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Spatial Microsimulation and Activity Allocation in
Python: An Update on the Likeness Toolkit

Joseph V. Tuccillo**, James D. Gaboardi*

Abstract—Understanding human security and social equity issues within hu-
man systems requires large-scale models of population dynamics that simulate
high-fidelity representations of individuals and access to essential activities
(work/school, social, errands, health). Likeness is a Python toolkit that provides
these capabilities for Oak Ridge National Laboratory’s (ORNL) UrbanPop spatial
microsimulation project. In step with the initial development phase for Likeness
(2021 - 2022), we built out several foundational examples of work/school and
health service access. In this paper, we describe expansion and scaling of
Likeness capabilities to metropolitan areas in the United States. We then provide
an integrated demonstration of our methods based on a case study of Leon
County, FL and perform validation exercises on 1) neighborhood demographic
composition and 2) visits by demographic cohorts (gender/age) obtained from
point of interest (POI) footfall data for essential services (grocery stores). Taking
into account lessons learned from our case study, we scope improvements to
our model as well as provide a roadmap of the anticipated Likeness development
cycle into 2023 - 2024.

Index Terms—activity space, synthetic population, microsimulation, population
dynamics

Introduction

Agent-based models (ABMs) of population dynamics are essential
for understanding human security and social equity issues within
human systems [1], [2], [3]. Such models often rely upon syn-
thetic populations — virtual representations of individuals plausibly
residing within an area — to assess how individual behaviors
and interactions contribute to complex system-level behavior.
Applications of ABMs for population dynamics range from urban
planning (access to essential services like food and healthcare),
public health (facility occupancy, social contact networks), and
disaster preparedness (social vulnerability to environmental haz-
ards, evacuation and critical infrastructure planning).

A current challenge for research in population dynamics is to
more directly represent population heterogeneity [4]. Individuals
exhibit a variety of patterns of life dictating their behavior and in-
teractions [5], which are in turn influenced by social, demographic,
and economic characteristics. Incorporating these factors into the
design of synthetic populations contributes to more holistic models
of how human systems operate.
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To support enhanced ABMs of population dynamics, the
UrbanPop spatial microsimulation framework developed by Oak
Ridge National Laboratory (ORNL) generates high-fidelity syn-
thetic populations on hundreds of attributes from the American
Community Survey (ACS) and its Public-Use Microdata Sample
(PUMS) and combines them with nighttime/daytime behavioral
routines [3]. Central to UrbanPop’s capabilities is Likeness, a
Python toolkit that combines population synthesis, spatial network
modeling, and activity allocation [6], [7]. Foundational examples
produced for Likeness have explored travel routing from home
locations to anchor activities (e.g., work, school), POI occupancy
characteristics [6], [7], as well as routing incidental travel from
anchor to non-anchor activities (e.g., social, errands, health) [8].
This paper builds from these foundational examples to discuss
scaling our methods to larger areas of interest. Moreover, it
examines the performance of our activity allocation model relative
to real-world POI demographics from digital trace (anonymized
mobile device) data on POI visitation.

Expansion and Scaling of Likeness Capabilities

Synchronous with creating foundational examples for Likeness,
we have developed an integrated workflow that scales the ecosys-
tem (Figure 1) to support microsimulation for any metropolitan
statistical area (MSA) in the United States.

Figure 2 outlines the procedure for agent generation at the
MSA level. As discussed in [6], the 1ivelike.acs.puma class
is the core object for residential population synthesis. It stores
all census microdata and geographic (e.g., block group, tract)
model constraints to support spatial allocation for a single Public-
Use Microdata Area (PUMA) in the United States. Residential
synthetic populations for MSAs are generated as collections of
PUMAS, which are parsed automatically by combining U.S. Cen-
sus metropolitan/micropolitan delineation files! with the Census
2010 PUMA-to-tract relationship file>. PUMAs parsed for the
target MSA are converted into 1ivelike.acs.puma objects
inbulk via l1ivelike.multi.make_pumas (). This function
accepts the PUMA Federal Information Processing Standards
(FIPS) codes (unique IDs) in list form, along with the target
ACS year. This information is then used to gather the relevant
ACS Summary File (SF) constraints for spatial allocation of
PUMS responses to small census areas of roughly 8,000 people

1. https://www.census.gov/geographies/reference-files/time-
series/demo/metro-micro/delineation-files.html

2. https://www.census.gov/programs-surveys/geography/technical-
documentation/records-layout/2010-tract-to-puma-record-layout.html
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Fig. 1: Likeness ecosystem overview.

or less (block groups, tracts). Spatial allocation is subsequently
handled with parallel processing, which is supported by both pack-
ages Likeness offers for Penalized Maximum-Entropy Dasymetric
Modeling (P-MEDM) [9]: pymedm (bleeding-edge, Python-native
version, based on jaxopt [10]) and pmedm_legacy (stable
bridge to original R/C++ routine® via rpy2). As demonstrated
in [6] and [7], the population synthesis routine also collects
diagnostics on how effectively each P-MEDM solution reproduces
variable estimates from the ACS SF relative to reported Margins
of Error (MOEs). These utilities are available in both pymedm
and pmedm_legacy.

Likeness generates agents for microsimulation in a way that
provides realistic home (origin) locations from which to allo-
cate essential activities on transportation networks. Our initial
approach, based on census block-level housing density [6], [7],
is now implemented in 1ivelike as a housing universe gen-
eration procedure. Additionally, we are actively developing a
method (demonstrated in Integrated Demonstration: Leon County,
Florida) that enhances this capability by matching synthesized
households to residential locations from building footprint data.
These matches are performed by conflating attributes of synthetic
households (e.g., dwelling type, income) with building footprint
attributes (e.g., floor area, number of units). These utilities are
designed to be agnostic to the building footprint provider and can
even support custom building features.

Agent residential locations provided by livelike act as
origin points for simulating travel to essential activities. The next
stage in the Likeness workflow employs network analysis to model
the cost of travel to these activities [11], [12], [13] and allocate
agents to POIs accordingly based on mathematical programming
routines [14], [15], [16], [17]*. In our first iteration of Likeness,

3. https://bitbucket.org/nnnagle/pmedmrcpp

4. The PuLP and Python-MIP open-source optimization Python packages
are cited here, along with COIN-OR (a consortium that supports various
open-source Operations Research projects) and the COIN-OR Branch-and-Cut
solver.

both these tasks were accomplished within act1ike. However,
we concluded that the network modeling piece was specialized
enough to be split from the act1ike package, which led to the
creation of movelike. With a push for varied modes of network
traversal, three new modes of travel can now be modeled: walking,
biking, and public transit. However, modeling travel behavior
via public transportation is less straightforward than for driving,
biking, and walking networks due to stricter network topology,
including factors like connectivity and directionality of routes.
We have made our foray into modeling more realistic public
transit behavior within movelike through the incorporation of
the General Transit Feed Specification (GTFS)>. GTEFS is a data
specification that stipulates the required files, along with their
structure and format®, for publishing, ingesting, and utilizing
public transit datasets. The GTFS datasets can be obtained via
services such as TransitFeeds’' and The Mobility Database Cat-
alogs®. In our current iteration we utilize GTFS data feeds to
implement a pseudo-transit network space by which agents can
engage in limited traversal. This is accomplished through a mask
of OpenStreetMap® (OSM) street segments known to be associated
with bus routes. The OSM network is masked by passing a
(multi)polygon feature of buffered and unioned bus routes within
the study area into osmnx [12]. This method demonstrates pro-
gression in representing public transit but certainly has room for
improvement, which will be discussed in Development Roadmap:
2023 - 2024.

Finally — and at the heart of it all — expansion and scal-
ing of the Likeness ecosystem led to the development of a
new package for common utilities, 1ikeness-vitals. The
likeness-vitals package provides support for monitoring

5. https://gtfs.org/

6. https://gtfs.org/schedule/reference/#dataset-files

7. https://transitfeeds.com/

8. https://github.com/MobilityData/mobility-database-catalogs
9. https://www.openstreetmap.org/
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Fig. 2: Likeness agent generation procedure for Metropolitan Statistical Areas (MSAs) in the United States.

and timing processes, data manipulation, shared spatial function-
ality, and Census API access.

Integrated Demonstration: Leon County, Florida

Following the workflow described in Section Expansion and
Scaling of Likeness Capabilities, we demonstrate the current
capabilities of Likeness and validate our activity allocation routine
for Leon County, Florida. Leon County, whose primary city is
Tallahassee, features a population of just under 300,000 residents,
a compact urban footprint, and a diverse array of transportation
modes (driving, transit, bike, walking). Our mobility validation
exercise is based on grocery store visits from simulated home
locations. Grocery stores provide a useful test case, acting both
as catchments for the general population as well as points of
access to vital services including food and healthcare. We obtained
grocery store visits from Foursquare’s Research Visits feed, which
provides POI visitation data attributed by demographic cohort
(gender by age) for a variety of facility types'®-!!.

We first simulated a single synthetic population for the Tal-
lahassee Core-Based Statistical Area (CBSA). Spatial allocation
(P-MEDM) was constrained on variables across subjects in-
cluding sampling universe totals (i.e., population, housing units,
households), descriptive factors including demographics, socioe-
conomic status, housing, mobility, and worker and student char-
acteristics. For the remainder of the analysis, we focused on
Leon County alone, removing large outlying areas of the MSA
(PUMA 1206300, “Apalachee Region (Outside Leon County)”).
Agents'?> were generated with the Federal Emergency Manage-
ment Agency’s (FEMA) open USA Structures database [18], [19].
Our allocation procedure leveraged 1ivelike utilities to match
synthetic households to single-family residential, multi-family
residential, mobile homes, and group quarters housing types.

We used employment and travel mode characteristics to assign
agents to transportation networks used to access grocery POIs
from home locations. Agents labeled as ‘employed’ possess an
associated flag that identifies reported commute mode that can
take the following values: ‘car_truck_van’, ‘bicycle’, ‘walked’,
‘wfh’, ‘public_transportation’, ‘other’, and ‘motorcycle’. Because
detailed travel modes are unavailable for agents that are not
employed (e.g., retired, active military), we rely on private (i.e.,
household-level) vehicle ownership instead.

Travel modes assigned to each agent were conflated with
four transportation network types: ‘walked’, ‘bicycle’, ‘pub-
lic_transportation’, and ‘drive’. We supported this process by
developing a decision tree, visualized in Figure 3, through which
we assume:

« Employed agents will use the transportation network that
best matches their commute mode to access grocery POIs.

10. https://location.foursquare.com/places/docs/how-does-places-work

11. https://location.foursquare.com/visits/docs/research-feed-schema

12. Agents less than 20 years old were not included in the Foursquare POI
data, thus they are excluded from our analysis.

« Agents that are not employed will use a privately-owned
vehicle, and thus the ‘drive’ network, to access grocery
POIs when available.

o Agents that are not employed and lack a privately-owned
vehicle will use public transportation if they are located in
a block group that is served by Tallahassee’s bus network
(StarMetro) and opt to walk otherwise.

As demonstrated in Table 1, the ‘drive’ network supports the
overwhelming majority of travel to grocery POIs in Leon County,
followed by walking, public transportation, and bicycle access.

TABLE 1: Householder agents >20yo per assigned travel mode

Mode Assignment Agent Count

'walked' 5,325
'bicycle' 1,052
'public_transportation' 3,830
'drive' 101,681

111,888

Figure 4 shows that Leon County’s agent population is dis-
tributed unevenly relative to assigned travel modes. Because Leon
County’s infrastructure primarily supports travel by car, agents
who drive are distributed closest to the area’s general population
density. The spatial distribution of agents who travel by walking
also tends to follow Leon County’s settlement patterns, though
in more limited numbers than for those who drive. Agents using
public transport, meanwhile, are largely present in and near the
center of the county, roughy occupying denser urban areas where
StarMetro service is available. Bicyclists are distributed similarly
to bus takers, but with several individual clusters associated with
smaller outlying towns and settlements.

Grocery store POIs with medium to high visit confidence
(at least 30 device visits per month, n = 53) were obtained
from Foursquare for Leon County in January 2023. Destination
capacities were estimated based on visit counts weighted by
representativeness of the demographic cohort within the state’s
2010 Census population'?. Destination capacities were estimated
by the daily average (mean) for each POI during the collection
month (01/2023).

After travel modes were assigned to agents, four network cost
matrices were calculated from origin (residential location) to desti-
nation (grocery store) POIs in movelike. Agents were then allo-
cated to a single probable destination POI based on least cost net-
work travel paths with the actlike.ActivityAllocation
routine, which solves a modified Transportation Problem'* [20],
[21], [22], [23], where destination POI capacities are scaled [24]
by the proportion of assigned travel mode for each scenario. All

13. https://location.foursquare.com/visits/docs/foursquare-data-
normalization
14. This model is formulated in [6].
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nique, which will be further discussed in Development Roadmap:
2023 - 2024.

TABLE 2: Allocation Solution Runtimes (min.)
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Fig. 4: Synthetic population distribution by travel mode.

models were run consecutively on two machines for benchmarking
purposes. These were:

e A personal laptop (macOS) with a 2.3 GHz Quad-core
Intel Core i7 processor (32 GB RAM).

e A virtual machine (Ubuntu) with a 2.8 GHz 22-core
Intel(R) Xeon(R) processor (86 GB RAM).

The large disparity in problem size seen in Table 1 is even
more pronounced in solution runtimes, shown in Table 2. Optimal
solutions for non-drive models were found in a maximum time of
just over 1 minute on both machines, with the drive model taking
more than 17 and 8 hours to solve on the macOS and Ubuntu
machines, respectively. Considering the solution time for the drive
scenario, there is clearly a need for a more effective solution tech-

'walked' 0.72 1.19

'bicycle' 0.05 0.26

'public_transportation' 0.48 0.69

'drive' 1061.43 483.94
Validation procedures

Our validation procedures were designed to quantify the de-
gree to which Likeness 1) resembles reference population esti-
mates provided by the ACS SF with the synthetic populations
(demographic validation) and 2) allocates activities matching
real-world visitation patterns by demographics segments captured
by the Foursquare POI data (mobility validation).

To produce our demographic validation, we followed [3] and
measured our synthetic populations’ degrees of conformity with
90% Margins of Error (MOEs) available from the ACS SF. ACS
MOEs provide bounds for the expected ranges of values that our
variables of interest could take. Tabulating individual attributes
within each block group’s synthetic population results in a recon-
struction of the ACS SF estimates that can be assessed against the
90% MOE:s. Greater conformity with the MOEs (“MOE Fit Rate”)
indicates a synthetic population that could plausibly resemble that
block group’s “true” population.

Following [3] and [6], we ran our mobility validation using
Canonical Correlation Analysis (CCA). CCA, which measures
the degree of linear association between two multidimensional
datasets [25], is necessary to compare visitation patterns (n grocery
store locations by m demographic cohorts). We performed CCA
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on both the between-destination (relative prevalence) and within-
destination (compositional) characteristics of each POI by demo-
graphic group. Both CCA runs were generated from tabulated
counts of trips from the observed and synthetic datasets, their key
difference being the method of standardization (column-wise for
between-destination, row-wise for within-destination). We used
the CCA coefficient of determination (R?) to measure associations
between synthetic and observed results. To better understand
POI-specific activity allocation performance, we generated an
additional local measure of within-destination correspondence.
The local within-destination statistic compares the relative sizes
of demographic cohorts using Spearman Rank Correlation, a non-
parametric measure of the association between the ranks of two
variables [26]. We opted for Spearman Correlation due to the
relatively small number of demographic cohorts (n = 11).

Results
Demographic Validation

TABLE 3: Demographic validation

PUMA Name ‘ ACS 90% MOE Fit Rate
1206300 | Leon County (Central) 0.992
1207300 | Leon County (Outer) 0.998
1207301 | Apalachee Region (Out- 0.994

side Leon County)

Map tiles by Stamen; Design CCBY.310 Map.data (C) OpenstreetMap contributors. 1 0

o \

093 094 0.95 096 097 098 099 1.00
ACS SF 90% MOE Fit Rate

Fig. 5: Local demographic validation for Leon County.

Each of the three P-MEDM runs (one for each PUMA in the
Tallahassee CBSA) resulted in a synthetic reconstruction of the
ACS 90% MOE:s. Overall, these reconstructions matched with at
least 99% of the published MOEs from the ACS SF (Table 3. At
the more granular level of Leon County block groups (Figure 5),
MOE Fit Rates were relatively lower but still in agreement with
at least 90% of the ACS SF MOEs in each location. We observed
diminished performance in areas with large group quarters popula-
tions (e.g., college dormitories, prisons), as well as more sparsely
populated rural and peri-urban portions of Leon County.

Mobility Validation

Our mobility simulation more faithfully recreated between-
destination demographics (R?> = 0.74) than within-destination

‘Alfred B Mactay
“Gardens State

T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Correlation

Fig. 6: Local within-POI mobility validation.

demographics (R?* = 0.41) (Table 3). Inspecting the local within-
destination scores, mapped in Figure 6, we observed gener-
ally greater correspondence between synthetic and observed POI
demographics near Tallahassee’s downtown core, Florida State
University, and Florida A&M University, with diminished perfor-
mance in suburban and outlying areas of Leon County.

It is difficult to pinpoint the inconsistency in recreating POIs’
visitation patterns. In addition to urban density, this is potentially
related to diversity of travel modes near the urban core (the
increased biking, walking, and public transit use presented in
Figure 4), but it requires further investigation. Section Limitations
provides some additional confounding factors that are worthy of
exploring relative to these results.

Limitations

We found that overall, Likeness approximates travel to non-
anchor (grocery store) POIs modestly well. However, its per-
formance tends to be weaker relative to travel to anchor ac-
tivities (work/school), demonstrated in [6]. This suggests that
approximating destination capacities for activities like grocery
store visits provide an added challenge for activity allocation,
including when real-world observations from visitation data are
used. Additionally, multiple confounding factors related to data
inputs and model assumptions may have affected our results:

« Data-Specific: Our clearest challenge is temporal mis-
match between the synthetic population (2019) and POI
visit data (2023). We have yet to increment our ACS
year due to issues of non-conforming geography between
the 2010 PUMAs and 2020 block groups/tracts. We hope
to explore solutions to this problem starting with the
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forthcoming 2022 ACS releases, which will adopt 2020
PUMAs across all geographic levels'>. We were also
limited to only one month of POI visit data. In future work,
we hope to leverage a longer period of record to account
for POIs with consistently high rates of visitation.

« Model-Specific: Several large assumptions were made that
could confound our results, particularly that 1) agents
simultaneously travel to grocery stores, 2) agents only
select one grocery store to visit, using only one mode of
travel, and 3) travel to grocery stores only occurs between
home and work. These assumptions can be updated by in-
corporating information from time-use and travel surveys
into Likeness. In this way, we can better reflect the times
of day that different demographic cohorts access various
activities [27].

We also hope to tighten our assumptions about the feasibility
of POI access relative to the various travel modes. For example,
in our current assignment process (Figure 3) agents unmatchable
to a defined travel mode were considered walkers as a fallback
for unavailability of a reachable bus route. Future iterations will
refine this decision process by considering a distance threshold for
agents to be labeled as either walkers or transit users. For example,
we could set a rule that walking agents must be located within a
reasonable distance of the closest POI, while agents that use bus
service should reside near a bus stop in addition to being close to
a bus route. To ensure all agents have at least one feasible POI
destination to access, we also plan to incorporate a greater variety
of curated locations from ORNL’s PlanetSense database [28].

Conclusion and Outlook

This paper presented enhancements and scaling approaches for the
Likeness spatial microsimulation toolkit. These include batched
population synthesis runs for MSAs in the United States, residen-
tial allocation, and large-scale transportation network generation.
We demonstrated these new capabilities by developing a mobility
validation exercise for Leon County, FL. Our results provided rea-
sonable representation of neighborhood demographics and routing
to nearby essential services (grocery stores), with more mixed
results related to activity allocation. The activity allocation results,
however, do provide new research directions that we plan to
explore in our future work. These include temporality of POI travel
(travel probabilities relative to demographic cohorts), behavioral
factors (willingness to travel given cost and impedances), and the
use of multiple travel modes to reach activities.

Given the relative success of our population synthesis proce-
dures in Section Integrated Demonstration: Leon County, Florida,
we are interested in also applying Likeness to explore trans-
portation equity in the context of access to essential services
like food and healthcare. Such an approach would aim to en-
hance existing research on transportation and accessibility [29],
[30] with a cross-sectional representation of social, demographic,
housing, and mobility characteristics. Assuming an agent with
some blend of socio-demographic and economic characteristics
resides in a particular section of a neighborhood, how many
essential services can be readily accessed using their assigned
transportation network? Using the Likeness ecosystem, we could
develop such a measure for all agents in a synthetic population,

15. https://www.census.gov/programs-surveys/acs/news/data-
releases/2022/release.html
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allowing the comparison of accessibility to population metrics
like mobility difficulty. These insights could in turn be used to
guide urban/regional infrastructure planning, pinpointing areas
where drive, transit, or bike/walk services could be improved or
expanded.

Development Roadmap: 2023 - 2024

o Tooling for custom geographic extents. The MSA-
specific workflow demonstrated in this paper is limited
in that it does not support custom geographic extents.
This prevents analysis, for example, of predominantly
rural areas. We are actively developing an approach to
create residential synthetic populations for custom areas of
interest (AOIs), supported by USA Structures. This func-
tionality will also support the development of synthetic
populations with national-scale coverage.

« Open-sourcing core packages. Though we have yet to
meet our goal of open-sourcing the suite of Likeness
packages [6], we are still on track to release the core
packages for residential population synthesis, pymedm
and livelike, in 2023. Releases of movelike and
actlike are likely to follow in 2024.

« Packaging schema. A further consideration related to
open-sourcing is whether we should migrate from a con-
federated toolkit schema where each module is a semi-
independent Python package, as is seen in the modern im-
plementation of PySAL [31], to a single monolithic Python
package with submodules. Each schema has benefits, and
this decision will require much consideration. With regards
to the current confederated schema, the main benefit is
modularity and reduced burden for continuous integration
testing runtimes. This primary benefit is from a developer
standpoint. However, providing a single package to install
and use is a clear benefit to the user.

o Consolidating visualization functionality. We are in the
process of consolidating functionality related to the visu-
alization of input, processing, and results that have been
used in an ad-hoc manner in the past. An initial push will
be made for the inclusion of “made-to-order” population
density hexbin plots and network-space allocation routes.

o Improving mobility modeling. Modeling public transit
is a key area where we intend to develop increasingly
more realistic agent “choices.” As stated previously in
Expansion and Scaling of Likeness Capabilities, there is
significant potential in exploring further integration of
GTEFS data for locally-accurate modeling.

« Optimization bottleneck. As demonstrated in Results,
there is a clear hit in computational performance and run-
time when solving actlike.ActivityAllocation
problems on increasingly larger model instances (e.g.,
more agents and more POIs). There are two paths to
resolving this issue (which may be considered in concert):
1) Reviewing our modified Transportation Problem mixed-
integer program (formulated in [6]); and 2) Utilizing a
new underlying solver engine, such as HIGHS'® [32]. In
reviewing our formulation we will first investigate the
potential for generating fewer constraints in the model.
Following this, as stated above, we may consider formulat-
ing the model in a new solver. Depending on the outcome

16. https://highs.dev/
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of these experiments we may consider a new underlying
optimization problem or implement a heuristic.
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