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Abstract—Image registration plays a vital role in understanding changes that
occur in 2D and 3D scientific imaging datasets. Registration involves finding a
spatial transformation that aligns one image to another by optimizing relevant
image similarity metrics. In this paper, we introduce itk-elastix, a user-
friendly Python wrapping of the mature elastix registration toolbox. The
open-source tool supports rigid, affine, and B-spline deformable registration,
making it versatile for various imaging datasets. By utilizing the modular de-
sign of itk-elastix, users can efficiently configure and compare different
registration methods, and embed these in image analysis workflows.

Index Terms—medical imaging, image analysis, registration, elastix, ITK, wrap-
ping, Python

Introduction

Image Registration

Image registration is a fundamental process in the field of sci-
entific imaging that enables the alignment and comparison of
images, facilitating the understanding of changes that occur within
datasets. It involves finding a spatial transformation that optimizes
relevant image similarity metrics, ensuring accurate alignment
between images. A frequent registration type is the parametric
approach where the spatial transformation is explicitly modeled.
Examples of such transformation models are the rigid transform
which allows translations and rotations, the affine transform that
additionally includes shearing and the B-Spline transform that
permits only local deformations. The reader can refer to Mod-
ersitzki [1] for an overview of the nonparametric registration. In
addition to the parametric model, the choice of similarity metric
plays a crucial role in the registration result and is dependent on
the relationship of the pixel intensities between the images. Simple
metrics such as normalized correlation are suitable for images with
a linear intensity relationship, while more complex metrics such as
mutual information [2] are employed for non-linear relationships.

Medical imaging heavily relies on image registration tech-
niques [3] [4] to gain valuable insights and quantitative mea-
surements. By registering medical images acquired at different
time points or using various imaging modalities such as MRI and
CT, researchers can analyze and quantify changes in anatomical
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structures, track disease progression and assess treatment efficacy.
For instance, image registration allows the alignment of medical
volumes across subjects to evaluate the impact of specific treat-
ments, or the registration of sequential brain images to monitor
tumor growth and response to therapy.

elastix

elastix [5] [6] is a well-known and widely used open-source
toolbox dedicated to image registration. It provides a compre-
hensive range of algorithms and utilities designed for aligning
images using diverse transformation models, similarity measures,
and optimization strategies. One of its key strengths is its modular
design, enabling users to easily configure and combine different
registration methods to suit application-specific needs. Parameter
files govern the registration process by specifying transformation
models, similarity measures, optimization strategies, and related
parameters. By customizing these configurations, users can seam-
lessly adapt elastix to their specific requirements, ensuring
optimal registration outcomes.

For example, when aligning an MRI brain scan with a CT
scan using elastix, users can configure the transformation
model, such as an affine or B-spline transformation model, to
capture the geometric relationships between input images. They
can also specify the similarity measure, like mutual information or
normalized correlation, to evaluate the quality of alignment. Addi-
tionally, users have the flexibility to adjust optimization strategies,
including parameters like the maximum number of iterations,
to fine-tune the registration process and achieve optimal results.
elastix supports both the more typical pairwise registration but
also groupwise registration [7] [8], where no image is specified as
fixed but an implicit mean image is used instead as reference.

The elastix codebase is implemented in C++ and serves
as an extension to the Insight Toolkit (ITK) [9]. Through nearly
two decades of development, elastix has achieved a mature
state, characterized by stability, practical effectiveness, main-
tainability, and general backward compatibility. ITK Image data
structures play a crucial role within elastix, representing multi-
dimensional pixel data augmented with spatial information. Acting
as a vital link between the digital pixel space and the physical
space of the imaged object, ITK Images facilitate accurate regis-
tration. By computing transformations that map points from the
physical space of one image to corresponding points in another,
elastix achieves precise and meaningful alignment outcomes
within the physical space. Complementing elastix, a utility
software named transformix was developed to enable the
application of registration results to additional images.
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The original and still-supported method to utilize elastix
and transformix are command line executables. For the end
user, this approach has the advantage that it does not require any
external dependencies to be installed, which eases deployment.
However, one limitation of this executable-based approach is its
reliance on file input/output (I/O) operations. To address this
limitation and enable more efficient in-memory operations, a C++
API was developed for elastix and transformix. This API
follows the paradigm established by ITK and its processing filters.
By adopting this design approach, elastix and transformix
gained the ability to perform operations directly in memory. This
enhancement provides users with greater flexibility and efficiency
in their image registration workflows.

To further accommodate the needs of the users in the con-
tinuously developing scientific computing ecosystem, wrappings
of the C++ code to other languages was developed in the form
SimpleElastix [10], which still exists as part of the SimpleITK
[11] package. More recently, we have embarked on developing a
Python-specific wrapper called itk-elastix. This wrapper ex-
tends the functionality of elastix and offers an ever-expanding
collection of Jupyter [12] examples, along with integration with
other scientific processing libraries and visualization software.
While there are other scientific python image image registra-
tion packages, itk-elastix stands out as a comprehensive
Pythonic package with many image similarity metrics, implemen-
tations for 2D, 3D, and 4D images, and the ability to register
a variety of imaging modalities. The subsequent sections of this
paper delve into these aspects in greater detail.

itk-elastix: Python wrapping

The backend C++ elastix code is wrapped in Python with the
Simplified Wrapper and Interface Generator (SWIG [13]). The
Python wrapping of elastix, itk-elastix, brings the power
of elastix to the Python ecosystem, providing effortless inte-
gration with other scientific processing libraries and visualization
software. The itk-elastix Python packages builds on the itk
Python package’s pythonic interface and seamless integration with
packages in the scientific Python ecosystem such as NumPy [14].
This enables users to leverage the rich functionality of elastix
within their Python workflows, benefiting from its advanced image
registration capabilities alongside popular Python libraries such as
NumPy [14], SciPy [15], and MONAI [16] [17].

The process of updating and distributing the itk-elastix
Python package is as follows: Once a significant number of
changes have been made to the C++ elastix repository, a pull
request is initiated in the itk-elastix repository to update its
version. This triggers the itk-elastix Continuous Integration
(CI) system, which performs builds of Python packages across
various Python versions (ranging from 3.7 to 3.11 at the mo-
ment of writing) and major platforms such as Windows, Linux,
and macOS. When a git version tag is provided, the wrapped
itk-elastix is automatically uploaded to PyPI, accompanied
by a comprehensive summary of updates between the versions.
As a result, users can easily install the latest itk-elastix by
executing pip install itk-elastix within their Python
environment. It is important to note that rigorous testing is con-
ducted on the elastix backend functionality, with hundreds of
tests performed during each pull request or commit, utilizing the
CI system of the C++ repository. The test framework of elastix
consists of various categories of tests, including low-level unit

tests of the elastix library interface, minimal image registration
tests on very small synthetic images, and larger regression tests
of image registrations on realistic medical data. The tests are
implemented using the CMake test driver CTest, the Python
unittest module, and GoogleTest.

The Python wrapping for any ITK filter including elastix
and transformix, offers two APIs: one functional and one
object-oriented. We will describe the two API options and demon-
strate the itk-elastix functionality with examples in the two
following sections.

Functionality

Registration/transformation example

The following example demonstrates the reg-
istration of 2D MRI brain images using the
itk.elastix_registration_method and subsequent
transformation of the corresponding moving mask using the
itk.transformix_filter. The objective is to compare the
overlap measure between the fixed mask and the transformed
moving mask. It is important to note that this is a synthetic
example where the fixed image intentionally exhibits significant
deformations through an artificial non-linear transformation,
solely for illustrative purposes. The masks utilized in this example
represent segmentations of the head, including the brain and the
skull. The procedure begins by reading the fixed and moving
images from disk, followed by configuring a default set of
B-spline registration parameters to be used for the registration
process.
import itk
from scipy.spatial.distance import dice

# Load the moving and the fixed image from disk
fixed_image = itk.imread('./data/fixed.mha', itk.F)
moving_image = itk.imread('./data/moving.mha', itk.F)

# Configure a (default) parameter map with all the
# registration parameters
par_obj = itk.ParameterObject.New()
par_map = par_obj.GetDefaultParameterMap('bspline')
par_obj.AddParameterMap(par_map)

# Run the registration
# 1. The Object Oriented way
# elastix_obj = itk.ElastixRegistrationMethod.New(
# fixed_image,
# moving_image)
# elastix_obj.SetParameterObject(param_obj)
# elastix_obj.Update()
# result_image = elastix_obj.GetOutput()
# rtp = elastix_obj.GetTransformParameterObject()

# 2. The functional way
# rtp: result transform parameter object
result_image, rtp = itk.elastix_registration_method(

fixed_image,
moving_image,
parameter_object=par_obj)

Following the registration process, we load the masks from disk
and apply the transformation parameters obtained during registra-
tion to the moving mask. To preserve the binary nature of the
masks and avoid introducing interpolation artifacts, we utilize
the nearest neighbor interpolator. This choice ensures that the
binary properties of the masks are maintained throughout the
transformation process.
# Load the corresponding masks
fixed_mask = itk.imread('./data/f_mask.mha', itk.UC)
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Fig. 1: Synthetic example of 2D brain registration and transformation of masks.

moving_mask = itk.imread('./data/m_mask.mha', itk.UC)

# Transform the moving mask using the result from the
# registration
rtp.SetParameter(0,

'ResampleInterpolator',
'FinalNearestNeighborInterpolator')

result_mask = itk.transformix_filter(moving_mask,
rtp)

# Compute dice on masks
initial_dice = 1 - dice(fixed_mask[:].ravel(),

moving_mask[:].ravel())
result_dice = 1 - dice(fixed_mask[:].ravel(),

result_mask[:].ravel())

print(initial_dice, result_dice)

The last part of the code above calculates the Dice coefficient
between the fixed mask and the transformed moving mask by
converting the pixel arrays in the ITK Images into NumPy array
views and then call scipy.distance.dice() on them. The
initial Dice score was 97.88% which increased to 99.37% after
registration. Figure 1 visualizes the fixed, moving and result image
as well as an overlay of the fixed image and the transformed mask.

Jupyter Notebook collection

In addition to the core registration and transformation function-
ality demonstrated above, itk-elastix offers other additional
features. To help new users who are starting out, and also keep
existing users up-to-date with the new feature implementations,
we offer an evolving collection of Jupyter Notebooks as usage
examples. Each of the Notebooks covers usually a specific topic,
can be run independently, and includes comments and detailed
explanations. The Notebooks are also tested automatically by CI
with each pull-request or commit, and hence it is ensured that they
always reflect the current API and functionality of the codebase.
Such Notebooks include, but are not limited to:

• specifying masks or point sets for the registration
• transforming point sets and meshes
• groupwise registration
• logging options
• saving output to disk options
• reading/writing transform in hd5f format
• calculation of spatial jacobian
• calculation of deformation field
• calculation of the inverse transform
• visualization of the registration

Interoperability with other packages

ITK Transforms

In addition to the fact that elastix is based on ITK, there is
an ongoing effort to increase the compatibility between the two
libraries even further. One particular example is the Transform
classes [18]. In the following example, we show that ITK Trans-
forms can be used directly by transformix:
# Create an ITK (translation) transform
transform = itk.TranslationTransform.New()
transform.SetOffset([50, -60])

# Specify the image space of the transform
sp = moving_image.shape
parameter_map = {

"Direction": ("1", "0", "0", "1"),
"Index": ("0", "0"),
"Origin": ("0", "0"),
"Size": (str(sp[1]), str(sp[0])),
"Spacing": ("1", "1")
}

par_obj = itk.ParameterObject.New()
par_obj.AddParameterMap(parameter_map)

# Pass an ITK transform directly to transformix
transformix_obj = itk.TransformixFilter.New(

moving_image)
transformix_obj.SetTransformParameterObject(par_obj)
transformix_obj.SetTransform(transform)
transformix_obj.Update()

# Get transformed (translated) image
translated_image = transformix_obj.GetOutput()

NumPy & SciPy

Interoperability with NumPy and, consequently, with SciPy li-
braries, comes from functionality in ITK to convert ITK Images
to NumPy arrays and vice versa. The relevant code is:
# itk image -> numpy array (deep copy)
image_array = itk.array_from_image(image_itk)

# itk image -> numpy array (shallow copy / view)
image_array = image_itk[:]

# numpy array -> itk image
image_itk = itk.image_from_array(image_array)

Project MONAI

More and more people work on the application of deep learn-
ing to medical imaging research. To that end, we developed

https://github.com/InsightSoftwareConsortium/ITKElastix/tree/main/examples
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Fig. 2: The user interface of the elastix-napari plugin. For a
larger version of the image: https://github.com/SuperElastix/elastix-
napari#elastix-napari.

itk_torch_bridge as module of the MONAI codebase that allows
conversion 1) of an ITK Image to a MONAI MetaTensor and
the reverse, while making sure that all relevant metadata remain
intact, and 2) an ITK Transform to a MONAI Transform and back.
The latter is necessary since the ITK Transforms are defined in
the world coordinate system while MONAI uses the pixel/voxel
space. Example of a relevant application is performing deep
learning registration (e.g. affine) using MONAI, and passing the
Transform as initial Transform for itk-elastix, which can
further register the images (e.g. non-linearly). Below, there is a
short code snippet on how to use the module:
from monai.data import itk_torch_bridge as itb
import torch

# itk image <-> MONAI metatensor
image_mt = itb.itk_image_to_metatensor(image_itk)
image_itk = itb.metatensor_to_itk_image(image_mt)

# Transform: monai space <-> itk space
# affine_matrix: 3x3, matrix: 2x3, translation: 2x1
matrix, translation = itb.monai_to_itk_affine(

image=image,
affine_matrix=affine_matrix)

Integration with other software

Continuous efforts have been made to make itk-elastix ac-
cessible to users of various tools. One notable community-driven
initiative is SlicerElastix, which seamlessly integrates elastix
(as an executable) into 3D Slicer [19] medical image visual-
ization software. In addition to this, recent endeavors focused
on developing the elastix-napari plugin for the Napari
[20] visualization software, which is written in Python. Figure 2
illustrates Napari user interface and showcases an itk-elastix
widget on the right side along with an example visualization of two
input images and a transformed image at the center.

Documentation & reproducibility

elastix has been extensively used and cited for over a decade,
resulting in the accumulation of significant community knowl-
edge. In the spirit of reproducible science, and recognizing the
value of building upon previous work, we have compiled a curated
list of parameter files in a parameter file model zoo, each linked
to its associated publication. This resource allows interested users

to easily filter the list based on factors such as anatomical region,
modality, or image dimensionality, empowering them to find pre-
existing parameter files that suit their needs. By facilitating result
replication on their own datasets and providing guidance for
novel registration tasks, this initiative promotes reproducibility and
collaboration within the community.

The documentation for each parameter, component, and API
functionality is continuously updated using Sphinx, ensuring that
it stays up-to-date with the latest developments in elastix.
This allows users to access accurate and relevant information,
with in-code descriptions automatically rendered as comments
into a website for easy access and query capabilities. In addition,
for a more comprehensive understanding of registration and the
inner workings of elastix, the elastix manual provides in-
depth descriptions covering various aspects, including detailed
explanations of the algorithms and methodologies employed. To
further support users, a community forum hosted as GitHub
discussions serves as a valuable resource for asking questions,
seeking assistance, and engaging in discussions with experienced
users and developers who can provide support, share insights, and
address any concerns or challenges faced by users.

Concluding remarks

We presented itk-elastix, an easy-to-install and easy-to-use
Python package that lowers the entry barrier for multi-dimensional
image registration. Its key features are 1) a robust and well-
established backend codebase that provides stability and reliabil-
ity, 2) an extensive collection of tutorials, a parameter file model
zoo, and up-to-date documentation as comprehensive resources for
user adoption, 3) seamless interoperability with popular scientific
libraries in Python, including NumPy, SciPy, and MONAI, and
4) integration into 3D visualization software, facilitating visual
analysis and interpretation of registered images. Overall, with
itk-elastix, researchers and practitioners can effortlessly
leverage the strengths of Python and seamlessly integrate it with a
wide range of scientific software, which unlocks new possibilities
and accelerates advancements in scientific image analysis. Next
steps will further improve the applicability of itk-elastix on
end-to-end deep learning segmentation and registration pipelines
of diverse medical datasets. In addition, a port to WebAssembly
will enhance the universal accessibility of the package.
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Useful resources

• itk-elastix repository: https://github.com/
InsightSoftwareConsortium/ITKElastix

• jupyter notebook examples: https://github.com/
InsightSoftwareConsortium/ITKElastix/tree/main/
examples

• elastix-napari plugin: https://github.com/SuperElastix/
elastix-napari

https://github.com/SuperElastix/elastix-napari#elastix-napari
https://github.com/SuperElastix/elastix-napari#elastix-napari
https://docs.monai.io/en/latest/data.html#module-monai.data.itk_torch_bridge
https://elastix.lumc.nl/modelzoo/
https://elastix.lumc.nl/doxygen/parameter.html
https://elastix.lumc.nl/doxygen/index.html
https://github.com/SuperElastix/elastix/discussions
https://github.com/InsightSoftwareConsortium/ITKElastix
https://github.com/InsightSoftwareConsortium/ITKElastix
https://github.com/InsightSoftwareConsortium/ITKElastix/tree/main/examples
https://github.com/InsightSoftwareConsortium/ITKElastix/tree/main/examples
https://github.com/InsightSoftwareConsortium/ITKElastix/tree/main/examples
https://github.com/SuperElastix/elastix-napari
https://github.com/SuperElastix/elastix-napari
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• elastix community forum: https://github.com/SuperElastix/
elastix/discussions

• parameter file model zoo: https://elastix.lumc.nl/
modelzoo/

• elastix documentation and manual: https://elastix.lumc.nl/
doxygen/index.html
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