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Abstract—Multidimensional categorical data is widespread but not easily vi-
sualized using standard methods. For example, questionnaire (e.g. survey)
data generally consists of questions with categorical responses (e.g., yes/no,
hate/dislike/neutral/like/love). Thus, a questionnaire with 10 questions, each with
five mutually exclusive responses, gives a dataset of 510 possible observations,
an amount of data that would be hard to reasonably collect. Hence, this type
of dataset is necessarily sparse. Popular methods of handling categorical data
include one-hot encoding (which exacerbates the dimensionality problem) and
enumeration, which applies an unwarranted and potentially misleading notional
order to the data. To address this, we introduce a novel visualization method
named Data Reduction Network (DRN). Using a network-graph structure, the
DRN denotes each categorical feature as a node with interrelationships between
nodes denoted by weighted edges. The graph is statistically reduced to reveal
the strongest or weakest path-wise relationships between features and to reduce
visual clutter. A key advantage is that it does not “lose” features, but rather
represents interrelationships across the entire categorical feature set without
eliminating weaker relationships or features. Indeed, the graph representation
can be inverted so that instead of visualizing the strongest interrelationships,
the weakest can be surfaced. The DRN is a powerful visualization tool for multi-
dimensional categorical data and in particular data derived from surveys and
questionaires.

Index Terms—Data Visualization, Multidimensional Categorical Data

Introduction

The proliferation of Big Data has opened new frontiers in the
analysis of information across numerous disciplines. This surge
of data is most pronounced in areas such as large-scale surveys,
which provide a wealth of multidimensional data capable of
answering diverse research questions that may not be easily tested
in experimental lab settings [1]. However, the size and complexity
of this type of data introduce unique challenges, particularly in the
domain of data visualization and downstream analysis.

For example, questionnaire (e.g., survey) data are generally
categorical with just a few alternatives for each question, as
with the Likert scale that typically consists of five alternatives
for each question (e.g., strongly agree, agree, neutral,
disagree, strongly disagree). Consider a small survey
with ten questions, each with five alternatives, which produces
510(9,765,625) possible distinct completed questionnaires. In
practice, visualizing such a large amount of data in an elegant
format is rarely feasible. Rather, the standard approach is to
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consider a few questions and marginalize (i.e., sum) over the
remaining responses. A summary headline result could be that
“90% of respondents strongly agree with Question 1”. Another
could be “75% of respondents strongly agree with Question 2”
and so on. However, this approach does not provide information
on the respondents who selected strongly agree for both
Questions 1 and 2. Even more troubling, there could be a third
question that is strongly related to both questions but has been
marginalized over, potentially leading to issues like Simpson’s
paradox[2], a phenomenon where a trend or relationship that
appears within different groups reverses or disappears when the
groups are combined, thus misleading the overall analysis.

As with our survey example above, categorical data often
exists in a high-dimensional space. The challenge lies in accurately
representing multiple dimensions on a two or three-dimensional
plane, which carries potential risks, from oversimplification to
cognitive overload [3]. This complexity is amplified by the het-
erogeneous nature of survey data, which may comprise multiple
choice and open-ended responses to Likert scales, each neces-
sitating different visualization techniques [4]. Current common
methods to generate informative visualizations for high dimen-
sional categorical data include manually pre-selecting questions
or dimensional reduction techniques such as principal component
analysis (PCA) and t-distributed stochastic neighbor embedding
[5]. These techniques may help to inform some conclusions, yet
they may still not be fully comprehensible to non-expert audiences
or require excessive human effort to filter the information. In
the filtering process, some important relationships, such as joint
respondents between two questions, may be omitted due to data
oversimplification. Furthermore, such oversimplification may even
lead to bias in the downstream analysis.

One popular method for addressing high-dimensional categor-
ical data is through one-hot encoding. In this method, each level
of the data element is mapped into a string of n-bits where 1
marks the specific response for that row. For example, using the
Likert scale, one-hot encoding produces a string of five bits where
10000 corresponds to strongly agree for that particular
response and 01000 for the agree response. Suppose you have
a data frame with rows corresponding to survey respondents and
columns corresponding to questions. For each question, one-hot
encoding will generate five bits. As a result, for n original columns,
there will now be 5n one-hot encoded columns. Although it is
relatively simple to see this two-dimensional data as a binary array,
the relationships between the respondents (rows) and the survey
questions (columns) may not be apparent from this representation.

Another common technique is label-encoding where each
categorical level is mapped to an integer. For example, if our
category is favorite fruit with levels apple, banana,
and strawberry, then with label encoding, we have apple
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Unit Question 1 Question 2 . . . Question N

1 yes sometimes . . . responseN

2 no never . . . responseK

3 yes never . . . responseN

. . . . . . . . . . . . . . .

TABLE 1: Sample Survey Data Table. Each row represents a partic-
ipant’s response record and each column corresponds to questions in
the survey.

Unit Question 1 Question 2 . . . Question N

1 1 3 . . . 6

2 2 4 . . . 2

3 1 4 . . . 6

. . . . . . . . . . . . . . .

TABLE 2: Survey data table where each response is converted to an
integer number.

→ 1, banana → 2, and strawberry → 3. The problem with
this approach lies in the inherent ordering of integers, which may
not reflect the true nature of the categories. For example, because
2 > 1, does that imply that banana is somehow more than
apple? The downstream numerical analysis relies on numeric
properties and is oblivious to the nuances expressed by the
categorical variable. This lack of sensitivity can lead to spurious
correlations or nonsensical results.

To distill insightful and actionable visualizations from large
survey data, it is essential to balance the trade-off between sim-
plicity and completeness, highlighting the most critical variables
for downstream data processing [6]. One previous attempt involves
using the cobweb diagram to represent the inter-relationships
between nodes [7]. This method effectively distills the complexity
in high dimensional contingency tables, but may not be easily
comprehensible to those without expertise. In this paper, we
propose the Data Reduction Network (DRN) method, a straightfor-
ward visualization for representing multidimensional categorical
data. The DRN method generates a condensed network graph,
emphasizing the strong interrelationships among the variables. By
employing a maximum spanning tree, the network not only avoids
the risk of oversimplification but also retains the most significant
insights from the survey.

Method

The DRN is a graph composed of nodes and edges. Each node
denotes the answer to a particular survey question, whereas the

Unit Question 1 Question 2 . . . Question N

1 Q1-1 Q2-3 . . . QN-6

2 Q1-2 Q2-4 . . . QN-2

3 Q1-1 Q2-4 . . . QN-6

. . . . . . . . . . . . . . .

TABLE 3: Survey table with labeled response and corresponding
questions.

Unit Question 1 Question 2 Question 3

1 Q1-1 Q2-3 Q3-6

2 Q1-1 Q2-4 Q3-6

3 Q1-2 Q2-4 Q3-2

TABLE 4: Survey table with further transformed responses label. Now
each label will have the question number in them.
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Fig. 1: A clique representation of the first respondent in the hypothet-
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Fig. 2: Network illustrating responses from the first 3 rows of the
response table.
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Fig. 3: Network after maximum spanning tree.
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edges between nodes indicate the co-occurrence of respective
answers. The DRN maintains a running tally of the number of
times an edge occurs in the dataset, as well as the frequency of a
particular response to a given question.

Suppose we have a set of survey data shown in Table 1.
For the sake of convenience and visual simplicity, we map each
response to an integer (e.g., yes → 1, no → 2, sometimes → 3)
as demonstrated in Table 2. It is worth noting that while this is
technically a label encoding process, it is an optional process.
The node Q1_1 could have been labeled Q1_yes but it is clear
that visual clutter would soon ensue for more complex responses
like Q3_responseK. By employing this encoding technique, we
achieve a concise representation of each question-response pair, as
demonstrated in Table 3. This gives every entry in the table a code
that indicates the question-response pair. Each row in the table
corresponds to a respondent. It is possible for two respondents to
answer the survey in exactly the same way, leading to duplicated
rows in the table.

Once the data is properly encoded, the subsequent step is to
construct the DRN where each entry from the table represents
a node, and the edges symbolize the connections between these
nodes. This means that each row generates a clique, a network of
mutually connected nodes, and these cliques are merged to create
a comprehensive clique whose edges count all joint responses for
the entire table.

The process of constructing a master graph from the table is a
two step process:

(i) Form a clique for every row
(ii) Merge the cliques by accumulating the edge counts

Following a hypothetical example with three questions shown in
Table 4, we start with the first row, each question-response term
becomes a node and there is an edge between every two terms in
this row with weight 1. The clique formed from the first row is
depicted in Figure 1. After completing cliques for all rows, three
in this case, they are merged into a master graph where the edge
counts are accumulated as shown in Figure 2. Please note that in
this case, the edge between Q1_1 and Q3_6 occurs in two of the
cliques so it is weighted 2.

For large datasets, these master graphs can become extremely
dense and impossible to interpret. To simplify the graph and
reveal the key statistically significant relationships, we employ
networkx’s maximum_spanning_tree function, which ap-
plies Prim’s algorithm [8]. This algorithm calculates the maximum
spanning tree where the weights are the edge counts. It’s worth
mentioning that Prim’s algorithm is a greedy algorithm that
finds a maximum spanning tree for a weighted undirected graph.
Furthermore, it’s worth noting that any maximum spanning tree
algorithm could be used. For instance, Kruskal’s algorithm [9],
also supported by networkx[10], is a valid alternative.

The resulting tree maintains the largest edge-weights, which
are the strongest co-occurring responses. It is worth noting that
the maximum spanning tree might not be unique; hence, in the
event of a tie, any competing tree could be chosen. With large
combinatorial complexity associated with large data sets such ties
are unlikely. In the present example, one maximum-spanning tree
is shown in Figure 3

Given that the edges in the DRN represent the tallies of co-
occurring survey responses, these values align with those found in
a contingency table that encompasses the variables represented

Fig. 4: An overview of DRN for the solar flare dataset

by the nodes. Therefore, the DRN effectively unrolls a high-
dimensional contingency table onto a network graph, thereby
facilitating the identification of the strongest inter-relationships.
DRNs facilitate inferential statistics by translating topological
features, such as clusters and connections in the graph, into
statistical quantities of interest.

Example

The Solar Flare Dataset

As an example, a simple dataset is presented. The Solar Flare
Dataset was adopted from University of California at Irvine (UCI)
Machine Learning Repository1. Each entry of the dataset describes
multiple features of an active region on the sun as well as the
number of flares events that occurred within the past 24 hours in
the region. The features were described in Table 5. We’ve also
provided this in an example Jupyter notebook, the link to which
can be found in the conclusion section of this document.

Figure 4 shows the DRN representation of the Solar Flare
Dataset. In addition to the methods mentioned in the previous
section, for clarity edge weights are not explicitly shown but
translated into edge thickness with the most common occurrence
of responses having heavier lines. Additionally, the size of the
nodes is proportional to the number of responses for the particular
question-response. Finally for added clarity, the responses associ-
ated with each question are encoded with the same color making
it easy to discern which responses belong to which question. Each
feature is encoded as a single label. For example, for the feature
act, there are two options: 1 (reduced), and 2 (unchanged). If a
region has reduced solar activity, the feature will be encoded as
act_1. This code will appear in the DRN as nodes and the size of
the node is proportional to the number of entries that contains the
corresponding feature coding. In other words, greater node size
indicates the most prevalent features across all entries.

In Figure 4, the largest node in the center was x_class_0,
which indicates that for most active regions on the sun, 0 x-class

1. http://archive.ics.uci.edu/ml/datasets/solar+flare
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Feature Description
klass Code for class (modified Zurich class) (A, B, C, D, E, F, H)
size Code for largest spot size (X, R, S, A, H, K)
dist Code for spot distribution (X, O, I, C)
act Activity (1 = reduced, 2 = unchanged)
evo Evolution (1 = decay, 2 = no growth, 3 = growth)
prev Previous 24 hour flare activity code (1 = nothing as big as an M1,2 = one M1,3 = more activity than one M1)
complex Historically-complex (1 = Yes, 2 = No)
hist_complex Did region become historically complex on this pass across the sun’s disk (1 = yes, 2 = no)
area Area (1 = small, 2 = large)
c_class Small with few noticeable consequences on Earth
m_class Medium-sized; cause brief radio blackouts that affect Earth’s polar regions
x_class Big; major events that can trigger planet-wide radio blackouts and long-lasting radiation storms

TABLE 5: Table for the features described in the solar flare dataset.

solar flare activity was observed. While it shows the specific fea-
ture encoding for that feature category, the DRN could also reveal
joint encoding relationships through the edge connection and the
thickness of edges. Thicker edges indicate stronger correlations
between two features. For example, regions that have the feature
label of x_class_0 will also most likely have the features of
area_1, act_1, m_class_0, prev_1, hist_complex_2,
c_class_0, evo_3, as indicated by the thickness of the edge.
This indicates that regions that do not have x-class solar flare
activity, they would most likely be 1) small area, or 2) regions
with reduced activity, or 3) no m-class solar flare activity, or 4)
not as big as M1, or 5) wasn’t considered as historically complex,
or 6) no c-class solar flare activity, or 7) actively growing. Notice
that each edge represents an independent joint relationship with
each other.

Use Case

Telehealth Questionnaire

In this section, we demonstrate an application of the DRN, using
it to analyze a complex survey dataset. This dataset was obtained
from a survey of the perceptions and uses of telehealth in the
care of older adults [6]. The survey used a questionnaire with 29
close-ended questions, spanning multiple-choice, agreement scale,
dichotomous true/false, and rating scale formats. These statements
presented potential challenges associated with using telehealth to
serve older adults, touching on areas like relationship building,
high medical complexity, physical and cognitive impairment, and
fragmentation of care. The survey captured responses from 7246
U.S. clinicians across a range of specialties.2

Figure 5 depicts an overview of the DRN for the entire survey.
We’ve followed a specific convention for labeling each node.
When questions include subquestions, the corresponding response
is represented with a hyphenated label connecting the question
number, subquestion number, and numeric representation of the
response. For instance, a TRUE response for question 11 subques-
tion 4 is labeled as Q11-4_90. The numeric representation of the
response can be arbitrary but to avoid confusion the coding used
in the survey results itself was used where TRUE is represented
as 90. For questions without subquestions, we simply omit the
hyphen and subquestion number, e.g., Q2_91.

2. The exact questionnaire can be found at:
https://pubmed.ncbi.nlm.nih.gov/36493377/

Each node’s size is proportionate to the number of respondents
who chose the associated answer, with larger nodes representing
the most common question-answer combinations (topline results).
For ease of discussion, the most prominent nodes in Figure 5 are
labeled with uppercase letters, and two other nodes of interest with
an uppercase-lowercase pair. Table 6 complements the figure by
detailing the annotation, DRN label, and corresponding question-
answer pairs for these nodes.

The prominent nodes, labeled as A, B, Ba, Bb, C, and D
in the network diagram, are derived from the subquestions of
survey Question 11. This question presented a list of reasons
why providers might choose to exclude older adults from their
telehealth services, and asked respondents to rate their agreement
with each statement, based on their personal and professional
opinions. The full text of Question 11 is as follows:

Q11: The following is the list of reasons why some
providers might choose to exclude older adults from
their telehealth offerings (visits, program, system).
Please read and indicate your personal and professional
opinion about whether you believe each statement is true
or false

The prominent nodes indicate the most frequently selected
responses across all survey participants. Observations from these
responses allow for immediate conclusions to be drawn across all
U.S. clinical specialties. The most common reasons to exclude
telehealth offerings for older patients include: 1) the belief that
telehealth couldn’t provide sufficient healthcare service to older
patients, 2) concerns about whether older patients have enough
resources to properly utilize the service, and 3) possible insuf-
ficiency of resources by the medical staff to offer the telehealth
service. These conclusions serve as the top-line information ex-
tracted from the questionnaires.

Similar to the DRN analysis of the solar flare dataset, the
strength of joint responses among all respondents is visually
emphasized by the width of the lines (i.e., edges) connecting
the nodes. Employing the maximum spanning tree method, the
DRN selectively showcases the most significant joint relationships
within the network. To illustrate, a thicker edge connecting nodes
A and B indicates that respondents who selected response B also
likely selected response A. In terms of raw data, the count of
respondents who selected both responses A and B is notably
higher than any other pairwise combination. In sum, the DRN
not only indicates topline responses but also captures significant
joint responses.
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Label Annotation Response description Respondent’s Response

Q11-2 A People over a certain age cannot be well cared for using telehealth TRUE
Q11-3 B The older adults I serve do not always have access to the resources needed to make

a telehealth visit effective
TRUE

Q11-5 C I have concerns about the impact of telehealth on fragmentation of care for older
adults

TRUE

Q11-6 D Relationship building via telehealth is more difficult than in person TRUE
Q11-7 Ba There is a lack of support from my health system leadership or support staff to make

telehealth for my older adults an effective alternative
TRUE

Q11-8 Bb Providing telehealth is dangerous to older adults because their care needs are so
medically complex

TRUE

TABLE 6: Table for response description and annotation used in figure 5.

Label Annotation Response description Respondent’s Response

Q11-4 Da (Subquestion 4) Older adults’ significant physical or cognitive challenges make
telehealth unrealistic

TRUE

Q2 Db For demographic purposes only, select all that describe your ethnic background? White/Caucasian
Q9 Dc Which of the following best describes the top THREE reasons that you feel some

older adults may not use telehealth? Please choose THREE:
Older adults’ physical and/or
cognitive challenges

TABLE 7: Response description for DRN in figure 6

The tree-like structure of the DRN further allows the isolation
of individual trees within the network, thus providing supplemen-
tary visual information for a particular response. For example,
Figure 6 shows a detailed view of the tree segment centered around
node D for closer examination. For clarity, the most prominent
nodes within this tree are annotated according to Table 7.

This tree allows us to see the interconnections between various
survey responses. Notably, respondents who agreed that "rela-
tionship building via telehealth is more difficult than in person"
(D), also agreed with the statements "older adults’ significant
physical or cognitive challenges make telehealth unrealistic" (Da)
and "older adults’ physical and/or cognitive challenges is one of
the reasons why older patients may refuse to use telehealth" (Dc).

In addition, most respondents who agreed with the dif-
ficulties of relationship building via telehealth identified as
White/Caucasian (Db). However, this trend might be reflective of
the ethnic imbalance in our respondents.

Additionally, upon closer inspection of the Da node, we
see that most respondents who expressed concerns about cog-
nitive/physical decline disagreed with the statement "insufficient
resources to effectively use telehealth service" (denoted by the
light green node Q11-3_26 under Da).

A quick glance at the network offers substantial insights. It be-
comes clear that the majority of respondents in this survey shared
opinions on the potential reasons why providers might exclude
older adults from telehealth services (Q11). They largely agreed
on three primary factors that make telehealth less suitable for
people over a certain age: 1) difficulties in relationship building,
2) potential fragmentation of care, and 3) a lack of resources.
Those who indicated a lack of resources as a potential issue
further specified that there is a lack of support from the health
system leadership or support staff to make telehealth effective. For
respondents who indicated the difficulties of relationship building
would be a potential issue, the majority of them further specify that
older adults’ significant physical or cognitive challenges would
make telehealth unrealistic.

The majority of the participants expressing concerns about el-
der physical or cognitive challenges disagreed with the insufficient
resource argument. It is also noteworthy that most participants who
identified difficulties in relationship building as a major concern
reported their ethnic background as white/Caucasian.

This example demonstrates how the DRN offers a clean,
concise visualization that enables users to quickly identify re-
lationships between different questions in a survey. It not only
highlights the topline information but also allows users to explore
additional relevant data associated with each topline piece of
information through the examination of the edges. Compared to
traditional methods, DRN provides a simpler, yet more informa-
tive, visualization of survey data.

Discussion

Data Reduction Networks (DRNs) provide a valuable solution in
the field of data exploration tools, predominantly addressing the
handling of categorical data, which has often been overlooked by
tools focusing on continuous data. As previously noted, the DRN
is adept at rapidly highlighting top-line information. It effectively
highlights significant relationships, which can be challenging to
discern when dealing with high-dimensional contingency tables.
While contingency tables are useful for data analysis, they can
become intractable beyond a few dimensions and may be too
cumbersome for data exploration.

Despite their utility, DRNs share the same limitations common
to data exploration tools. Specifically, a DRN’s purpose isn’t
to act as a standalone data analysis tool, even though it can
highlight interesting aspects of a data set. Instead, its strength lies
in fostering hypotheses that prompt further investigation, either
within the existing data set or via the acquisition of new, targeted
data.

The utility of DRNs is not confined to survey data. In fact,
categorical data can be seen as analogous to survey data, where
features map to questions, and feature values correspond to an-
swers. The example of solar flares showcases this equivalence.
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Fig. 5: An overview of DRN for the telehealth questionnaire

Although largely a semantic shift, it reframes the data’s context.
By contrast, our telehealth use case involves the use of actual
survey data.

In the presence of continuous data in data sets, discretization
or binning techniques akin to those utilized in decision trees can
be employed to convert this data into a categorical form. However,
this conversion introduces a new challenge - bin formulation. Still,
this can be tackled by using existing techniques from decision tree
methodologies[11].

A unique problem with survey data comes from questions
where multiple responses are permitted. Even visualization meth-
ods that can accommodate categorical data struggle with this.
The DRN elegantly handles this by generating cliques based on
all responses from a respondent, irrespective of whether those
responses are associated with different or the same question.

Regarding data imbalances, especially those of a demographic

nature, traditional methods such as oversampling underrepresented
populations may inadvertently amplify certain relationships in the
DRN. As an alternative, removing the overrepresented node and
its edges from the main graph, creating a new tree devoid of
this node. This action can result in a graphical representation
where the influence of the overrepresented node is neutralized, but
relationships that may involve that overrepresented demographic
are retained. This approach preserves the same weighting of the
relationships without emphasizing the relationship to the over-
represented node. It falls on the analyst to weigh the merits of
this approach versus the traditional oversampling techniques to
determine which approach best fits their problem.

The extraction of a maximum spanning tree from the master
graph within a DRN serves to capture prominent features in the
survey data. However, this method may inadvertently overlook
relationships that, while strong, are not the most dominant, and
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Fig. 6: A closer look at tree D from the telehealth questionnaire

it would miss subtler, hidden insights. As a potential future
direction, the application of alternative subgraph extraction or
graph partitioning methods to the master graph might address this
concern.

For further enhancement of its utility and streamlining of data
exploration, several features could be incorporated into a DRN’s
graphical interface. An advanced user interface could enable
the omission or disabling of nodes upon a user’s request, and
subsequently generate new trees accordingly. This would enable
users to remove nodes based on their relevance or preference.
Another feature could enable a user to select a node, which would
then prompt the UI to trigger a statistical function - for instance,
constructing a contingency table based on the question associated
with the selected node, and questions associated with all connected
nodes. This feature could facilitate and streamline subsequent
statistical analyses.

Considering the computational demands associated with pro-
cessing large survey data, strategies such as parallel processing
or employing graphics processing unit (GPU)-enhanced graph
packages, like cugraph[12], could significantly enhance processing
efficiency.

DRNs offer a powerful tool for exploring categorical data,
especially in survey data sets. While they have certain limitations,
they excel at revealing important relationships and fostering hy-
potheses for further investigation. The adaptability of DRNs to
various data types, including the treatment of continuous data and
handling of multiple responses, contributes to their effectiveness.
Future improvements to DRN’s graphical interface could further
enhance their utility, while alternative methods for extracting
subgraphs could reveal subtler insights that might be missed by
the current approach. Further studies are needed to explore these
areas and continue refining the DRN methodology.

DRNs serve as potent tools for categorical data exploration,
excelling at revealing key relationships and fostering investigatory
hypotheses. Their versatility to handle various data types and
responses boosts their efficacy. Future enhancements to the DRN
methodology could offer deeper insights, but further research and

development is needed.

Conclusion

DRNs offer significant potential in the exploration of categori-
cal data, as they can reveal crucial relationships and foster the
generation of hypotheses for subsequent investigations. Their
utility in data analysis is promising due to their flexible approach
in accommodating diverse data types and responses. They are
particularly effective in survey data analysis, where their unique
ability to manage categorical data, including continuous data and
multiple responses, is most apparent.

However, DRNs are not without their challenges. There is
potential for future improvements to enhance their functionality
and unlock more profound insights. Potential areas for improve-
ment include the provision of a fully featured graphical interface,
the development of alternative methods for subgraph extraction,
and more sophisticated management of data imbalances and
computational demands. Furthermore, more studies are needed to
fully explore and refine the DRN methodology, ensuring that this
powerful tool continues to evolve and contribute to the field of
data exploration.

An example Jupyter notebook is available at our GitHub repos-
itory: https://github.com/Westhealth/drn-scipy2023/. The efforts to
build the method to a library is documented in the README file.
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