaborative manner. The most
popular way of achieving this is through the use of version control
through Git [28]. We require all MDAKits to be held in a publicly
facing version controlled repository such as GitHub [29], GitLab
[30], or Bitbucket [31].

Designated code authors and maintainers (required): In
order for users to be able to contact the code owners and maintain-
ers, all MDAKits should clearly list their authors and a means of
contacting the persons responsible for maintaining the codebase.
To incentivize and recognize contributors throughout the life of a
project, we recommend the use of a version controlled “authors”
file which lists the authors to a codebase over time.

Documentation (required): Describing what a given code
does and how to use it is a key component of open sharing.
Ideally a package would include a complete description of the
entire codebase, including both API documentation and some kind
of user guide with worked examples on how the code could be
used in certain scenarios. Whilst this is recommended as best
practices for an MDAKit, we recognize that this is not always
feasible, especially in the early stages of development. Therefore,
the minimum requirement for MDAKits is to have a readme file
which details the key aspects of the MDAKit, such as what it is
intended to do, how to install it, and a basic usage example.



80 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

For best practices, we strongly recommend using docstrings
(see PEP 257 [32]) to document code components and using
a tool such as ReadTheDocs [33] to build, version and host
documentation in a user-friendly manner. We also recommend
using duecredit [34] to provide the correct attributions to a given
method if it has been published previously.

Tests and continuous integration (required): Testing is a
critical component to ensure that code behaves as intended. Not
only does it prevent erroneous coding, but it also assures users
that the code they rely on is working as intended. We require at
least a single regression test for major functionality to qualify for
the registry (i.e. if a toolkit implements a new analysis method,
at least one test that checks to see if the analysis code yields the
expected value on provided data; regression tests can often double
as example documentation).

Ideally one should do full unit testing of the contents of a
code, ensuring that not only a specific outcome is reached, but
also that each smaller component works. As part of best practices,
we highly recommend implementing tests using a framework such
as pytest [35] for executing tests and codecov [36] to capture
which lines are covered by the tests. We strongly encourage that a
minimum of at least 80% of the code lines be covered by tests.

To ensure that tests are run regularly, the recommended best
practice is to implement a continuous integration pipeline that per-
forms the tests every time new code is introduced. We encourage
the use of free pipelines such as GitHub Actions [37] to implement
continuous integration.

Packaging: Providing a standard means of installing code
as a package is important to ensure that other code can correctly
link to (i.e., import in the case of Python) and use its contents.
Whilst it can be easy to expect users to simply read a Python script,
look at its required dependencies, and install them manually, this
can quickly become unreasonable should the code grow beyond
a single file. Additionally, the lack of clearly defined versions,
including the intended Python versions, can lead to inoperable
code.

As best practices we heavily encourage the use of setuptools
[38] or an alternative such as poetry [39] for package installation.
We also encourage that packages be available on common package
repositories such as PyPi [40] and conda-forge [41]. The use
of such repositories and their respective package managers can
significantly lower the barrier to installing a package, enabling
new users to rapidly get started using it.

Bug reporting, user discussions, and community guide-
lines: To help maintain and grow the project, it is important to
specify where users can raise any issues they might have about
the project or simply ask questions about its operation. To achieve
this, we recommend at the very least adding documentation that
points users to an issue tracker.

Key to successfully building a user community is ensuring
that there are proper guidelines in place for how users will interact
with a project [42]. As best practices we recommend making a
code of conduct available that defines how users should interact
with developers and each other within a project. It is also advised
to provide information on how users can contribute to the project
as part of its documentation.

The MDAKit registry

As defined in Section The MDAKit framework, once MDAKits
are created, we encourage that they be added to the MDAKit

registry. The registry not only provides a platform to advertise
MDAKits to the MDAnalysis user community at the web page
https://mdakits.mdanalysis.org/, but also offers tools and work-
flows to help packages improve and continue to be maintained.
Here we describe the various processes that occur within the
registry. We note that we expect the exact details of how these
processes are implemented to evolve over time based on feedback
from MDAKit developers and other members of the MDAnalysis
community.

MDAKit registry contents

The main aim of the registry is to hold information about MDAK-
its. The contents of the registry therefore center around a list of
packages and the metadata associated with each MDAKit. This
metadata has the form of two files: one containing user-provided
information on the package contents (see Section Registering
MDAKits), and the other a set of mostly auto-generated details
indicating the code health of the package (see Section Advertising
MDAKits).

This metadata is used for two purposes: continuous integration
testing and documentation. Continuous testing, helper methods
and workflows are used to regularly install MDAKits and run their
test suite (if available) to check if they still work as intended.
Should the tests fail, package maintainers are automatically con-
tacted and failure information is recorded in the code health
metadata to inform users. For the registry documentation, the
metadata is used to provide user-facing information about the
various MDAKits in the registry, their contents, how to install
them, and their current status as highlighted by continuous inte-
gration tests. The registry also includes further information such
as user guides and tutorials on the MDAKit framework, helping
developers to implement their own MDAKits.

Registering MDAKits

A key feature of the MDAKit framework is the process of adding
MDAKits to the registry. As previously defined, our intent is to
offer a low barrier to entry and have packages be registered early
in their development cycles. This allows developers to benefit
from the MDAKit registry validation and review processes early
on, hopefully lowering the barrier to further improvements and
encouraging early user interactions and feedback.

From an MDAKit developer standpoint, the registration pro-
cess involves opening a pull request against the MDAKit registry
that adds a new YAML file with metadata about the project.
The metadata, as detailed in Fig. 2, contains information such
as the MDAKit description, source code location, installation
instructions, how to run tests, and where to find documentation.
Complete details about the metadata file specification are provided
in the MDAKit registry documentation.

After a pull request is opened, the MDAnalysis developers
review the contents of the submission based on the following
criteria:

1) If the required features for MDAKits are met (Section
Defining MDAKits: best practice package features), that
is:

1. Does the MDAKit contain code using MDAnaly-
sis?

2. Is the MDAKit license appropriate?
3. Is the MDAKit code offered through a suitable

version-controlled platform?

https://mdakits.mdanalysis.org/


MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 81

Fig. 2: YAML metadata file for an MDAKit entry of the propkatraj
package, stored as mdakits/propkatraj/metadata.yaml in
the registry repository.

4. Are the MDAKit authors and maintainers clearly
designated in the metadata file?

5. Is there at least minimal documentation in place
detailing the MDAKit and its functionality?

6. Are there at least minimal regression tests avail-
able within the MDAKit code?

2) If the metadata file passes linting and integration checks
3) That there are no potential breaches of community guide-

lines

Once the criteria are fulfilled the metadata is merged and
the MDAKit is considered registered. Updates to the MDAKit
metadata can be carried out at any time after registration by
opening pull requests to change the metadata file contents.

Advertising MDAKits

Registered MDAKits are automatically added to the registry’s
public facing documentation at https://mdakits.mdanalysis.org/
mdakits.html. This involves an indexable list of entries for all
registered MDAKits. Each entry displays available information
from the provided metadata, e.g., what the MDAKit does, any
relevant keywords, how to obtain the source code, how to install
the package, and where to find relevant documentation. Alongside
this information is also a set of badges which describe the current
health of the codebase, allowing users to rapidly identify which
packages are currently active, and their level of code maturity. This
includes information such as which MDAnalysis library versions

the package is compatible with. We further plan to add more
information, such as how much test coverage the package has,
and what type of MDAnalysis API extensions are provided (e.g.,
using base classes such as AnalysisBase or ReaderBase).

Information about MDAKits is continually updated, either
through automatic checks or manual additions provided by pack-
age owners updating the metadata files. We aim for the MDAKit
registry to be immutable (aside from special cases covered by
Section Raising issues, concerns, and paths to registry removal).
Therefore, should an MDAKit stop being maintained, it will not
be removed from the index but instead labeled as abandoned.

Continual validation

The MDAKit registry implements workflows to validate the code
health of registered packages. This mostly centers around a test
matrix that regularly runs to check if the latest MDAKit release
can be installed and if unit tests pass with both the latest release
of MDAnalysis and the development version. Should tests fail
regularly, an issue is automatically raised on the MDAKit registry
issue tracker contacting the package maintainers and letting them
know of the failure. The auto-generated code health metadata for
the MDAKit is also updated to reflect whether or not the tests are
currently failing or passing.

In the future we hope to expand these tests to include more
historical releases of the MDAKits and the MDAnalysis library,
checks for different architectures (non-x86), and operating sys-
tems. We may also expand the checks to consider the cross-
compatibility of MDAKits with each other, offering insights on
which packages can be safely used together.

Continual review

To help package growth and improvements, it is our goal for
the registry to become a platform that allows members of the
MDAnalysis community to offer feedback on MDAKits over
the lifetime of their inclusion on the registry. Unfortunately, as
MDAnalysis developers can only devote limited time towards the
registry, offering regularly scheduled comprehensive reviews of
packages is too large an undertaking to be practical.

Instead, we aim to use a system of badges and achieve-
ments to push packages towards gradual improvements. For ex-
ample, we may offer an achievement that encourages MDAK-
its to use high performance PBC-aware distance routines de-
fined in MDAnalysis.lib.distances instead of relying
on NumPy’s linalg method to find the distance between two
points. Once MDAKit owners believe that they have suitably
updated their code to fulfill the relevant badge criteria, they can
open a pull request highlighting these changes and have developers
review these smaller, more focused updates.

MDAKit users are also encouraged to provide feedback, re-
quest improvements, and report bug fixes. However, this should
happen outside the scope of the registry; instead, we ask users to
use the MDAKit’s own issue tracker for these.

Feeding back into the MDAnalysis library

The existence of the MDAKits framework does not preclude the
addition of new codes and methods to the core MDAnalysis
library. The MDAKit registry, and especially the ongoing review
process, provides a platform for MDAnalysis and MDAKit de-
velopers to interact and work together to identify common goals
and areas of improvements for both upstream and downstream
packages. In particular, MDAnalysis developers will work with

https://mdakits.mdanalysis.org/mdakits.html
https://mdakits.mdanalysis.org/mdakits.html


82 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

MDAKit developers to see if any popular MDAKit methods,
components or other means to improve core method performance
and lower the barrier to downstream package development can and
should be implemented back into the core MDAnalysis library.

Towards publication

We have laid out a number of best practices here that we encourage
MDAKits to fulfill. These essentially amount to the majority
of the contribution criteria for submissions to software-focused
journals such as the Journal Open Source Software (JOSS) [7]. In
order to incentivize developers, we heavily encourage MDAKits
to consider submission to a journal such as JOSS once they meet
the required levels of best practices. To aid in this process, the
MDAnalysis developers will in the first instance work with journal
editors at JOSS to create a streamlined process to submit MDAKits
as JOSS entries [43]. The details of this process are still under
development.

Raising issues, concerns, and paths to registry removal

If community members (users, developers or otherwise) have
concerns about an MDAKit, we primarily encourage them to raise
issues on the MDAKit’s own issue tracker. However, in situations
where the MDAKit maintainers cannot respond, or if the concern
relates to code of conduct breaches, MDAnalysis developers may
step in. If an MDAKit has systemic issues with its correctness, the
MDAKit may be given special annotations warning users about
the issues before using the code. We generally view the MDAKit
registry as a permanent record, and avoid removing packages
after registration even if they become fully obsolete. However,
we reserve the right to remove packages at our discretion in
specific cases, notably code of conduct breaches and violation of
the GitHub terms of service [44].

Long term registry maintenance and support

As with most MDAnalysis projects, long-term support for the
MDAKit framework and especially the registry is expected to
be carried out by contributors from the MDAnalysis community.
Members of the MDAnalysis core development team lead the
maintenance of the registry and are also responsible for passing
judgment on serious events such as code of conduct breaches.
In the long term, we hope that any gains in popularity of the
MDAKits framework are accompanied by an increase in commu-
nity involvement in reviews and other maintenance tasks.

Examples of MDAKits

The web frontend of the registry (Fig. 3) provides a searchable
database of packages. At the moment, seven MDAKits are regis-
tered that already showcase the breadth of specialized tools for
the analysis of biomolecular simulations. For example, mdacli
provides a commandline interface to analysis tools in MDAnalysis
itself. openmm-mdanalysis-reporter enhances the interoperabil-
ity with the popular OpenMM MD engine [45]. hole2-mdakit
interfaces with the legacy HOLE2 program for the analysis of
pores and tunnels in proteins such as ion channels [46], [47].
The lipyds package provides a suite of tools for the analysis of
biological membranes in simulations [11]. ProLIF quantitatively
analyzes the interactions between small molecules such as drugs
and biomolecules (protein, nucleic acids) [10].

Fig. 3: Web front end of the searchable MDAKit registry with
registered MDAKits. Badges indicate code health based on continuous
validation against the latest release and development version of the
MDAnalysis library.

Conclusions

We introduce the MDAnalysis MDAKits framework for scientific
software packages. This framework is designed to assist and
incentivize the creation of FAIR-compliant (findable, accessi-
ble, interoperable, and reusable) packages that use and extend
MDAnalysis. We describe the current state of scientific code,
which is typically published either in independent repositories of
varying quality, or as additions to a large, monolithic package. We
summarize the limitations of each approach that result in code that
falls short of FAIR principles, or may end up impractical to sustain
as a long-term strategy. We propose the MDAKits framework
as an alternative solution to support developers in creating new
packages, guiding them through the process of achieving best
practices and FAIR compliance.

In Section The MDAKit framework we lay out the aims
and structure of an MDAKit, summarizing the minimal and
optimal requirements that we think necessary to build sustainable,
reusable software. These include publishing code under a suitable
open-source license, the use of version control, comprehensive
documentation, thorough unit tests, and packaging the software
following modern best practices. In Section Defining MDAKits:
best practice package features we outline our vision and imple-
mentation of the MDAKit registry, a public facing repository
that promotes MDAKits to the MDAnalysis community. The
MDAKit registry offers regular checks and reviews in order to
help improve and maintain the listed MDAKits. We describe a
structured workflow that begins from the initial registration of
MDAKits and reaches as far as eventual publication in software-
focused journals such as JOSS.

This document is just the first step and broad guide to our
vision of developing a rich, diverse software ecosystem, and we
are still in the early stages of implementing MDAKits. While we
expect that we may need to revisit and refine our strategy to best
serve the needs of the community, we believe that the fundamental
framework outlined here will bring great benefit to the software
written and used by scientists, and thereby empower transparent



MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 83

and reproducible research.

Acknowledgments

We gratefully acknowledge the 184 developers and countless
community members who have contributed to the MDAnalysis
project since its inception and NumFOCUS for its support as our
fiscal sponsor.

The work on the MDAKits project and this publication have
been made possible in part by CZI grant DAF2021-237663 and
grant DOI https://doi.org/10.37921/426590wiobus from the Chan
Zuckerberg Initiative DAF, an advised fund of Silicon Valley
Community Foundation (funder DOI 10.13039/100014989).

Jonathan Barnoud has received financial support from the
Agencia Estatal de Investigación (Spain) (REFERENCIA DEL
PROYECTO / AEI / CÓDIGO AXUDA), the Xunta de Gali-
cia - Consellería de Cultura, Educación e Universidade (Centro
de investigación de Galicia accreditation 2019-2022 ED431G-
2019/04 and Reference Competitive Group accreditation 2021-
2024, CÓDIGO AXUDA) and the European Union (European
Regional Development Fund - ERDF).

REFERENCES

[1] N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht,
C. Martinez, F. E. Psomopoulos, J. Harrow, L. J. Castro,
M. Gruenpeter, P. A. Martinez, and T. Honeyman, “FAIR Principles
for Research Software (FAIR4RS Principles),” Research Data
Alliance, 2022, https://doi.org/10.15497/RDA00068. [Online]. Available:
https://zenodo.org/record/6623556#.YqCJTJNBwlw

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C.
’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E.
Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater,
G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van
Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft,
J. Zhao, and B. Mons, “The FAIR Guiding Principles for scientific data
management and stewardship,” Scientific Data, vol. 3, no. 1, p. 160018,
Mar. 2016, https://doi.org/10.1038/sdata.2016.18. [Online]. Available:
https://www.nature.com/articles/sdata201618

[3] W. P. Walters, “Code Sharing in the Open Science Era,” Journal of
Chemical Information and Modeling, vol. 60, no. 10, pp. 4417–4420,
Oct. 2020, https://doi.org/10.1021/acs.jcim.0c01000. [Online]. Available:
https://doi.org/10.1021/acs.jcim.0c01000

[4] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein,
“MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics
Simulations,” J Comp Chem, vol. 32, pp. 2319–2327, 2011,
https://doi.org/10.1002/jcc.21787. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3144279/

[5] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L.
Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and
O. Beckstein, “MDAnalysis: A Python package for the rapid analysis
of molecular dynamics simulations.” in Proceedings of the 15th Python
in Science Conference, S. Benthall and S. Rostrup, Eds., Austin, TX,
2016, pp. 102–109, https://doi.org/10.25080/Majora-629e541a-00e.

[6] “Scopus,” https://www.scopus.com/. [Online]. Available: https://www.
scopus.com/

[7] “Journal of Open Source Software,” https://joss.theoj.org. [Online].
Available: https://joss.theoj.org

[8] I. Alibay, “IAlibay/MDRestraintsGenerator: MDRestraintsGenerator
0.1.0,” Mar. 2021, https://doi.org/10.5281/zenodo.4570556. [Online].
Available: https://zenodo.org/record/4570556

[9] D. B. Kokh, B. Doser, S. Richter, F. Ormersbach, X. Cheng, and
R. C. Wade, “A workflow for exploring ligand dissociation from
a macromolecule: Efficient random acceleration molecular dynamics
simulation and interaction fingerprint analysis of ligand trajectories,”
The Journal of Chemical Physics, vol. 153, no. 12, p. 125102,
Sep. 2020, https://doi.org/10.1063/5.0019088. [Online]. Available:
https://aip.scitation.org/doi/10.1063/5.0019088

[10] C. Bouysset and S. Fiorucci, “ProLIF: a library to encode molecular
interactions as fingerprints,” Journal of Cheminformatics, vol. 13, no. 1,
p. 72, Sep. 2021, https://doi.org/10.1186/s13321-021-00548-6. [Online].
Available: https://doi.org/10.1186/s13321-021-00548-6

[11] K. A. Wilson, L. Wang, Y. C. Lin, and M. L. O’Mara, “Investigating the
lipid fingerprint of SLC6 neurotransmitter transporters: a comparison of
dDAT, hDAT, hSERT, and GlyT2,” BBA Advances, vol. 1, p. 100010, Jan.
2021, https://doi.org/10.1016/j.bbadva.2021.100010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667160321000090

[12] P. Smith and C. D. Lorenz, “LiPyphilic: A Python Toolkit
for the Analysis of Lipid Membrane Simulations,” Journal of
Chemical Theory and Computation, vol. 17, no. 9, pp. 5907–5919,
Sep. 2021, https://doi.org/10.1021/acs.jctc.1c00447. [Online]. Available:
https://doi.org/10.1021/acs.jctc.1c00447

[13] R. Gowers, M. Matta, and H. Nguyen, “kugupu/kugupu: v0.1.2,”
Feb. 2021, https://doi.org/10.5281/zenodo.4545322. [Online]. Available:
https://zenodo.org/record/4545322

[14] P. Loche, H. Jaeger, A. Schlaich, M. Becker, S. Gravelle,
P. Stärk, and S. Velpuri, “MAICoS,” Feb. 2022. [Online]. Available:
https://gitlab.com/maicos-devel/maicos

[15] R. Araya-Secchi, T. Perez-Acle, S.-g. Kang, T. Huynh, A. Bernardin,
Y. Escalona, J.-A. Garate, A. D. Martínez, I. E. García, J. C. Sáez, and
R. Zhou, “Characterization of a Novel Water Pocket Inside the Human
Cx26 Hemichannel Structure,” Biophysical Journal, vol. 107, no. 3,
pp. 599–612, Aug. 2014, https://doi.org/10.1016/j.bpj.2014.05.037.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0006349514006018

[16] M. Tiberti, E. Papaleo, T. Bengtsen, W. Boomsma, and
K. Lindorff-Larsen, “ENCORE: Software for Quantitative Ensemble
Comparison,” PLOS Computational Biology, vol. 11, no. 10,
p. e1004415, Oct. 2015, https://doi.org/10.1371/journal.pcbi.1004415.
[Online]. Available: https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1004415

[17] D. R. Roe and T. E. Cheatham, “PTRAJ and CPPTRAJ: Software
for Processing and Analysis of Molecular Dynamics Trajectory
Data,” Journal of Chemical Theory and Computation, vol. 9, no. 7,
pp. 3084–3095, Jul. 2013, https://doi.org/10.1021/ct400341p. [Online].
Available: https://doi.org/10.1021/ct400341p

[18] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,”
SoftwareX, vol. 1-2, pp. 19–25, Sep. 2015, https://doi.org/10.1016/j.
softx.2015.06.001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352711015000059

[19] M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš,
A. Barducci, M. Bernetti, P. G. Bolhuis, S. Bottaro, D. Branduardi,
R. Capelli, P. Carloni, M. Ceriotti, A. Cesari, H. Chen, W. Chen,
F. Colizzi, S. De, M. De La Pierre, D. Donadio, V. Drobot, B. Ensing,
A. L. Ferguson, M. Filizola, J. S. Fraser, H. Fu, P. Gasparotto, F. L.
Gervasio, F. Giberti, A. Gil-Ley, T. Giorgino, G. T. Heller, G. M. Hocky,
M. Iannuzzi, M. Invernizzi, K. E. Jelfs, A. Jussupow, E. Kirilin, A. Laio,
V. Limongelli, K. Lindorff-Larsen, T. Löhr, F. Marinelli, L. Martin-
Samos, M. Masetti, R. Meyer, A. Michaelides, C. Molteni, T. Morishita,
M. Nava, C. Paissoni, E. Papaleo, M. Parrinello, J. Pfaendtner,
P. Piaggi, G. Piccini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi,
D. Quigley, P. Raiteri, S. Raniolo, J. Rydzewski, M. Salvalaglio, G. C.
Sosso, V. Spiwok, J. Šponer, D. W. H. Swenson, P. Tiwary, O. Valsson,
M. Vendruscolo, G. A. Voth, A. White, and The PLUMED consortium,
“Promoting transparency and reproducibility in enhanced molecular
simulations,” Nature Methods, vol. 16, no. 8, pp. 670–673, Aug.
2019, https://doi.org/10.1038/s41592-019-0506-8. [Online]. Available:
https://www.nature.com/articles/s41592-019-0506-8

[20] “AiiDA plugin registry,” https://aiidateam.github.io/aiida-registry/.
[Online]. Available: https://aiidateam.github.io/aiida-registry/

[21] Chan Zuckerberg Initiative, “napari hub,” https://www.napari-hub.
org/about, last accessed 2022-08-05. [Online]. Available: https:
//www.napari-hub.org/about

[22] N. Sofroniew, T. Lambert, K. Evans, J. Nunez-Iglesias, G. Bokota,
P. Winston, G. Peña-Castellanos, K. Yamauchi, M. Bussonnier,
D. Doncila Pop, A. Can Solak, Z. Liu, P. Wadhwa, A. Burt,
G. Buckley, A. Sweet, L. Migas, V. Hilsenstein, L. Gaifas,
J. Bragantini, J. Rodríguez-Guerra, H. Muñoz, J. Freeman, P. Boone,
A. Lowe, C. Gohlke, L. Royer, A. PIERRÉ, H. Har-Gil, and
A. McGovern, “napari: a multi-dimensional image viewer for Python,”
May 2022, https://doi.org/10.5281/zenodo.3555620. [Online]. Available:
https://doi.org/10.5281/zenodo.3555620

[23] L. Wang, I. Alibay, and F. Naughton, “Cookiecutter for MDAnalysis-

https://doi.org/10.37921/426590wiobus
https://doi.org/10.15497/RDA00068
https://zenodo.org/record/6623556#.YqCJTJNBwlw
https://doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://doi.org/10.1021/acs.jcim.0c01000
https://doi.org/10.1021/acs.jcim.0c01000
https://doi.org/10.1002/jcc.21787
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/
https://doi.org/10.25080/Majora-629e541a-00e
https://www.scopus.com/
https://www.scopus.com/
https://www.scopus.com/
https://joss.theoj.org
https://joss.theoj.org
https://doi.org/10.5281/zenodo.4570556
https://zenodo.org/record/4570556
https://doi.org/10.1063/5.0019088
https://aip.scitation.org/doi/10.1063/5.0019088
https://doi.org/10.1186/s13321-021-00548-6
https://doi.org/10.1186/s13321-021-00548-6
https://doi.org/10.1016/j.bbadva.2021.100010
https://www.sciencedirect.com/science/article/pii/S2667160321000090
https://doi.org/10.1021/acs.jctc.1c00447
https://doi.org/10.1021/acs.jctc.1c00447
https://doi.org/10.5281/zenodo.4545322
https://zenodo.org/record/4545322
https://gitlab.com/maicos-devel/maicos
https://doi.org/10.1016/j.bpj.2014.05.037
https://www.sciencedirect.com/science/article/pii/S0006349514006018
https://www.sciencedirect.com/science/article/pii/S0006349514006018
https://doi.org/10.1371/journal.pcbi.1004415
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/ct400341p
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://www.sciencedirect.com/science/article/pii/S2352711015000059
https://www.sciencedirect.com/science/article/pii/S2352711015000059
https://doi.org/10.1038/s41592-019-0506-8
https://www.nature.com/articles/s41592-019-0506-8
https://aiidateam.github.io/aiida-registry/
https://aiidateam.github.io/aiida-registry/
https://www.napari-hub.org/about
https://www.napari-hub.org/about
https://www.napari-hub.org/about
https://www.napari-hub.org/about
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.5281/zenodo.3555620


84 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

based packages,” https://github.com/MDAnalysis/cookiecutter-mdakit.
[Online]. Available: https://github.com/MDAnalysis/cookiecutter-mdakit

[24] Open Source Initiative, “Licenses and Standards,”
https://opensource.org/licenses, last accessed 2022-08-05. [Online].
Available: https://opensource.org/licenses

[25] “GNU General Public License v2.0 - GNU Project - Free Software
Foundation,” https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html,
last accessed 2022-08-04. [Online]. Available: https://www.gnu.org/
licenses/old-licenses/gpl-2.0.en.html

[26] T. Preston-Werner, “Semantic Versioning 2.0.0,” https://semver.org/, last
accessed 2022-08-04. [Online]. Available: https://semver.org/

[27] “PEP 257 – Docstring Conventions | peps.python.org,” https://peps.
python.org/pep-0257/. [Online]. Available: https://peps.python.org/pep-
0257/

[28] “Git,” https://git-scm.com/, last accessed 2022-08-04. [Online].
Available: https://git-scm.com/

[29] GitHub, Inc, “GitHub,” https://github.com, last accessed 2022-08-04.
[Online]. Available: https://github.com

[30] GitLab Inc., “GitLab,” https://about.gitlab.com/, last accessed 2022-08-
04. [Online]. Available: https://about.gitlab.com/

[31] Atlassian, “Bitbucket,” https://bitbucket.org/product, last accessed
2022-08-04. [Online]. Available: https://bitbucket.org/product

[32] “PEP 440 – Version Identification and Dependency Specification
| peps.python.org,” https://peps.python.org/pep-0440/, last accessed
2022-08-04. [Online]. Available: https://peps.python.org/pep-0440/

[33] Read the Docs, Inc, “Read the Docs,” https://readthedocs.org/, 2022.
[Online]. Available: https://readthedocs.org/

[34] Y. O. Halchenko, M. Visconti di Oleggio Castello, M. Hanke,
J. Gors, M. Szczepanik, C. Barnes, E. Irvine, P. R. Raamana,
C. J. Markiewicz, J. Wilk, D. Volgyes, K. Leinweber, L. Estève,
O. Beckstein, and O. F. Gulban, “duecredit/duecredit: 0.9.1,”
Apr. 2021, https://doi.org/10.5281/zenodo.4685131. [Online]. Available:
https://zenodo.org/record/4685131

[35] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher,
and F. Bruhin, “pytest-dev/pytest,” https://github.com/pytest-dev/pytest,
2004. [Online]. Available: https://github.com/pytest-dev/pytest

[36] Codecov LLC, “Codecov,” https://about.codecov.io/, 2022. [Online].
Available: https://about.codecov.io/

[37] GitHub, Inc, “GitHub Terms of Service,” https://docs.github.com/en/site-
policy/github-terms/github-terms-of-service, last accessed 2022-08-
04. [Online]. Available: https://docs.github.com/en/site-policy/github-
terms/github-terms-of-service

[38] “pypa/setuptools,” https://github.com/pypa/setuptools, Aug. 2022,
original-date: 2016-03-29T14:02:33Z. [Online]. Available: https:
//github.com/pypa/setuptools

[39] “Poetry - Python dependency management and packaging made easy,”
https://python-poetry.org/. [Online]. Available: https://python-poetry.org/

[40] “PyPI · The Python Package Index,” https://pypi.org/. [Online].
Available: https://pypi.org/

[41] Conda-Forge Community, “The conda-forge Project: Community-
based Software Distribution Built on the conda Package Format
and Ecosystem,” Zenodo, Jul. 2015, https://doi.org/10.5281/ZENODO.
4774216. [Online]. Available: https://zenodo.org/record/4774216

[42] A. Grossfield, “How to be a Good Member of a Scientific Software
Community [Article v1.0],” Living Journal of Computational Molecular
Science, vol. 3, no. 1, pp. 1473–1473, 2021, https://doi.org/10.
33011/livecoms.3.1.1473. [Online]. Available: https://livecomsjournal.
org/index.php/livecoms/article/view/v3i1e1473

[43] “Submitting a paper to JOSS,” https://joss.readthedocs.io/en/latest/
submitting.html, 2018, last accessed 2022-08-03. [Online]. Available:
https://joss.readthedocs.io/en/latest/submitting.html

[44] GitHub, Inc, “GitHub Actions,” https://github.com/features/actions,
2022. [Online]. Available: https://github.com/features/actions

[45] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A.
Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern,
R. P. Wiewiora, B. R. Brooks, and V. S. Pande, “OpenMM 7: Rapid
development of high performance algorithms for molecular dynamics,”
PLOS Computational Biology, vol. 13, no. 7, pp. 1–17, 07 2017, https:
//doi.org/10.1371/journal.pcbi.1005659.

[46] O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. P.
Sansom, “HOLE: A program for the analysis of the pore dimensions
of ion channel structural models,” J Molecular Graphics, vol. 14,
pp. 354–360, 1996, https://doi.org/10.1016/s0263-7855(97)00009-x.
[Online]. Available: http://www.holeprogram.org/

[47] L. S. Stelzl, P. W. Fowler, M. S. P. Sansom, and O. Beckstein,
“Flexible gates generate occluded intermediates in the transport
cycle of LacY,” J Mol Biol, vol. 426, pp. 735–751, 2014,

https://doi.org/10.1016/j.jmb.2013.10.024. [Online]. Available: http:
//doi.org/10.1016/j.jmb.2013.10.024

https://github.com/MDAnalysis/cookiecutter-mdakit
https://github.com/MDAnalysis/cookiecutter-mdakit
https://opensource.org/licenses
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://semver.org/
https://semver.org/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://git-scm.com/
https://git-scm.com/
https://github.com
https://github.com
https://about.gitlab.com/
https://about.gitlab.com/
https://bitbucket.org/product
https://bitbucket.org/product
https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/
https://readthedocs.org/
https://readthedocs.org/
https://doi.org/10.5281/zenodo.4685131
https://zenodo.org/record/4685131
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://about.codecov.io/
https://about.codecov.io/
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://github.com/pypa/setuptools
https://github.com/pypa/setuptools
https://github.com/pypa/setuptools
https://python-poetry.org/
https://python-poetry.org/
https://pypi.org/
https://pypi.org/
https://doi.org/10.5281/ZENODO.4774216
https://doi.org/10.5281/ZENODO.4774216
https://zenodo.org/record/4774216
https://doi.org/10.33011/livecoms.3.1.1473
https://doi.org/10.33011/livecoms.3.1.1473
https://livecomsjournal.org/index.php/livecoms/article/view/v3i1e1473
https://livecomsjournal.org/index.php/livecoms/article/view/v3i1e1473
https://joss.readthedocs.io/en/latest/submitting.html
https://joss.readthedocs.io/en/latest/submitting.html
https://joss.readthedocs.io/en/latest/submitting.html
https://github.com/features/actions
https://github.com/features/actions
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1016/s0263-7855(97)00009-x
http://www.holeprogram.org/
https://doi.org/10.1016/j.jmb.2013.10.024
http://doi.org/10.1016/j.jmb.2013.10.024
http://doi.org/10.1016/j.jmb.2013.10.024

	Introduction
	Scientific code frequently fails to meet FAIR tenets, impeding scientific progress
	Centralized open-source packages such as MDAnalysis offer a limited solution
	Implementing an ecosystem of downstream packages for more sustainable progress

	The MDAKit framework
	Main goals
	Overview of the framework
	Defining MDAKits: best practice package features

	The MDAKit registry
	MDAKit registry contents
	Registering MDAKits
	Advertising MDAKits
	Continual validation
	Continual review
	Feeding back into the MDAnalysis library
	Towards publication
	Raising issues, concerns, and paths to registry removal
	Long term registry maintenance and support

	Examples of MDAKits
	Conclusions
	Acknowledgments
	References

