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Pandera: Going Beyond Pandas Data Validation

Niels Bantilan‡§∗
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Abstract—Data quality remains a core concern for practitioners in machine
learning, data science, and data engineering, and many specialized packages
have emerged to fulfill the need of validating and monitoring data and models.
However, as the open source community creates new data processing frame-
works - notably, new highly performant entrants such as Polars - existing data
quality frameworks need to catch up to support them, and in some cases, the
Python community more broadly creates new data validation libraries for these
new data frameworks. This paper outlines pandera’s motivation and challenges
that took it from being a pandas-only data validation framework [1] to one that
is extensible to other non-pandas-compliant dataframe-like libraries. It also pro-
vides an informative case study of the technical and organizational challenges
associated with expanding the scope of a library beyond its original boundaries.

Index Terms—data validation, data testing, data science, machine learning,
data engineering

Introduction

Data validation is the process of falsifying data against a particular
set of assumptions [2]. Framed differently, it is the act of verifying
data against a set of properties and constraints that are explicitly
established by the data practitioner. In this context, the term "data
practitioner" refers to anyone using a programming language to
analyze, transform, or otherwise process data. It includes, but
is not limited to, data scientists, data engineers, data analysts,
machine learning engineers, and machine learning researchers.
This paper describes the trajectory of pandera from a pandas-only
validation library to a more generic framework that can validate
any dataframe-like object.

Origins

Pandera started as a small project in 2018 with the goal of provid-
ing a lightweight, flexible, and expressive API to validate pandas
DataFrames [3]. This introductory section provides a brief primer
on data validation with pandera, providing insights into how its
design facilitates code-first schema authoring and maintenance.
The operating assumption is that this, in turn, gives rise to safer
and more robust data pipelines.

Why Validate Data?

As stated in the introduction, data validation is the act of falsifying
(or verifying) data against a particular set of assumptions, ex-
pressed as a schema of validation rules. These rules are explicitly
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established by the data practitioner without interference from
automated processes, like data profiling, and verified at runtime
on real-world data.

In machine learning (ML) and statistical analysis use cases,
this is critical because invalid data, e.g. incorrect types, invalid
values, and otherwise corrupted data, can pass silently along a data
pipeline and propagate those errors to various endpoints, which
cause adverse ripple-effects to the downstream consumers that rely
on high-quality data. These endpoints can be models, analyses, and
visualizations, and errors in any of these artifacts call into question
the trustworthiness of the conclusions that they entail. Though this
is especially important in scientific research and business-critical
applications, data validation ought to be a core part of the quality
assurance pipeline of data teams.

Data practitioners build statistical domain knowledge about the
data they are working with by inspecting the data via exploratory
data analysis (EDA), data profiling tools, or a combination of
these two approaches. By building a mental model of how their
data looks like and envisioning a set of constraints that express
what the ideal "clean" dataset looks like, the data practitioner can
then encode this understanding as a schema that they can use
to validate new incoming data. This schema serves not only as
documentation for themselves and future maintainers, but also as
a stateless data drift monitoring system for data transformation,
model training, and production inference pipelines. The benefit of
this statelessness is that the data practitioner can reason about what
counts as valid data through their code and their version control
system of choice, which captures changes in the assumptions about
valid data over time.

However, the process of writing down these schemas is a
laborious and often thankless task and not as exciting as getting
to the modeling/analysis/visualization part of the development
process. As stated in [1], to lower the barrier to explicitly writing
down schemas for maintaining data quality, pandera was created
with the following design principles in mind:

1) Expressing schemas as code should feel familiar to pan-
das users.

2) Data validation should be compatible with the different
workflows and tools in in the data science and ML stack
without a lot of setup or configuration.

3) Defining custom validation rules should be easy.
4) The validation interface should make the debugging pro-

cess easier.
5) Integration with existing code should be as seamless as

possible.

These principles were codified to guide the development of
pandera project towards ease of learning and incremental adoption.
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Pandera’s Programming Model

With these principles in mind, pandera sought to be minimally in-
vasive, quick to integrate into existing data science and ML code-
bases, and easy to learn for data scientists, data engineers, and
ML engineers who use Python (refer to the Related Tools section
of [1] for a discussion of similar projects in the Python space).
The original object-based syntax makes it clear how defining a
DataFrameSchema is similar to defining pandas DataFrames:

import pandera as pa

schema = pa.DataFrameSchema({
"column1": pa.Column(

int, pa.Check.gt(0)
),
"column2": pa.Column(

str, pa.Check.isin([*"ABC"])
),
"column3": pa.Column(

float,
pa.Check.in_range(

min_value=0.0,
max_value=1.0,

)
),

})

In the example above, we expect our data to have three columns
that have specific names, data types, and data value constraints. By
reading the code the data practitioner themselves or their collab-
orators can immediately see what the minimum requirements are
for valid data. For example, the pa.Check.gt(0) constraint
indicates that column1 just always be greater than zero.

Pandera emphasizes code-first schema authoring and mainte-
nance. As opposed to yaml-, json- or UI-based schema authoring,
code-first schemas lower the barrier for DS/ML practitioners to
create and maintain these schemas because they don’t have to
learn a DSL or a set of entirely new concepts.

The hypothesis was that this would give rise to safer and
more robust data pipelines in different parts of the data ecosystem:
from research projects in academia, to nonprofits seeking to create
valuable data assets, or to industry practitioners who want to use
pandas in a production ETL pipeline. Pandera’s core programming
model is simple:

Pandera embraces the data testing development process, which
involves validating real data as well as the functions that produce
them. The process of developing data pipelines with data testing in
mind involves the iterative definition of both data transformations
and schemas, which can be used as "fancy assertions" in your
code, or as reusable components in the pipeline’s unit test suite.

As depicted in 1, this process is roughly as follows: by
whatever means necessary, typically via EDA or data profiling (the
programmatic creation of summary statistics and visualization),
the data practitioner arrives at a schema, which states the columns
and properties that the data should adhere to. The schema is then
used to validate data in-line, or at the interface boundary of critical
functions in the data pipeline. The data practitioner can start
with a basic schema, which may include column names and their
expected types. As they build more statistical domain knowledge
about what counts as valid data, the can refine the schemas to
better fit the requirements of their analysis using Checks.

import pandas as pd

# inline validation
data = pd.DataFrame({

"column1": [1, 2, 3],

"column2": ["A", "B", "C"],
"column3": [0.2, 0.41, 0.87],

})
schema.validate(data)

# validating the input-output function boundary
@pa.check_input(schema)
def transform(data):

...

# pandera automatically validates the input
# when the transform function is called
transform(data)

If validation succeeds, the schema returns the valid data. If it
fails, pandera raises a SchemaError or SchemaErrors exception.
These exceptions contain metadata about what caused the failure
at varying levels of granularity: either at the schema-level, e.g.
wrong column types, or at the data-value-level, e.g. numbers being
out of range:
invalid_data = pd.DataFrame({

"column1": [1, -1, 3],
"column2": ["A", "B", "D"],
"column3": [0.2, 0.41, 100.0],

})
# try to validate as all columns and constraints
# before raising an error with lazy=True
try:

schema.validate(data, lazy=True)
except pa.errors.SchemaErrors as exc:

print("Failure cases")
print(

exc.failure_cases[
["column", "failure_case", "index"]

]
)

# Output:
Failure cases

column failure_case index
0 column1 -1 1
1 column2 D 2
2 column3 100.0 2

The exception raised during validation contains several attributes,
including the original failed data in the .data attribute, but more
importantly, it contains a normalized DataFrame view of all the
failure cases in the data via the .failure_cases attribute. This
is reported at the most granular level so that the data practitioner
can quickly understand what’s wrong with their data.

Evolution

After its first set of releases, pandera continued to improve with
bug fixes, feature enhancements, and documentation improve-
ments. This section highlights four major events in pandera’s
development. In chronological order, these events were: documen-
tation improvements, support for a class-based API, data synthesis
strategies, and the pandera type system.

Documentation Improvements

Documentation is one of the most critical pieces to any software
project. Even if the underlying code is well-written, performant,
and useful, ultimately if the documentation is unclear or otherwise
difficult to read and navigate, the software itself will be inaccessi-
ble to end users.

The first set of major contributions came with the help of
Nigel Markey, who helped considerably in documentation efforts,
making pandera easy to learn and adopt through examples, tuto-
rials, and a comprehensive API reference. This helped pandera to
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Fig. 1: The pandera programming model is an iterative loop between building statistical domain knowledge, implementing data transforms
and schemas, and verifying data.

become part of pyOpenSci [4], which helped further improve its
quality and usability through further review and refinement.

Class-based API

The second major improvement in pandera was contributed by
Jean-Francois Zinque, who implemented the class-based syntax
that’s more akin to Python dataclasses and the pydantic library
[5]. This modernized pandera to use syntax that was familiar
to developers who use classes as types to express the form and
properties of the data structures they want to use.
class Model(pa.DataFrameModel):

column1: int = pa.Field(gt=0, lt=100)
column2: str = pa.Field(isin=[*"ABC"])
column3: float = pa.Field(

in_range={"min_value": 0.0, "max_value": 1.0}
)

This also enabled pandera to take advantage of type hints as a
convenient way of expressing the input-output types of a function
and enforcing data quality at runtime.
from pandera.typing import DataFrame

class Input(pa.DataFrameModel):
x: float
y: float

class Output(Input):
z: float

@pa.dataframe_check
def check_z(cls, df):

"""Column z must be the sum of x and y."""
return df["z"] == (df["x"] + df["y"])

# This decorator does runtime checks on the
# input and output dataframe.
@pa.check_types
def fn(data: DataFrame[Input]) -> DataFrame[Output]:

return data.assign(z=lambda df: df.x + df.y)

Data Synthesis Strategies

The third major improvement was adding support for data syn-
thesis strategies using the hypothesis library [6]. This expanded
pandera’s scope from a data validation library to a “data test-
ing” toolkit by allowing the data practitioner to easily create
mock data for testing not only real data, but the functions that
produce/clean/transform the data. Note that the hypothesis
library for doing property-based testing is not to be confused with
statistical Hypothesis checks, which were already supported
by pandera.

import pytest
from hypothesis import given

# This will generate data for testing the correct
# implementation of fn
@given(Input.strategy(size=3))
def test_fn(input_data)

fn(input_data)

class WrongInput(pa.DataFrameModel):
a: int
b: str

# This will fail on the output check
@given(WrongInput.strategy(size=3))
def test_fn_wrong_input(input_data)

with pytest.raises(pa.SchemaError):
fn(input_data)

Hypothesis handles generating valid data under the pandera
schema’s constraints, which relieves the developer from manually
hand-crafting dataframes and allows unit tests to catch edge cases
that would not otherwise be caught by the hand-crafted test
cases. This can be seamlessly integrated with pytest, since
one can think of pandera schemas as essentially "fancy assertion"
statements.

Pandera Type System

Finally, the fourth major improvement was contributed by Jean-
Francois Zinque, who implemented pandera’s type system, which
provides a consistent interface for defining semantic and logical
types not only for pandas, but also potentially for other dataframe
libraries like pyspark and modin.

This allows pandera users to, for example, implement an
IPAddress type, which requires both specifying the data type
and checking the actual values of the data to verify:
import re
from typing import Optional, Iterable, Union
from pandera import dtypes
from pandera.engines import pandas_engine

@pandas_engine.Engine.register_dtype
@dtypes.immutable
class IPAddress(pandas_engine.NpString):

REGEX = re.compile(
r"(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"

)

def check(
self,
pandera_dtype: dtypes.DataType,
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data_container: Optional[pd.Series] = None,
) -> Union[bool, Iterable[bool]]:

# ensure that the data container's data
# type is correct
correct_type = super().check(pandera_dtype)
if not correct_type:

return correct_type
if data_container is None:

raise ValueError

# ensure IP address pattern
return data_container.map(

lambda x: self.REGEX.match(x) is not None
)

# using it in a DataFrame model
class IPAddressModel(pa.DataFrameModel):

ip_address: IPAddress

Expanding Scope

After gaining traction over the years, the author, the contributors,
and the growing community of pandera users also began to expand
pandera’s scope to support pandas-compliant data frameworks
such as GeoPandas [7], Dask [8], Modin [9], and Pyspark Pan-
das [10] (formerly Koalas). As requests for other dataframe-like
libraries increased in frequency, it became clear that pandera in
its existing state was not well-suited for extension beyond Pandas
objects.

Design Weaknesses

The fundamental design flaw in pandera’s internals was that
the schema specification and validation engine were interleaved
through out the code base. This presented the following challenges
for supporting non-pandas dataframe libraries:

• Schemas were strongly coupled to pandas: The schema
class had a lot of assumptions about pandas, which man-
ifested as method calls and operations that assumed that
pandera was operating on a pandas DataFrame.

• Checks were strongly coupled to pandas: Pandera has
core checks that are exposed in the schema/schema com-
ponent object, which were all implemented with pandas-
specific code.

• Error reporting assumed in-memory data: Error report-
ing of metadata and value checks assumed in-memory,
small-to-medium-sized datasets. For any larger scale data
that requires a distributed dataframe, the error-reporting
mechanism doesn’t work well because the worst case
scenario of all data values being invalid would produce
an failure case report that was potentially even larger than
the original data.

• Leaky abstractions: The pandera schema API leaked
certain pandas-specific abstractions, e.g. Index and Mul-
tiIndex, which don’t apply to other frameworks, e.g. Spark
and Polars.

These weaknesses were uncovered after-the-fact, when the au-
thor and contributors analyzed the existing codebase to determine
how to best support other dataframe objects.

Design Strengths

With these limitations in mind, it’s also important to note some of
the design choices that significantly eased the subsequent internals
rewrite. In particular:

• Generic schema interface: Within the domain of tabular,
dataframe-like datastructures, pandera’s schema API is
generic enough to support both columnar and row-wise
statistical data objects, which can be defined as objects
that expose methods for statistical analysis.

• Flexible Check abstraction: pandera’s Check object —
the core validator abstraction — was sufficiently flexible.
Check functions assume that it returns a boolean scalar,
Series or DataFrame. This allows data pandera to report
value errors at varying levels of granularity: e.g. for
distributed dataframes, reporting all failure cases incurs
unacceptable overhead for distributed dataframes, which
would require full table scans.

• Flexible type system: The type system was also suffi-
ciently flexible to support types for different dataframe
libraries, allowing for simple types, generic types, param-
eterized types, and logical types.

Rewriting Pandera Internals

For practical purposes, the first set of DataFrame libraries sup-
ported by pandera were pandas-compliant frameworks such as
GeoPandas, Modin, Dask, and Koalas (now pyspark.pandas).
Even though these libraries do deviate somewhat from the pandas
API, they were close enough such that the parts of the pandas
API that pandera leveraged were just a subset of the full API.
Therefore, supporting these additional libraries required only a few
code changes [11]. This approach was the path to least resistance
for making data validation more scalable, and validating the notion
that the community would actually find it useful.

In contrast, in order to support additional non-pandas-
compliant libraries like pyspark, polars, and vaex, pandera needed
to overhaul the schema objects by decoupling the schema speci-
fication from the validation engine. At a high-level, the approach
was to introduce the following abstractions:

• A pandera.api subpackage, which contains the
schema specification that defines the properties of an
underlying data structure.

• A pandera.backends subpackage, which leverages
the schema specification and implements the actual vali-
dation logic.

• A backend registry, which maps a particular API specifi-
cation to a backend based on the DataFrame type being
validated.

• A common type-aware Check namespace and registry,
which registers type-specific implementations of built-in
checks and allows contributors to easily add new built-in
checks.

This new architecture allows contributors to implement a
schema validator for any data structure they want. In pseudo-code,
supporting a fictional dataframe library called sloth would look
something like this:
import sloth as sl
from pandera.api.base.schema import BaseSchema
from pandera.backends.base import BaseSchemaBackend

class DataFrameSchema(BaseSchema):
def __init__(self, **kwargs):

# add properties that this dataframe
# would contain

class DataFrameSchemaBackend(BaseSchemaBackend):
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def validate(
self,
check_obj: sl.DataFrame,
schema: DataFrameSchema,
*,
**kwargs,

):
# implement custom validation logic

# register the backend
DataFrameSchema.register_backend(

sloth.DataFrame,
DataFrameSchemaBackend,

)

Similarly, the built-in checks can easily be extended to support
sloth data structures:
import sloth as sl

from pandera.api.extensions import register_builtin_check

@register_builtin_check(
aliases=["eq"],
error="equal_to({value})"

)
def equal_to(

data: sl.Series, value: Any
) -> sl.Series:

return data.equals(value)

Organizational and Development Challenges

Although the road to an internals rewrite was fairly straightfor-
ward from a technical perspective, there were additional meta-
challenges that added to the complexity of implementing the
rewrite in practice:

• Multi-tasking the rewrite with PR reviews: As with any
open source project, there were community-contributed
PRs for bug fixes and feature enhancements, many of
which created merge conflicts since they assumed the pre-
rewrite state of the code base. The author had to block
such contributions until the rewrite was complete and fast-
forward these PRs to fit the structure of the new code base.

• Centralized knowledge: Because the author was the pri-
mary maintainer of the project and was the only maintainer
who understood the codebase as a whole well enough
to make the changes, incorporating non-conflicting pull
requests took time away from the rewrite, further delaying
the timeline that would unblock other would-be contribu-
tors who wanted to implement support for other libraries,
e.g. polars.

• Informal governance: Because pandera has an informal
contributor and governance structure, the author effectively
made unilateral decisions with respect to the abstrac-
tions necessary to decouple the schema specification from
the validation backend. This turned out to be appropri-
ate, with a successful case of a community-contributed
pyspark.sql integration being almost complete as of
the writing of this paper. This integration is planned for
release in the next minor version 0.16.0. However, the
pandera project would benefit from a more formal gov-
ernance structure involving a broader set of stakeholders
when it comes to wide-sweeping internal or user-facing
changes.

Retrospective

With all of these challenges in mind, the internals rewrite was
completed in pull request 913 [12] on January 24th, 2023 and

the follow-up pull request 1109 [13] on March 13th, 2023. A few
factors facilitated the rewrite itself and also reduced the risk of
regressions:

• Unit tests: A comprehensive unit test suite caught many
issues, but not all of them. This was partly due to lack of
complete test coverage, but new tests also had to be written
for abstractions introduced during the re-write process.

• Localized pandas coupling: Pandas-specific code was
mostly localized in easy-to-identify locations in the code-
base.

• Lessons learned from pandas-compliant integrations:
Earlier integrations with pandas-compliant libraries re-
vealed operations/assumptions that are likely to break in
out-of-core DataFrame libraries, which typically involved
indexes and sorting assumptions.

In retrospect, there are additionally things the author would
have done differently to make pandera more flexible and extensi-
ble:

• Thoughtful design work: With some careful design work,
it would have been obvious to decouple schema specifica-
tion from validation backend much sooner.

• Library-independent error reporting: Make error re-
porting more flexible by decoupling error reporting data
structures from the specific DataFrame library, e.g. by us-
ing native python data structures like lists and dictionaries
instead of pandas DataFrames to report failure cases.

• Decoupling metadata from data: Distinguish between
DataFrame metadata schema errors (e.g. missing columns)
and data value errors (e.g. out-of-range values).

• Investing in governance and community: Invest more
in governance and formalize contributor and community
RFC processes sooner to help with design and feature
enhancement efforts.

Updated Design Principles

Given all of the developments and updates that pandera has seen in
recent years, pandera’s design principles also need to be updated
with one amendment and one additions:

1) Amendment: Expressing schemas as code should feel
familiar to Python users, regardless of the dataframe
library they’re using.

2) Data validation should be compatible with the different
workflows and tools in in the data science and ML stack
without a lot of setup or configuration.

3) Defining custom validation rules should be easy.
4) The validation interface should make the debugging pro-

cess easier.
5) Integration with existing code should be as seamless as

possible.
6) Addition: Extending the interface to other statistical data

structures should be easy using a core set of building
blocks and abstractions.

Conclusion

Pandera has evolved from a pandas-specific data validation library
to a comprehensive toolkit that provides a standard schema in-
terface for easily extending and supporting validation backends
for arbitrary statistical data containers. This paper provides an
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overview of data validation and testing, focusing on pandera’s
core programming model and its extended functionality to support
property-based testing. This paper also provides a useful case
study of the technical and organizational challenges associated
with expanding the scope of a library beyond its original bound-
aries.

The author’s hope is that, by highlighting the technical and
organizational dimensions of this evolution, that other open source
authors and maintainers can learn and avoid some of the pitfalls
encountered during the internals rewrite that now enables pandera
to support a whole suite of statistical data containers moving
forward.
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