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libyt: a Tool for Parallel In Situ Analysis with yt
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Abstract—In the era of exascale computing, storage and analysis of large scale
data have become more important and difficult. We present libyt, an open
source C++ library, that allows researchers to analyze and visualize data using
yt or other Python packages in parallel during simulation runtime. We describe
the code method for organizing adaptive mesh refinement grid data structure
and simulation data, handling data transition between Python and simulation
with minimal memory overhead, and conducting analysis with no additional time
penalty using Python C API and NumPy C API. We demonstrate how it solves
the problem in astrophysical simulations and increases disk usage efficiency.
Finally, we conclude it with discussions about libyt.

Index Terms—astronomy data analysis, astronomy data visualization, in situ
analysis, open source software

Introduction

In the era of exascale computing, storage and analysis of large-
scale data has become a critical bottleneck. Simulations often
use efficient programming language like C and C++, while many
data analysis tools are written in Python, for example yt1 [1].
yt is an open-source, permissively-licensed Python package for
analyzing and visualizing volumetric data. It is a light weight tool
for quantitative analysis for astrophysical data, and it has also been
applied to other scientific domains. Normally, we would have to
dump simulation data to hard disk first before conducting analysis
using existing Python tools. This takes up lots of disk space when
the simulation has high temporal and spatial resolution. This also
forces us to store full datasets, even though our region of interest
might contain only a small portion of simulation domain. It makes
large simulation hard to analyze and manage due to the limitation
of disk space. Is there a way to probe those ongoing simulation
data using robust Python ecosystem? So that we don’t have to
re-invent data analysis tools and solve the disk usage issue at the
same time.

In situ analysis, which is to analyze simulation data on-site,
without intermediate step of writing data to hard disk is a promis-
ing solution. It also reduces the barrier of analyzing data by using
well-developed tools instead of creating our own. We introduce in
situ analysis tool libyt2 , an open source C++ library, that allows
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1. https://yt-project.org/

researchers to analyze and visualize data by directly calling yt
or any other Python packages during simulations runtime under
parallel computation. Through wrapping ongoing simulation data
using NumPy C API [2], constructing proper Python C-extension
methods and Python objects using Python C API [3], we can reuse
C++ runtime data and realize back-communication of simulation
information, allowing user to define their own data generating C
function, and use it to conduct analysis inside Python ecosystem.
This is like using a normal Python prompt, but with direct access
to simulation data. libyt provides another way for us to interact
with simulations.

In this proceeding, we will describe the methods in Section
Code Method, demonstrate how libyt solve the problem in
Section Applications, and conlude it with Section Discussions.

Code Method

Overview of libyt

libyt serves as a bridge between simulation processes and
Python instances as illustrated in Fig 1. It is the middle layer
that handles data IO between simulations and Python instances,
and between MPI processes. When launching N MPI processes,
each process contains one piece of simulation and one Python
interpreter. Each Python interpreter has access to simulation data.
When doing in situ analysis, every simulation process pauses, and
a total of N Python instances will work together to conduct Python
tasks in the process space of MPI.
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Fig. 1: This is the overall structure of libyt, and its relationship
with simulation and Python. It provides an interface for exchanging
data between simulations and Python instances, and between each
process, thereby enabling in situ parallel analysis using multiple
MPI processes. libyt can run arbitrary Python scripts and Python
modules, though here we focus on using yt as its core analysis
platform.

Simulations use libyt API3 to pass in data and run Python
codes during runtime, and Python instances use libyt Python

2. https://github.com/yt-project/libyt
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module to request data directly from simulations using C-
extension method and access Python objects that contain simula-
tion information. Using libyt for in situ analysis is very similar
to running Python scripts in post-processing under MPI platform,
except that data are stored in memory instead of hard drives.
libyt is for general-purpose and can launch arbitrary Python
scripts and Python modules, though here, we focus on using yt as
our core analysis tool.

Connecting Python and Simulation

We can extend the functionality of Python by calling C/C++
functions, and, likewise, we can also embed Python in a C/C++
application to enhance its capability. Python and NumPy provides
C API for users to connect objects in a main C/C++ program to
Python.

Currently, libyt supports only adaptive mesh refinement
(AMR) grid data structure.4 How libyt organizes simulation
with AMR grid data structure is illustrated in Fig 2. It first
gathers and combines local adaptive mesh refinement grid infor-
mation (e.g., levels, parent id, grid edges, etc) in each process,
so that every Python instance contains full information. Next,
it allocates array using PyArray_SimpleNew and stores the
information in a linear fashion according to global grid id. The
array can be easily looked up, and we can retrieve information
by libyt at C side using PyArray_GETPTR2. The opera-
tion only involves reading elements in an array. The array is
accessible both in C/C++ and Python runtimes. For simulation
data, libyt wraps those data pointers using NumPy C API
PyArray_SimpleNewFromData. This tells Python how to
interpret block of memory (e.g., shape, type, stride) and does not
make a copy. libyt also marks the wrapped data as read-only5

to avoid Python accidentally alters it, since they are actual data
used in simulation’s iterative process.
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Fig. 2: This diagram shows how libyt loads and organizes
simulation information and data that is based on adaptive mesh
refinement (AMR) grid data structure. libyt collects local AMR
grid information and combines them all, so that each Python instance
contains whole information. As for simulation data, libyt wraps
them using NumPy C API, which tells Python how to interpret block
of memory without duplicating it.

libyt also supports back-communication of simulation in-
formation. Fig 3 shows the mechanism behind it. The process is

3. For more details, please refer to libyt documents. (https://yt-project.
github.io/libyt/libytAPI)

4. We will support more data structures (e.g., octree, unstructured mesh grid,
etc) in the future.

5. This can be done by using PyArray_CLEARFLAGS to clear writable
flag NPY_ARRAY_WRITEABLE.

triggered by Python when it needs the data generated by a user-
defined C function. This usually happens when the data is not
part of the simulation iterative process and requires simulation
to generate it, or the data isn’t stored in a contiguous memory
block and requires simulation to help collect it. When Python
needs the data, it first calls C-extension method in libyt Python
module. The C-extension method allocates a new data buffer and
passes it to user-defined C function, and the function writes data
in it. Finally, libyt wraps the data buffer and returns it back to
Python. libyt makes the data buffer owned by Python6, so that
the data gets freed when it is no longer needed.
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Fig. 3: This diagram describes how libyt requests simulation to
generate data using user-defined C function, thus enabling back-
communication of simulation information. Those generated data is
freed once it is no longer used by Python.

Grid information and simulation data are properly organized
in dictionaries under libyt Python module. One can import it
during simulation runtime:
import libyt # Import libyt Python module

In Situ Analysis Under Parallel Computing

Each MPI process contains one simulation code and one Python
instance. Each Python instance only has direct access to the data
on local computing nodes, thus all Python instances must work
together to make sure everything is in reach. During in situ Python
analysis, workloads may be decomposed and rebalanced according
to the algorithm in Python packages. It is not necessary to align
with how data is distributed in simulation. Even though libyt
can call arbitrary Python modules, we focus on how it uses yt
and MPI to do analysis under parallel computation here.

yt supports parallelism feature7 using mpi4py8 as communi-
cation method. libyt borrows this feature and utilizes it directly.
The way yt calculates and distributes jobs to each MPI process
is based on data locality, but it does not always guarantee to do
so9. In other words, in in situ analysis, the data requested by yt
in each MPI process does not always locate in the same process.

Furthermore, there is no way for libyt to know what kind
of communication pattern a Python script needs in advance. For a
much more general case, it is difficult to schedule point-to-point
communications that fit any kind of algorithms and any number
of MPI processes. libyt uses one-sided communication in MPI,
also known as Remote Memory Access (RMA), by which one
no longer needs to explicitly specify senders and receivers. Fig 4

6. This can be done by using PyArray_ENABLEFLAGS to enable own-
data flag NPY_ARRAY_OWNDATA.

7. See Parallel Computation With yt for more details.
8. mpi4py is Python bindings for MPI. (https://mpi4py.readthedocs.io/en/

stable/)
9. yt functionalities like find_max, ProjectionPlot,

create_profile, PhasePlot, etc are based on data locality, others like
OffAxisProjectionPlot, SlicePlot, OffAxisSlicePlot, etc
don’t.

https://yt-project.github.io/libyt/libytAPI
https://yt-project.github.io/libyt/libytAPI
https://yt-project.org/doc/analyzing/parallel_computation.html
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
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describes the data redistribution process in libyt. libyt first
collects requested data in each process and askes each process
to prepare it. Then libyt creates an epoch, for which all MPI
processes will enter, and each process can fetch the data located
on different processes without explicitly waiting for the remote
process to respond. The caveat in data exchanging procedure in
libyt is that it is a collective operation, and requires every MPI
process to participate.

libyt collects requested data in each process, 

and makes each process prepares the data at shared memory.

MPI process 0 MPI process 1 MPI process (N-1)...

Time line

Open window epoch

Shared memory Shared memory Shared memory

Close window epochGet remote data

Fig. 4: This is the workflow of how libyt redistributes data. It is
done via one-sided communication in MPI. Each process prepares the
requested data from other processes, after this, every process fetches
data located on different processes. This is a collective operation, and
data is redistributed during this window epoch. Since the data fetched
from other processes is only for analysis purpose, it gets freed once
Python doesn’t need it at all.

Executing Python Codes and Handling Errors

libyt imports user’s Python script at the initialization stage.
Every Python statement is executed inside the imported script’s
namespace using PyRun_SimpleString. The namespace
holds Python functions and objects. Every change made will
also be stored under this namespace and will be brought to the
following round.

Using libyt for in situ analysis is just like running Python
scripts in post-processing. The only difference lies in how the data
is loaded. Post-processing has everything store on hard disk, while
data in in situ analysis is distributed in memory space in differ-
ent computing nodes. Though libyt can call arbitrary Python
modules, here, we focus on using yt as the core method. This is
an example of doing slice plot using yt function SlicePlot in
post-processing:
1 import yt
2 yt.enable_parallelism()
3 def do_sliceplot(data):
4 ds = yt.load(data)
5 slc = yt.SlicePlot(ds, "z", ("gamer", "Dens"))
6 if yt.is_root():
7 slc.save()
8 if __name__ == "__main__":
9 do_sliceplot("Data000000")

Converting the post-processing script to inline script is a two-
line change. We need to import yt_libyt10, which is the
yt frontend for libyt. And then we change yt.load to
yt_libyt.libytDataset(). That’s it! Now data is loaded
from libyt instead of loading from hard disk. The following is
the inline Python script:
1 import yt_libyt
2 import yt

10. https://github.com/data-exp-lab/yt_libyt

3 yt.enable_parallelism()
4 def do_sliceplot_inline():
5 ds = yt_libyt.libytDataset()
6 slc = yt.SlicePlot(ds, "z", ("gamer", "Dens"))
7 if yt.is_root():
8 slc.save()

Simulation can call Python function using libyt API
yt_run_Function and yt_run_FunctionArguments.
For example, this calls the Python function
do_sliceplot_inline:
yt_run_Function("do_sliceplot_inline");

Beside calling Python function, libyt also provides interactive
prompt for user to update Python function, enter statements, and
get feedbacks instantly.11 This is like running Python prompt
inside the ongoing simulation with access to data. Fig 5 de-
scribes the workflow. The root process takes user inputs and
checks the syntax through compiling it to code object using
Py_CompileString. If error occurs, it parses the error to see
if this is caused by input not done yet or a real error. If it is
indeed caused by user hasn’t done yet, for example, when using
an if statement, the prompt will continue waiting for user inputs.
Otherwise, it simply prints the error to inform the user. If the
code can be compiled successfully, the root process broadcasts
the code to every other MPI processes. Then they evaluate the
code using PyEval_EvalCode inside the script’s namespace
simultaneously.

Input

Compile source code

Broadcast

Run and print results/error

Parse error

Success

Failed

Cause by user not yet doneTrue

Print error

False

MPI process 0 Other MPI processes

Run and print results/error

Listen to broadcast

Fig. 5: The procedure shows how libyt supports interactive Python
prompt. It takes user inputs on root process and executes Python codes
across whole MPI processes. The root process handles syntax errors
and distinguishes whether or not the error is caused by user hasn’t
done inputing yet.

Applications

libyt has already been implemented in GAMER12 [4] and
Enzo13 [5]. GAMER is a GPU-accelerated adaptive mesh refine-
ment code for astrophysics. It features extremely high performance
and parallel scalability and supports a rich set of physics mod-
ules. Enzo is a community-developed adaptive mesh refinement
simulation code, designed for rich, multi-physics hydrodynamic
astrophysical calculations.

Here, we demonstrate the results from GAMER using libyt,
and we show how libyt solves the problem of limitation in disk
space and improves disk usage efficiency.

11. Currently, libyt interactive prompt only works on local machine or
submitting the job to HPC platforms using interactive queue (e.g., qsub -I
on PBS scheduler). We will support accessing through Jupyter Notebook in
the future.

12. https://github.com/gamer-project/gamer
13. https://enzo-project.org/

https://github.com/data-exp-lab/yt_libyt
https://github.com/gamer-project/gamer
https://enzo-project.org/
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Analyzing Fuzzy Dark Matter Vortices Simulation

Fuzzy dark matter (FDM) is a promising dark matter candidate
[6]. It is best described by a classical scalar field governed by
the Schrödinger-Poisson equation, because of the large de Broglie
wavelength compared to the mean interparticle separation. FDM
halos feature a central compact solitonic core surrounded by fluc-
tuating density granules resulting from wave function interference.
Quantum vortices can form in density voids caused by fully
destructive interference [7] [8]. The dynamics of these vortices
in FDM halo have not been investigated thoroughly, due to the
very high spatial and temporal resolution is required, which leads
to tremendously huge disk space. libyt provides a promising
approach for this study.

We use GAMER to simulate the evolution of an FDM halo on
the Taiwania 314. We use 560 CPU cores by launching 20 MPI
processes with 28 OpenMP threads per MPI process to run the
simulation. The simulation box size is 2.5×105 pc, covered by a
6403 base-level grid with six refinement levels. The highest level
has a maximum resolution of 6.2 pc, so that it is able to resolve the
fine structure and dynamical evolution of vortices within a distance
of 3200 pc from the center. To properly capture the dynamics, we
aim for analyzing vortex properties with a temporal resolution
of 3.5× 10−2 Myr, corresponding to 321 analysis samples. Each
simulation snapshot, including density, real part, imaginary part,
gravitational potential, and AMR grid information, takes 116 GB.
It will take ∼ 37 TB if we do this in post-processing, which is
really expensive. However, it is actually unnecessary to dump all
these snapshots since our region of interest is only the vortex lines
around the halo center.

We solve this by using libyt to invoke yt function
covering_grid to extract a uniform-resolution grid centered
at the halo center and store these grid data instead of simulation
snapshots on disk. The uniform grid has dimension 10243 with
spatial resolution 6.2 pc (i.e., the maximum resolution in the
simulation), correspnding to the full extracted uniform grid width
of 6300 pc. By storing only the imaginary and real parts of the
wave function in single precision, each sample step now consumes
only 8 GB, which is 15 times smaller than the snapshot required
in post-processing.

We further analyze these uniform grids in post-processing, and
do volume rendering and create animation15 using ParaView [9].
Fig 6 is the volume rendering of the result. Vortex lines and rings
are manifest in the entire domain. Fig 7 shows a zoom in version of
Fig 6, where reconnection of vortex lines take place. With the help
of libyt, we are able to achieve a very high temporal resolution
and very high spatial resolution at the same time.

Analyzing Core-Collapse Supernova Simulation

We use GAMER to simulate core-collapse supernova explosions.
The simulations have been performed on a local cluster using 64
CPU cores and 4 GPUs by launching 8 MPI processes with 8
OpenMP threads per MPI process, and having two MPI processes
access the same GPU. The simulations involve a rich set of physics
modules, including hydrodynamics, self-gravity, a parameterized
light-bulb scheme for neutrino heating and cooling with a fixed
neutrino luminosity [10], a parameterized deleptonization scheme
[11], an effective general relativistic potential [12], and a nuclear

14. Supercomputer at the National Center for High-performance Computing
in Taiwan. (https://www.nchc.org.tw/)

15. https://youtu.be/tUjJYGbWgUc

Fig. 6: Volume rendering of quantum vortices in a fuzzy dark
matter halo with GAMER. Here we use libyt to extract uniform-
resolution data from an AMR simulation on-the-fly, and then visualize
it with ParaView in post-processing. The colormap is the logarithm
of reciprocal of density averaging over radial density profile, which
highlights the fluctuations and null density. Tick labels represent cell
indices.

Fig. 7: Vortex reconnection process in a fuzzy dark matter halo. This
is the result we get if we zoom in to one of the vortex lines in Fig 6
where reconnection of lines take place. We are able to clearly capture
the dynamics, and at the same time, preserve high spatial resolution.

equation of state [13]. For the hydrodynamics scheme, we adopt
the van Leer predictor-corrector integrator [14] [15], the piecewise
parabolic method for spatial data reconstruction [16], and the
HLLC Riemann solver [17]. The simulation box size is 2× 104

km. The base-level grid dimension is 1603 and there are eight
refinement levels, reaching a maximum spatial resolution of ∼ 0.5
km.

We use libyt to closely monitor the simulation progress dur-
ing runtime, such as the grid refinement distribution, the status and
location of shock wave (e.g., stalling, revival, breakout), and the
evolution of the central proto-neutron star. libyt calls yt func-
tion SlicePlot to draw entropy distribution every 1.5× 10−2

ms. Fig 8 is the output in a time step. Since entropy is not part
of the variable in simulation’s iterative process, these entropy data
will only be generated through user-defined C function, which in
turn calls the nuclear equation of state defined inside GAMER to get
entropy, when they are needed by yt. libyt tries to minimize
memory usage by generating relevant data only. We can combine
every output figure and animate the actual simulation process16

without storing any datasets.

16. https://youtu.be/6iwHzN-FsHw

https://www.nchc.org.tw/
https://youtu.be/tUjJYGbWgUc
https://youtu.be/6iwHzN-FsHw
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Fig. 8: Entropy distribution in a core-collapse supernova simulated
by GAMER and plotted by yt function SlicePlot using libyt.
Plot (a) shows a thin slice cut through the central proto-neutron in
the post-bounce phase. The proto-neutron star has a radius of ∼ 10
km and the shock stalls at ∼ 200 km. Plot (b) shows the underlying
AMR grid structure, where each grid consists of 163 cells.

Discussions

libyt is free and open source, which does not depend on
any non-free or non-open source software. Converting the post-
processing script to inline script is a two-line change, which lowers
the barrier of using this in situ analysis tool.

Though currently, only simulations that use AMR grid data
structure are supported by libyt, we will extend to more data
structure (e.g., octree, particle, unstructured mesh, etc) and hope
to engage more simulations and data structures in the future.

Using libyt does not add time penalty to the analysis pro-
cess, because using Python for in situ analysis and post-processing
are exactly the same, except that the former one reads data from
memory and the latter one reads data from disks. Fig 9 shows
the strong scaling of libyt. The test compares the performance
between in situ analysis with libyt and post-processing for
computing 2D profiles on a GAMER dataset. The dataset contains
seven adaptive mesh refinement levels with a total of 9.9× 108

cells. libyt outperforms post-processing by ∼ 10 – 30%, since
it avoids loading data from disk to memory. libyt and post-
processing have similar deviation from the ideal scaling since
libyt directly borrows the algorithm in yt. Some improvements
have been made in yt, while some are still undergoing to elim-
inate the scaling bottleneck. But also, due to some parts cannot
be parallelized, like the import of Python and the current data
structure, the speed up is saturated at large number of processors
and can be described by Amdahl’s law.
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Fig. 9: Strong scaling of libyt. libyt outperforms post-processing
by ∼ 10 – 30% since the former avoids loading data from disk to
memory. The dotted line is the ideal scaling. libyt and post-
processing show a similar deviation from the ideal scaling because it
directly borrows the algorithm in yt. Improvements have been made
and will be made in yt to eliminate the scaling bottleneck.

libyt provides a promising solution that binds simulation to
Python with minimal memory overhead and no additional time
penalty. It makes analyzing large scale simulation feasible, and it
can analyze the data with much higher frequency. It also reduces
the barrier of heavy computational jobs written in C/C++ to use
Python tools, which are normally well-developed. libyt focuses
on using yt as its core analytic method, even though it can
call other Python modules, and has the ability to enable back-
communication of simulation information. A use case of this tool
could be using yt to select data and then make it as an input
source for further analysis. libyt provides us another way to
interact with simulation and data.
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