
106 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

PyQtGraph - High Performance Visualization for All
Platforms

Ognyan Moore‡∗, Nathan Jessurun§, Martin Chase§, Nils Nemitz§, Luke Campagnola¶

✦

Abstract—PyQtGraph is a plotting library with high performance, cross-platform
support and interactivity as its primary objectives. These goals are achieved
by connecting the Qt GUI framework and the scientific Python ecosystem. The
end result is a plotting library that supports using native python data types and
NumPy arrays to drive interactive visualizations on all major operating systems.
Whereas most scientific visualization tools for Python are oriented around
publication-quality plotting and browser-based user interaction, PyQtGraph
occupies a niche for applications in data analysis and hardware control that
require real-time visualization and interactivity in a desktop environment.
The well-established framework supports line plots, scatter plots, and images,
including time-series 3D data represented as 4D arrays, in addition to the basic
drawing primitives provided by Qt.
For datasets up to several hundred thousand points, real-time rendering
speed is achieved by optimized interaction with the Python bindings of the Qt
framework. For enhanced image processing capabilities, PyQtGraph optionally
integrates with CUDA. This ensures rendering capabilities are scalable with
increasing data demands. Moreover, this improvement is enabled simply by
installing the CuPy[1] library, i.e. requiring no in-depth user configurations.
PyQtGraph provides interactivity not only for panning and scaling, but also
through mouse hover, click, drag events and other common native interactions.
Since PyQtGraph uses the Qt framework, the user can substitute their own
intended application behavior to those events if they feel the library defaults
are not appropriate. This flexibility allows the development of customized and
streamlined user interfaces for data manipulation.
The included parameter tree framework allows straightforward interactions
with arbitrary user functions and configuration settings. Callbacks execute on
changing parameter values, even asynchronously if requested.
An active developer community and regular release cycles indicate and
encourage further library development. PyQtGraph’s support cycle is
synchronized with the NEP-29[2] standard, ensuring most popular scientific
python modules are continually compatible with each release.
PyQtGraph is available through pypi.org (https://pypi.org/project/pyqtgraph/),
conda-forge (https:/ anaconda.org/conda-forge/pyqtgraph) and GitHub
(https://github.com/pyqtgraph/pyqtgraph).

Index Terms—Visualization, Qt, NumPy, PyData, Python

Introduction

The benefits of interactive exploration of scientific data were
recognized as soon as computer systems gained graphical displays.

* Corresponding author: ognyan.moore@gmail.com
‡ Hobu Inc.
§ Unaffiliated
¶ Allen Institute

Copyright © 2023 Ognyan Moore et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

While early implementations like the PRIM-9 system[3] of the
Stanford Linear Accelerator Center were only available to large
installations, more affordable microcomputers soon found their
place in smaller laboratories also[4][5], controlling experiments
and recording data.

Software packages designed to acquire and process this data
soon appeared, with MATLAB[6] and LabView[7] both imple-
menting graphical representation of data from their very first
versions. The latter was designed to enable data acquisition, pro-
cessing and visualization all in the framework of a single program.
This approach remains common in fields like statistics where
the tools for interaction with data are reasonably well-defined.
In other areas, the advent of high-level programming languages
like Java and Python has enabled researchers to create the tools
for their specific needs with reasonable time investment. This is
facilitated by a continuously growing open-source infrastructure
that provides resources addressing anything from mathematical
methods[8] to full-scale laboratory data infrastructure[9], [10].

With less need to recreate existing solutions, it becomes
feasible to implement software aiming to reduce turn-around times
of iterated experiments: A traditional view of the scientific method
envisions a sequence of detailed experiment design, pain-staking
note-taking, followed by an exhaustive evaluation resulting in a
revised experiment. However, when experiments can be optimized
over a wide parameter space, the evaluation quickly becomes the
dominant factor. Even for established experimental parameters,
external factors such as degraded performance of equipment
result in a significant loss of time if they are discovered only in
subsequent evaluation.

The solution is to provide immediate feedback to the re-
searcher throughout the experiments, and data visualization has
long proven its effectiveness in this regard [Friendly2008]. A chal-
lenge lies in providing tools for a detailed inspection of interesting
data while new information continues to arrive at rates that for
extreme cases are counted in Gb/s even after preselection[11].
These tools also need to provide the flexibility to handle data that
falls outside the range expected in design, as this is the most likely
to indicate failures or to provide the sought-after discovery.

Here we present a visualization library created with these goals
in mind. Although written in Python to allow for easy expansion,
a close integration with the cross-platform Qt UI framework[12] it
provides the capability to interactively handle datasets of hundreds
of thousands of points, or live representation of high-resolution
camera data.

https://pypi.org/project/pyqtgraph/
https://anaconda.org/conda-forge/pyqtgraph
https://github.com/pyqtgraph/pyqtgraph
mailto:ognyan.moore@gmail.com

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 107

0 10020 40 60 80

0

-2

2

-1

1

0 10020 40 60 80 120

0

10

0 10020 40 60 80

0

-2

2

-3

-1

1

3

0-1 1-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

0

-1

1

10⁻⁶10⁻⁷ 10⁻⁵

1.02

1.04

1.06

1.03

1.05

1.07

0 20 4010 30 50

0

20

40

10

30

0

-1

1

0 1000200 400 600 800

0

1

-0.2

0.2

0.4

0.6

0.8

0 200 400100 300 500

0

200

400

100

300

500

Fig. 1: A selection of basic plots from PyQtGraph’s suite of examples.

APPROACH

Python

The Python programming language enjoys a large popularity
in scientific research due ease of entry and a robust standard
library combined with access to very comprehensive numerical
computing packages. This makes Python an attractive alternative
to established computational tools such as MATLAB[6] and Math-
ematica.

The set of most commonly used scientific computing tools in
Python are commonly referred to as the SciPy stack. This refers
to SciPy, NumPy, and a variety of other libraries that use the
NumPy ndarray data structure as a container for vectorized
operations. The ndarray gives developers a high level API to
low-level operations with excellent performance. This API allows
NumPy and SciPy to provide a wide variety of standard numerical
computing operations, all of which are very efficient and help
overcome the performance penalty of working with Python as a
cross-platform, interpreted, dynamically typed language.

Qt

The Qt framework is a GUI platform written in C++ that al-
lows the creation of cross-platform applications with a single

shared code-base. Comprehensive Python bindings (PyQt) expose
the complete Qt API. Here, the specific section of interest is
the GraphicsView framework, which provides a surface for
managing and interacting with a large number of custom-made
2D graphical items, with support for zooming and rotation[13].
PyQtGraph is built on this foundation to extend the SciPy stack
with performant cross-platform visualization.

Implementation

GraphicsView renders line segments in a freely scaled coor-
dinate system through QPainterPath objects. The rendering
performance of PyQtGraph results from optimized code to create
such paths directly from NumPy ndarrays describing sets of
x and y coordinates. One illustrative example tightly interfaces
with Qt’s internal pointers through QPolygonF objects to offer
significant speedups for QPainterPath generation. They use
NumPy’s structured array functionality to efficiently create a
binary compatible structure that can serve as an input stream to
a QPainterPath item (see the Appendix section for details).
This QPainterPath is then drawn to the screen by the Graphics
View framework. Note that while arrayToQPolgyonF is a
trivial example of NumPy/Qt integration, a much more complex
usage can be found here.

https://github.com/pyqtgraph/pyqtgraph/blob/71bcf3f6d078b07a19b90791d96d27d28cb545d1/pyqtgraph/functions.py#L1967

108 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

CAPABILITIES

All 2d line rendering functions that handle large quantities start
with NumPy arrays and become painter paths through the pow-
erful arrayToQPath conversion. This generic NumPy-to-Qt
data translator covers all common plotting requirements. Figure 1
shows a demonstration from the suite of examples. All graphs in-
cluded in this paper were generated using PyQtGraph’s interactive
export functions, which can store both bitmaps and vector formats,
or provide access to the raw plotted data.

Plot Types

PyQtGraph shows all plots within a PlotItem object consisting
of a ViewBox equipped with a set of axes. This allows dynamic
pan and zoom through the transforms of Qt’s GraphicsView,
with no need to regenerate the QPainterPath objects. Individ-
ual elements of the plot are represented by graphics items that
share the same coordinate systems and shown in any combination
and drawing order.

PyQtGraph represents line plots as PlotCurveItem objects
and offers typical functionality such as color, width and dashing.
"Shadow pen" lines can be underlaid for additional contrast.

Scatter plot items are assigned a default shape, color and size
per data set, but each point can also have a unique attributes.
Shapes are pre-rendered and cached to optimize performance
when the underlying dataset is updated. Depending on the ap-
plication, symbols can be set to scale with the view or maintain
constant size. Functionality is included for items in scatter plots to
recognize mouse hover events.

Plots can be extended by both horizontal and vertical error bars
and annotated by text labels. Built in routines can also transform
the plotted data to provide logarithmic scaling, Fourier transforms,
and to show the gradient dy/dt directly over t or as a phase map
over y.

Bar graphs and images also make use of this framework and
can be added to the same PlotItem, although they are more com-
monly used separately. Users can also create QPainterPath
objects to add their own graphical elements using the well doc-
umented methods of the Qt Graphics View framework. PyQt-
Graph’s suite of examples[14] illustrates this with some demon-
strations.

Performance

We evaluated the plotting performance for line plots of randomly
generated datasets of different length. Figure 2 shows the time
taken from setting new data to the completion of the drawing
process for 1 to 100 separate curves ranging from 100 to 10 million
points. We find that even on common hardware, a curve with
10,000 points can be drawn in less than 10 ms, and an update rate
of 60 Hz can be maintained up to approximately 30,000 points.
Adding more curves introduces additional overhead, such that
the same number of 10,000 points, plotted over 100 curves of
100 points each, increases the update time to just below 40 ms.
Nevertheless, the number of points in each of the 100 curves can
be increased to close to 3,000 before the update rate falls below
10 frames per second (FPS). At this point, the majority of time
is spent processing line segments, and their distribution across
different numbers of curves is of secondary importance: A single
curve allows for 200,000 points to be displayed at 10 FPS.

Plotting the results as the update time divided by the overall
number of data points further illustrates this. As the total number

of points approaches 100,000, where the more or less fixed
overhead of the Qt drawing process is no longer significant, the
update times converges to approximately 200 ns per point drawn
for both 10 curves and 100 curves. We attribute the increased
update time for a single curve to the larger set of data that needs
to be handled simultaneously, which may lead to caching issues.

Although the detailed result will vary with platform, system,
and data, we consider these results to provide a good reference for
the performance that can be expected from PyQtGraph.

Images and Regions of Interest

PyQtGraph also provides the means to display images and other
multi-dimensional data. Handling streams of such data, as in
live video, is similarly enabled by efficient NumPy methods that
convert the input data into a binary representation that can be used
directly by the Qt framework. Various analysis and processing
tools interact with the image arrays, for example regions of
interest (ROIs), look-up tables (LUT) for color-mapped display,
or histograms.

Image Views

The principal object in displaying images, ImageItem, accepts
2-dimensional (interpreted as grayscale) or 3-dimensional (either
color or color and alpha) data of any numeric type. Stored in
NumPy arrays, this data can be pre-processed efficiently using any
available functions in the SciPy stack. Subtracting a background,
for instance, is simply a matter of subtracting the reference frame.
This input is then processed by ImageItem and converted into
Qt’s QImage format for rapid display. A range of colormaps are
provided to enhance detail perception, and can be altered interac-
tively in levels and colors through a HistogramLUTItem.

60 FPS

10 FPS

1 curve
(down-sampled)
10 curves
(down-sampled)
100 curves
(down-sampled)

Time to update frame (ms)

10² 10⁴ 10⁶10³ 10⁵ 10⁷

Points per curve

1

10²

10⁴

10¹

10³

200 ns

1 curve
(down-sampled)
10 curves
(down-sampled)
100 curves
(down-sampled)

Update time per point (µs)

10² 10⁴ 10⁶10³ 10⁵ 10⁷

Total points

0.01

1

0.1

Fig. 2: Line speed benchmark. The time to render 1, 10 or 100
lines of data is shown for varying numbers of points per line. All
data was created using an AMD 5900x Ryzen 9 CPU. Left: Time per
update over points per curve. The thresholds for achieving 10 and 60
frames/s are shown by horizontal lines. Right: Update time per point,
plotted over the total number of points. For more than 100,000 points,
the line-plotting time becomes dominant, and the results converge to
200 ns per point for both 10 and 100 curves, while plotting all points
as a single curve increases the time to 500–600 ns per point.

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 109

CuPy - no LUT
(with LUT)
Numba - no LUT
(with LUT)
NumPy - no LUT
(with LUT)

Float format performance

10⁶10⁵ 10⁷

Pixels in image

1

0.1

10¹

Im
ag
e
U
pd
at
e
D
ur
at
io
n
(m
s)

CuPy - no LUT
(with LUT)
Numba - no LUT
(with LUT)
NumPy - no LUT
(with LUT)

16-bit integer performance

10⁶10⁵ 10⁷

Pixels in image

1

0.1

10¹

Fig. 3: Image speed benchmark. The time to update an image frame
is shown for different data formats. Left: Using optimized NumPy
processing (purple lines), the drawing time is log-scale linear with
the number of pixels over a wide range. GPU accelerated CUDA
processing using CuPy (green lines) describe a more complex re-
lationship with image size. The need to copy data to and from the
GPU creates additional overhead, but as image size grows, the faster
processing speed becomes sufficient to compensate for that overhead.
The choice of various extra processing tasks like LUTs (dashed
lines) show the same basic trends. Alternatively, PyQtGraph’s image
rendering pipeline can be accelerated in Numba is available on the
system. Benchmarks with Numba (blue lines) can be seen as have
performance between that of CuPy and NumPy only. Right: For input
data in uint16 format, CUDA processing is particularly advantageous
and can provide an almost four-fold reduction in drawing time.
Benchmarks were performed on an AMD 5900x Ryzen 9 CPU and
an NVIDIA RTX 3080 discrete GPU.

ROIs

A common image analysis task is to define a ROI in a larger
original image. This is supported by multiple interactive objects
(LineROI, CircleROI, PolygonROI, and others), which pro-
vide NumPy slice objects that reference the selected region within
the image array. Once extracted, the relevant data can then be
further processed. Magnification, live plotting, FFTs and custom
analysis are all simple to implement. Multiple ROIs can be bound
together in groups to provide background correction or region
comparisons both within a single image stream or across many.
These ROI objects remain interactive while attached to the image,
so that resizing, moving and rotating a ROI can prompt immediate
updates of all subsequent plotting and analysis interfaces.

Performance

Numerous factors play into the final performance of a video
stream. Data type conversions, LUTs, scaling, and any custom pre-
processing all need to occur for each frame, and the computational
effort typically scales with image size. A minimum of 20 FPS is
generally required for a usable interactive video stream, although
60 FPS is preferred in many applications. In some cases, data
can be directly passed to the built-in methods of Qt’s QImage.
Otherwise ImageItem relies on the core function makeARGB to
efficiently convert data types, order data properly, rescale levels
and apply a LUT if desired (see the Appendix section for details).

Fig. 4: Performance test with PyQtGraph and Matplotlib widgets
embedded in a Qt5 application. Over a wide range of image sizes,
PyQtGraph completes drawing approximately 75–150 times faster,
taking only 5.4 ms in this example of a 4000×4000 image. The test is
performed without GPU acceleration in a Microsoft Windows environ-
ment, and both libraries are set to sub-sample without interpolation.
Free-to-use test images are provided by the “Unsplash” service.

When integrated as a widget in a Qt application (Figure 4), we
typically find ImageItem to display an image 75–150 times
faster than the FigureCanvas provided by Matplotlib, a plot-
ting library that emphasizes graphical quality over speed.

Some share of the image processing is by necessity done in the
primary event thread of the Qt application, as that thread requires
full access to the data to be displayed. Other calculations can be
moved to other threads to improve performance and maintain the
responsiveness of the UI. For example, larger images can be down-
sampled before handing them to the main thread for display. This
multi-threading consideration extends throughout the application,
and any excessive use of the event thread will impact image
display performance.

To further accelerate the handling of large datasets, PyQt-
Graph can make use of a GPU substrate in one of two ways:
GLImageItem or CuPy. GLImageItem, while limited in its
interactivity, employs OpenGL for rendering. The CuPy library, a
drop-in replacement for NumPy, moves array processing tasks to
a CUDA-enabled GPU. This is not beneficial in all applications,
since the cost of copying the image data between system memory
and the GPU needs to be amortized by a sufficient number of
calculations. In the context of image processing, we find that CuPy

https://unsplash.com/

110 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

provides an advantage for images with several hundred thousands
of pixels (Figure 3), depending on target hardware.

Interactivity

Event Driven GUI

The Qt framework is event driven, which allows PyQtGraph to
provide seamless mouse interaction. This also enables users to
develop their own desired behavior in response to mouse move,
hover, leave, enter, double-click, zoom, or drag events. Almost
every aspect of PyQtGraph interacts with the Qt events, or pro-
vides its own in response to e.g. axis adjustments or changes to a
selected region. This interactivity is a core component of the Qt
framework, and adding such behavior to a plot in PyQtGraph is
no more complicated than generating the plot in the first place.

Responsiveness at scale

Recognizing zoom events enables resolution-aware down-
sampling of the plotted data. Multiple available methods provide
different trade-offs of accuracy against performance, and include
a "peak" display that precisely captures the minima and maxima
of the data, a "mean" over the down-sampled interval, and a fast
"sub-sample" that displays only 1 in N data points. Zooming into
the view automatically reveals more detail of the dataset.

Parameter Trees

Another common requirement for user interaction is a
mechanism to interact with for configuration settings or
algorithm parameters. PyQtGraph provides this capability
through the ParameterTree object which hosts any num-
ber of Parameters. Similar to traitlets, PyQtGraph’s
Parameter objects encapsulate a value type and allow regis-
tering callbacks, performing input validation, and more. However,
Parameters are different in that most are coupled to a widget
representation, i.e., allowing users to easily update the values
graphically. Parameter objects can be created through a simple
Python dictionary listing its specifications (type, value, and traits
such as ‘readonly’ or value range). It is then bound to a Qt widget
for editing text, numeric, list-like, and custom data depending
on the parameter type. Parameters can be grouped, linked, and
dynamically instantiated or removed. Callbacks for user actions or
value changes allow results to be recalculated immediately (i.e.,
while a spinbox is changing its value) or after the value has settled.
Parameter trees can save and load their states hierarchically to
easily create persistent configuration files. Since accessing param-
eters mimics a Python dictionary, they can function as a drop-
in replacement for programmatically adjusted settings rather than
forcing users to interface through widgets alone.

EXAMPLES

Rapid iteration of processing parameters

Figure 5 shows such a parameter tree in use. In applications
such as image processing, immediate feedback for a choice of
algorithmic parameters can help to rapidly reduce the exploration
space in the search for viable solutions. For instance, it might
be difficult to tell the appropriate kernel size for a morphological
operation without testing multiple combinations of image types,
parameter values, and more. These factors often make fine-tuning
a laborious process. Parameter trees assist in creating a tool to
integrate the user with the testing space, quickly and without large

amounts of boilerplate code. Using callbacks to provide immediate
response, workable parameter combinations can be explored, and
candidate solutions can be stored to configuration files, both
for comparison to alternative approaches and for application to
specific data types.

Fig. 5: Sample use of parameter trees for user interaction, where
various image processing parameters can be quickly updated. The
displayed image reflects these changes in real-time.

Model Prototyping

The supplementary information contains a similar application of
PyQtGraph’s capabilities to a machine learning model. Here the
parameter trees allows tuning aspects of the input data, model
structure and output formats. The plotting functions provide live
feedback for how these changes affect model accuracy, greatly
assisting a rapid prototyping process.

Monitoring of real-time data

Visualization can provide immediate feedback on measurement
results and the operational state of the equipment involved.
Figure 6 shows an application of the opportunities provided by
PyQtGraph’s interactive facilities in this application. For most
applications, no data reduction is necessary to maintain smooth
display of a sufficiently large buffer, and no additional code is
needed to alternate between monitoring of new data and close
inspection of specific events.

Additional examples

The supplementary information includes video demonstrations of
two additional applications that make heavy use of PyQtGraph
functionality to explore spectral data and to visualize volumetric
data representing the 3d structure of multilayer circuit boards.

SOFTWARE DEVELOPMENT

The original motivation for pyqtgraph was in data acquisition
software, where there is a need to be able to display video and
plots with realtime frame rates and interactivity that allows data
exploration. Interactivity was highly important; the established
matplotlib library already existed and was excellent for vi-
sualizing data in a way that tells a particular story. New data,
though, doesn’t have this story yet. You want to be able to slice it

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 111

def ndarray_from_qpolygonf(polyline):
polyline.data() will be None if the pointer was null.
voidptr(None) is the same as voidptr(0).
vp = Qt.compat.voidptr(polyline.data(), len(polyline)*2*8, True)
return np.frombuffer(vp, dtype=np.float64).reshape((-1, 2))

def create_qpolygonf(size):
polyline = QtGui.QPolygonF()
if hasattr(polyline, 'resize'):

(PySide) and (PyQt6 >= 6.3.1)
polyline.resize(size)

else:
polyline.fill(QtCore.QPointF(), size)

return polyline

def arrayToQPolygonF(x, y):
"""
Utility function to convert two 1D-NumPy arrays representing curve data
(X-axis, Y-axis data) into a single open polygon (QtGui.PolygonF) object.
"""
Validation asserts both x and y are same-shaped and 1D, not shown here
size = x.size
polyline = create_qpolygonf(size)
memory = ndarray_from_qpolygonf(polyline)
memory[:, 0] = x
memory[:, 1] = y
return polyline

TABLE 1: PyQtGraph source code for the core arrayToQPolygonF function.

monitoring

diagnostic

update rate: 31.8 FPS

1720 1740 17601710 1730 1750
0

10

2

4

6

8

m
on

it
or

ed
 c

on
d
it
io

n

0

10

2

4

6

8

1720 1740 17601710 1730 1750

operating time (s)

0

-4

-2

2

4

6

m
ea

su
re

m
en

t

0

-4

-2

2

4

6

Fig. 6: Monitoring and diagnostic of a (simulated) experiment with
intermittent failures. Incoming data at 100 samples/s for two mea-
surement channels is recorded into a rolling 5,000 point buffer and
continuously displayed at 30 frames/s. When a failure is observed,
it can quickly be brought into focus with simple mouse interactions
(click-and-drag and mousewheel zoom) for inspection, or to record
accurate time stamps. Afterwards, a single click returns the view to
automatic scaling without loss of any incoming data.

and stretch it and look at it from every possible angle, quickly and
easily, so that you can decide what story to tell.

At the time, most acquisition software would have been written
in C/C++ for efficiency. However, newer developments meant
python interfaces to Qt’s C++ logic provided a good mix between
speed and ease of use. PyQwt was perfect for this purpose, but
went through a long period without a maintainer (presumably
at the time, it was a huge burden maintaining and distributing
compiled python packages). So pyqtgraph began as a replacement
for PyQwt that would be pure-python, and thus easier to develop
and distribute. Following that template, it was also to include UI
elements that have common use in acquisition/analysis applica-
tions, but are missing from Qt (for example, tools for adjusting
image contrast, parameter trees, etc.).

PyQtGraph was first released in 2012, under the open source
MIT license. It is known to run on systems ranging from the Rasp-
berry Pi to IBM’s s390x architecture. Development is coordinated
by volunteer maintainers, with additional code provided by oc-
casional contributors. A continuous integration system asserts that
the codebase passes a suite of tests for different combinations of Qt
bindings, Python versions and operating systems. PyQtGraph has
adopted NEP-29[2] to establish a support timeline for Python and
NumPy versions in line with the rest of the Python community and
development occurs in close communication with projects such as
ACQ4[15] and Orange3[16] that constitute a large part of the user
base.

OUTLOOK

With a growing number of both maintainers and contributors,
PyQtGraph is well positioned to take advantage of technological
developments. The support of hardware acceleration in recent ver-
sions of NumPy has already been used to add CUDA integration
to some time-critical code, but there is still plenty of potential for
further improvements to performance and capabilities. Increased
use of multi-threaded patterns is a goal in this respect, both
throughout the library, and in user code supported by appropriate

112 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

import cupy as cp
import numpy as np

def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False, output=None):
condensed variant, full code at:
https://github.com/pyqtgraph/pyqtgraph/blob/pyqtgraph-0.12.0/pyqtgraph/functions.py#L1102-L1331
xp = cp.get_array_module(data) if cp else np

nanMask = None
if data.dtype.kind == "f" and xp.isnan(data.min()):

nanMask = xp.isnan(data)
Scaling
if isinstance(levels, xp.ndarray) and levels.ndim == 2: # rescale each channel independently

newData = xp.empty(data.shape, dtype=int)
for i in range(data.shape[-1]):

minVal, maxVal = levels[i]
if minVal == maxVal:

maxVal = xp.nextafter(maxVal, 2 * maxVal)
rng = maxVal - minVal
rng = 1 if rng == 0 else rng
newData[..., i] = (data[..., i] - minVal) * (scale / rng)

data = newData
else:

minVal, maxVal = levels
rng = maxVal - minVal
data = (data - minVal) * (scale / rng)

LUT
if xp == cp: # cupy.take only supports "wrap" mode

data = cp.take(lut, cp.clip(data, 0, lut.shape[0] - 1), axis=0)
else:

data = np.take(lut, data, axis=0, mode='clip')

imgData = output
if useRGBA:

order = [0, 1, 2, 3] # array comes out RGBA
else:

order = [2, 1, 0, 3] # channels line up as BGR in the final image.
attempt to use library function to copy data into image array
fastpath_success = try_fastpath_argb(xp, data, imgData, useRGBA)
if fastpath_success:

pass
elif data.ndim == 2:

for i in range(3):
imgData[..., i] = data

elif data.shape[2] == 1:
for i in range(3):

imgData[..., i] = data[..., 0]
else:

for i in range(0, data.shape[2]):
imgData[..., i] = data[..., order[i]]

if data.ndim != 3 or data.shape[2] != 4:
imgData[..., 3] = 255

apply nan-mask through alpha channel
if nanMask is not None:

if xp == cp: # Workaround for https://github.com/cupy/cupy/issues/4693
imgData[nanMask, :, 3] = 0

else:
imgData[nanMask, 3] = 0

return imgData

TABLE 2: PyQtGraph source code for the core makeARGB function. For brevity, edge cases and null checks have been omitted.

documentation, examples and API design. The growing maturity
of the Numba just-in-time compiler [17] for Python code provides
additional opportunities for acceleration beyond what NumPy’s
array operations can provide.

APPENDIX

Implementation of arrayToQPolygonF

The function arrayToQPolygonF is one of the simpler cases
that demonstrates the how PyQtGraph bridges the gap between
NumPy and Qt Table 1

Execution takes two ndarray objects of the same length,
representing x- and y-coordinates for a series of line segments.
A QPolygonF object is instantiated and resized to store enough
points that represent the x- and y-coordinates that were passed
in. From there, a void-pointer of the QPolygonF’s internal
memory is retrieved in a NumPy format allowing easy assignment
of the user data. Lastly, we fill that NumPy array with the x-
and y-coordinates that were initially provided. In this process,
we went from NumPy arrays representing x- and y- coordinates
to a QPolygonF object without performing any serialization,
iteration or casting.

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 113

Implementation of makeARGB

The function makeARGB provides the data conversions used in
displaying image data. It is included here as Table 2 to show the
approach and the integration of CUDA GPU support discussed in
section .

The segment of memory within a QImage object that will
ultimately be displayed on the screen can be accessed and written
to as a contiguous, row-major, 3-dimensional NumPy ndarray
of unsigned 8-bit integers; i.e. the red, green and blue color values
and alpha value of each pixel, one row at a time. With this array as
the output target, an incoming image data goes through a number
of processing steps. Many of the steps are only conditionally
executed, depending on the shape and type of the incoming data,
as well as the use of LUTs or rescaling. Some of the respective
branches and decision trees have been omitted here for brevity. In
a best-case scenario, the incoming data is already in the correct
format, and the steps converting data type and element order can
then also be omitted. The CuPy library provides CUDA support
by replicating large sections of NumPy functionality, allowing for
near-identical code paths. The two if-statements seen here address
the lack of a ’clip’ mode in CuPy’s ’take’ function, as well as
differing behavior for masks as indices.

ACKNOWLEDGEMENTS

The authors wish to thank all prior, present and future contributors
to the PyQtGraph project. Their efforts enable all that is presented
here. One regular contributor, @pijyoi, has made significant
contributions to the NumPy and Qt interoperability, as well as
reviewed pull requests from other contributors and maintainers
and provided countless bug-fixes. Finally, we would like to thank
maintainers and contributors to the NumPy, SciPy and CuPy
projects.

REFERENCES

[1] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy:
A NumPy-compatible library for NVIDIA GPU calculations,” in
Proceedings of Workshop on Machine Learning Systems (LearningSys)
in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. [Online]. Available: http://learningsys.org/nips17/
assets/papers/paper_16.pdf

[2] NEP 29 — Recommend Python and NumPy version support as a com-
munity policy standard, available at https://numpy.org/neps/nep-0029-
deprecation_policy.html.

[3] J. H. Friedman and W. Stuetzle, “John W. Tukey’s work on interactive
graphics,” The Annals of Statistics, vol. 30, pp. 1626–1639, 2002, https:
//doi.org/10.1214/aos/1043351250.

[4] J. S. Byrd, “Microcomputers for nuclear instrumentation,” presented
at Conference and Exhibits on Small Computers, May 23-24 1979,
Clemson, USA, 1 1979, available at https://www.osti.gov/biblio/6060192.

[5] A. V. Reed, “On choosing an inexpensive microcomputer for the
experimental psychology laboratory,” Behavior Research Methods &
Instrumentation, vol. 12, pp. 607–613, 1980, https://doi.org/10.3758/
BF03201852.

[6] C. Moler and J. Little, “A history of MATLAB,” in Proceedings of the
ACM on Programming Languages, vol. HOPL 4. ACM New York, NY,
USA, 2020, pp. 81.1–81.67, https://doi.org/10.1145/3386331.

[7] S. Josifovska, “The father of LabView,” IEE Review, vol. 49, pp. 30–33,
2003, https://doi.org/10.1049/ir:20030905.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, 2020, https://doi.org/10.1038/s41586-020-2649-2.

[9] J. L. Johnson, H. tom Wörden, and K. van Wijk, “PLACE: An open-
source Python package for laboratory automation, control, and experi-
mentation,” Journal of Laboratory Automation, vol. 20, pp. 10–16, 2015,
https://doi.org/10.1177/2211068214553022.

[10] L. J. Koerner, T. A. Caswell, D. B. Allan, and S. I. Campbell, “A Python
instrument control and data acquisition suite for reproducible research,”
IEEE Transactions on Instrumentation and Measurement, vol. 69, pp.
1698–1707, 2020, https://doi.org/10.1109/TIM.2019.2914711.

[11] C. Bozzi, S. Roiser, and the LHCb Collaboration, “The LHCb software
and computing upgrade for run 3: opportunities and challenges,” in IOP
Conf. Series: Journal of Physics: Conf. Series, 2017, https://doi.org/10.
1088/1742-6596/898/11/112002.

[12] Qt widget toolkit, https://www.qt.io.
[13] QGraphicsView Class, Qt documentation, March 2021,

https://doc.qt.io/qt-5/qgraphicsview.html. [Online]. Available: https:
//doc.qt.io/qt-5/qgraphicsview.html

[14] Example Application, PyQtGraph, can be run after installation by
python -m pyqtgraph.examples.

[15] L. Campagnola, M. Kratz, and P. Manis, “Acq4: an open-
source software platform for data acquisition and analysis in
neurophysiology research,” Frontiers in Neuroinformatics, vol. 8, p. 3,
2014, https://doi.org/10.3389/fninf.2014.00003. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2014.00003

[16] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič,
M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar,
L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan,
“Orange: Data mining toolbox in Python,” Journal of Machine
Learning Research, vol. 14, pp. 2349–2353, 2013. [Online]. Available:
http://jmlr.org/papers/v14/demsar13a.html

[17] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

https://github.com/pijyoi
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1214/aos/1043351250
https://doi.org/10.1214/aos/1043351250
https://doi.org/10.3758/BF03201852
https://doi.org/10.3758/BF03201852
https://doi.org/10.1145/3386331
https://doi.org/10.1049/ir:20030905
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1177/2211068214553022
https://doi.org/10.1109/TIM.2019.2914711
https://doi.org/10.1088/1742-6596/898/11/112002
https://doi.org/10.1088/1742-6596/898/11/112002
https://doc.qt.io/qt-5/qgraphicsview.html
https://doc.qt.io/qt-5/qgraphicsview.html
https://doi.org/10.3389/fninf.2014.00003
https://www.frontiersin.org/article/10.3389/fninf.2014.00003
http://jmlr.org/papers/v14/demsar13a.html

	Introduction
	Approach
	Python
	Qt
	Implementation

	Capabilities
	Plot Types
	Performance

	Images and Regions of Interest
	Image Views
	ROIs
	Performance

	Interactivity
	Event Driven GUI
	Responsiveness at scale
	Parameter Trees

	Examples
	Rapid iteration of processing parameters
	Model Prototyping
	Monitoring of real-time data
	Additional examples

	Software development
	Outlook
	Appendix
	Implementation of arrayToQPolygonF
	Implementation of makeARGB

	Acknowledgements
	References

