Conference site » Proceedings

Proceedings of the 10th Python in Science Conference (SciPy 2011)

Stéfan van der Walt, Jarrod Millman

July 11 - 16

Austin, Texas


Organizers | Sponsored Students


A Technical Anatomy of SPM.Python, a Scalable, Parallel Version of Python 1
Minesh B. Amin

Fitting and Estimating Parameter Confidence Limits with Sherpa 10
Brian Refsdal, Stephen Doe, Dan Nguyen, Aneta Siemiginowska

Crab: A Recommendation Engine Framework for Python 17
Marcel Caraciolo, Bruno Melo, Ricardo Caspirro

gpustats: GPU Library for Statistical Computing in Python 24
Andrew Cron, Wes McKinney

Using the Global Arrays Toolkit to Reimplement NumPy for Distributed Computation 29
Jeff Daily, Robert R. Lewis

Vision Spreadsheet: An Environment for Computer Vision 36
Scott Determan

Constructing scientific programs using SymPy 40
Mark Dewing

Using Python, Partnerships, Standards and Web Services to provide Water Data for Texans 44
Dharhas Pothina, Andrew Wilson

PyModel: Model-based testing in Python 48
Jonathan Jacky

Automation of Inertial Fusion Target Design with Python 53
Matthew Terry, Joseph Koning

Hurricane Prediction with Python 58
Minwoo Lee, Charles W. Anderson, Mark DeMaria

IMUSim - Simulating inertial and magnetic sensor systems in Python 63
Martin J. Ling, Alex D. Young

Using Python to Construct a Scalable Parallel Nonlinear Wave Solver 70
Kyle T. Mandli, Amal Alghamdi, Aron Ahmadia, David I. Ketcheson, William Scullin

Building a Framework for Predictive Science 76
Michael M. McKerns, Leif Strand, Tim Sullivan, Alta Fang, Michael A.G. Aivazis

PyStream: Compiling Python onto the GPU 87
Nick Bray

Bringing Parallel Performance to Python with Domain-Specific Selective Embedded Just-in-Time Specialization 91
Shoaib Kamil, Derrick Coetzee, Armando Fox

N-th-order Accurate, Distributed Interpolation Library 98
Stephen M. McQuay, Steven E. Gorrell

Google App Engine Python 104
Douglas A. Starnes

Time Series Analysis in Python with statsmodels 107
Wes McKinney, Josef Perktold, Skipper Seabold

Improving efficiency and repeatability of lake volume estimates using Python 114
Tyler McEwen, Dharhas Pothina, Solomon Negusse